
1

1

IMPORTING A MODULE INTO HOPEX

To work with certain HOPEX Solutions, you might need to import modules into
HOPEX.

These modules can be uploaded from HOPEX Application Server (HAS) console.
 If you do not have access to Internet, you can use an off-line mode
to upload the module from a local file.

 You must stop HOPEX Core Back-End module before
importing a module into HOPEX. Make sure to perform this
action when users are not connected.

2

1

Module

Module description

A module page shows:
• the module description
• direct access to its upload (last version and recommended version)
• its characteristics: type, author, server version
• two tabs to access:

• the module version history
• its dependencies: some modules require prior installation of other

modules

3

Importing a Module into HOPEX

Required dependent modules

Some modules require prior installation of other modules. These modules are listed
in the Dependencies tab of the module page.

E.g. : hopex.core, hopex.graphql, hopex.rest.api.

Version

When necessary, the required version of the dependent module is indicated.
 For details regarding the version range notation, see https://
docs.microsoft.com/en-us/nuget/concepts/package-
versioning#version-ranges Web site.

E.g.: [15,16) means that all of the versions from 15.0.0 are
authorized. The version 16 and more recent versions are not
authorized.

4

1

Importing a Module into HOPEX

To import a module into HOPEX:
1. Access the HAS console:

• Enter its http address in your web browser and click Open.

• Enter the login and password of the HAS administrator and click Sign
in.

2. In the console navigation menus, select Modules > Module List.
3. In the right pane, click the Add new tab.

5

Importing a Module into HOPEX

4. Click the module you want to upload.
 If needed, use the Search (Search here) and filtering (Type, Tag)
tools to help you find the module.
 If you work off-line, but you have access to the module in a local

file (e.g.: via a USB key): click to upload it.

5. (Optional) In the module page, click Dependencies to check that all the
required modules are installed.

 See Required dependent modules.
When uploading the module, these dependent modules are automatically
added to the upload.

6. Upload the required version of the module: click .

6

1

7. Click Apply to confirm the installation of the module and its dependent
modules, if necessary.

 Click Cancel to cancel the installation.
Example: the installation of the "website.static.content”
module requires to install "website.static.navigator".

7

Importing a Module into HOPEX

8. A message indicates when the environment automatic update will be
launched (in 10 minutes).

 Make sure to perform this operation when users are not
connected or inform them, see Administration (Web) > Notifying
Connected Users.

 If you launch the installation of another module within 10 minutes,
the environment automatic update is launched 10 minutes after having
requested to install the second module.

If needed, you can:
• launch the update immediately: click Start now.
• perform the update manually later: click Cancel (see Updating an

environment manually).
 A delegated administrator does not have the Cancel feature.

A message informs you that the module is installed and ready to use.

The module has been added to the list of installed modules in the
Installed tab.

 See Module description.

Updating an environment manually
While importing a module, if you have canceled the environment automatic update,
you must perform the update manually to be able to use the module.

8

1

To manually update the environment:
1. Access the HAS console:

• Enter its https address in your web browser and click Open.

• Enter the login and password of the HAS administrator and click Sign
in.

2. Select the Cluster navigation menu.
In the Modules tab: hover the mouse over the HOPEX Core Back-End

module then click More > Start Easy Update.

The environment has been updated.

Authentication via an API key
Some modules require to authenticate via an API key to launch an HOPEX session.

 See Managing API Keys.

Customization Lifecycle Management

1212

HAS Custom

Managing Customization Lifecycle

1. Foreword .. 3

1.1. Vocabulary .. 3

1.2. From DEV to PROD process ... 4

1.3. The big picture ... 6

2. Customization Capabilities ... 7

2.1. Metamodel, desktops, profiles ... 7

2.2. Other resources .. 8

3. Getting Ready for Customization .. 9

3.1. Installing HAS Customization module .. 9

3.2. Getting NuGet package .. 10

4. Creating Customization (SystemDB) ... 12

4.1. Work Item concepts ... 12

4.2. Dispatch customization .. 14

4.3. Done with your customization? .. 17

5. Extracting Customization ... 19

5.1. Prerequisites ... 19

5.2. Generating the MGR/XMG files... 20

5.3. Checking generated files .. 22

6. New/Replace/Override Resource Files .. 24

6.1. Folders and sub-folders structures ... 24

6.2. Examples of common files and folders customized 26

7. Packaging customization ... 30

8. Pushing Customization to STAGE/PROD .. 32

8.1. Pushing to STAGE or PROD principle ... 32

8.2. Uploading the custom module in HAS ... 32

8.3. Running Automatic update to apply your customization in repositories 34

9. Managing a Team to Move from DEV to PROD 38

9.1. Most common (recommended) working way ... 38

9.2. Multiple team – Multiple Projects – Multiple DEV Instance.............................. 40

10. Use Case: Property Page Customization ... 45

10.1. Prerequisites ... 45

10.2. Customizing .. 46

10.3. Dispatching customizations via Work Items ... 46

10.4. Generating the custom files (DEV) .. 48

10.5. Creating the Custom Package (DEV) .. 49

10.6. Pushing customization to Staging .. 50

10.7. Pushing customization to Prod ... 51

11. Migrating to HOPEX V5? .. 52

12. Frequently Asked Questions .. 53

HAS Custom - Managing customization lifecycle

 Page: 3 / 58

1. Foreword

The modular approach of HOPEX V5 and onward (Vx or AQUILA…) and especially its
HOPEX Application Server Customization module enable to improve HOPEX
customization process:

• extracting/selecting customization performed in the SystemDB

• pushing the customization to production

You can download the modules from the HOPEX Store:
https://store.mega.com/modules/details/has.custom

1.1. Vocabulary

1.1.1. Definitions

Terms Definition

Platform Is the reference to a server that represents a step in the process
of delivery. There are often: DEV, STAGE, PROD as platform

Mode Includes the following values:

• Development (DEV)

• Staging (STAGE)

• Training

• Production (PROD)

Instance Represents an installation on a given port containing only one
environment.

Customer have often one instance by platform.

An instance has a given mode such as DEV, STAGE, PROD.

Environment Is the definition of the repositories contained in one HAS
instance.

This environment is composed of at least:

• the SystemDB repository

• one data repository

Repository Represents a database that physically store the content: either
technical data or functional data.

1.1.2. Synonym

Main Term Synonym or alternative name

STAGE STAGING, PRE-PROD, UAT, TESTING, INTEGRATION

https://store.mega.com/modules/details/has.custom

HAS Custom - Managing customization lifecycle

 Page: 4 / 58

1.2. From DEV to PROD process

When customizing, you must follow these rules:

• You have a DEV platform and instance where you can perform your

customization.

• You have a STAGE instance where you can test the package containing all your

customization.

• You have a PROD instance where you “ship” a fully tested customization

package.

HOPEX is a highly customizable platform: data structure, business logic, UX behavior.

Each customization, at each level, can involve changes in:

• data

o in the SystemDB, or

o in the data repository

This data is stored in the database and need to be extracted to be imported in

the production platform.

• files

o static resources files (CSS, JS, PNG…)

o source/compiled code (JAR, DLL…)

These files need to be stored in the right folders.

The process described here explains how to:

1. Create your customization in the SystemDb.

2. Extract the customization out of the SystemDb.

3. Package all the files (resource files and MGR) in the right location.

4. Push everything to production

Once the package is created from the DEV instance, this package is used in STAGE
(also called UAT / TESTING / PRE-PROD) and at the end in production “as is” without
any changes. This allows you to confirm that, what was customized is valid and not
altered in the move to PROD process.

HAS Custom - Managing customization lifecycle

 Page: 5 / 58

The process is iterative: it allows you to perform it many times and keep track of the
iteration.

HAS Custom - Managing customization lifecycle

 Page: 6 / 58

1.3. The big picture

This document includes the following chapters:

Customization Capabilities Introduction to customization

• Full customization capability is out of

scope for this document.

Getting Ready for Customization Mandatory steps prior to customization

Creating Customization (SystemDB) SystemDb repository customization following
best practices

Extracting Customization Extraction process of valid customization

New/Replace/Override Resource
Files

Storing your resources in the appropriate
location

Packaging customization Packaging all your resources (e.g.: MGR,
CSS, JAR)

Pushing Customization to
STAGE/PROD

Understanding the process of pushing your
customization in stage and production

HAS Custom - Managing customization lifecycle

 Page: 7 / 58

2. Customization Capabilities

As mentioned in the introduction a wide range of elements can be customized.
Depending on the customization you need to perform the action may be different. In
the end, what is mandatory is that, including history, all your customization is
contained in the “has.custom” module.

2.1. Metamodel, desktops, profiles

HOPEX contains a minimum of two repositories that can be impacted by your
customizations:

• the SystemDB repository: it holds all metamodel, desktops… customized

content.

• the Data repository: it contains objects that can be used sometime for

customization such as “Keywords” or “Tags”.

Each change performed within the HOPEX Studio desktop is stored in the mentioned
repositories.

At some point in the lifecycle of your customization you will need to extract these
changes to push them in STAGE and then in PRODUCTION.

 To generate this extract, see “Creating ” chapter.

HAS Custom - Managing customization lifecycle

 Page: 8 / 58

2.2. Other resources

This section is not exhaustive.

Customizations include:

• Changing shapes in diagrams (*.MGS)

• Changing icon of object (*.ICO)

• Changing default logo or background (*.PNG or *.JPG)

• Changing some style (*.CSS)

• Changing some script (*.JS)

• Changing or adding behaviour (JAR/DLL)

For these customizations most of the changes are not stored in any databases. These
are changes made to files of different types.

The rules are as follows:

• You cannot edit or replace the standard files provided by HOPEX.

• You store all your new or replacing/overriding files into the “has.custom

module”.

If you respect the folder structure and hierarchy your custom file will be considered
instead of the standard one.

Create your new resources and save them in the right location.

HAS Custom - Managing customization lifecycle

 Page: 9 / 58

3. Getting Ready for Customization

Before starting any customization, you must first:

1. Install the HOPEX Application Server customization module.

2. Launch the Environment automatic update.

3. Get NuGet packages.

3.1. Installing HAS Customization module

You can install the HOPEX Application Server customization module:

• Online

In the HAS Console, add the HOPEX Application Server customization

module.

• Offline

Download the latest version of HOPEX Application Server customization

module from the store https://store.mega.com/modules/details/has.custom.

3.1.1. Online mode

To install HAS Customization module online:

1. Connect to HOPEX Application Server – Console.

2. Select Modules > Module List.

3. In Add new tab, search for HOPEX Application Server customization

module.

4. Upload the required version.

5. Click Apply to confirm installation.

6. A message indicates when the environment automatic will be launched (in 10

minutes).

Make sure to perform this operation when users are not

connected or notify them (from Administration Desktop).

If needed, you can:

- launch the update immediately: click Start now.

- perform the update manually later: click Cancel.

To manually update the environment: in HAS Console > Cluster menu, in

Modules tab, hover the mouse over the HOPEX Core Back-End module

then click More > Start Easy Update.

The HOPEX Application Server customization module (the has.custom

package) is added to the Installed list.

https://store.mega.com/modules/details/has.custom

HAS Custom - Managing customization lifecycle

 Page: 10 / 58

3.1.2. Offline mode

To install HAS Customization module offline:

1. Access HOPEX Store: https://store.mega.com/modules/details/has.custom.

2. Download the required version of HOPEX Application Server customization

module.

3. Store it in a location where the offline server will be able to access it.

4. Connect to HOPEX Application Server - Console.

5. Select Modules > Module List.

6. In Add new tab, click Upload from file.

7. Click Choose File, select the file and click Install.

8. A message indicates when the environment automatic will be launched (in 10

minutes).

Make sure to perform this operation when users are not

connected or notify them (from Administration Desktop).

If needed, you can:

- launch the update immediately: click Start now.

- perform the update manually later: click Cancel.

To manually update the environment: in HAS Console > Cluster menu, in

Modules tab, hover the mouse over the HOPEX Core Back-End module

then click More > Start Easy Update.

The HOPEX Application Server customization module (the has.custom

package) is added to the Installed list.

3.2. Getting NuGet package

Prerequisite:

Ensure you have the pre-requisite installed:

You are in a Development mode server. Download and install .NET Core SDK as

described in the HAS Installation guide > Installing the prerequisite

software documentation.

To import the NuGet Package into the server:

1. Connect to the server in RDP.

2. Go to the HAS installation folder.

3. Find the has.custom folder.

E.g.: C:\ProgramData\HOPEX Application

Server\5000\.shadowFiles\has.custom\15.2.0

https://store.mega.com/modules/details/has.custom
https://doc.mega.com/hopex-v6-2-en/Deploy/HOPEX_Application_Server_-_Installation_EN.HOPEX_Application_Server_(HAS)_installation.html
https://doc.mega.com/hopex-v6-2-en/Deploy/HOPEX_Application_Server_-_Installation_EN.HOPEX_Application_Server_(HAS)_installation.html

HAS Custom - Managing customization lifecycle

 Page: 11 / 58

4. Read the HOW-TO-BUILD.md file.

3.2.1. Online mode

With a user that have enough privilege:

1. Launch a PowerShell script windows.

2. Launch the “1 - Online- install nuget package.ps1” script.

When successful you will have a message such as:

Tool 'hopex.applicationserver.tool' was successfully updated from version

'15.5.0.69' to version '15.5.0.79'

If this is not the first time you launch the command, existing version will be

updated if needed.

In case a more recent version exists, you might get an error message. In that

case edit the PowerShell script.

You are now ready to start your customization and package them.

HAS Custom - Managing customization lifecycle

 Page: 12 / 58

4. Creating Customization (SystemDB)

This chapter details the process you must follow when you perform customization
within the SystemDB (and sometime in the Data repository).

Prerequisite:

• You must be in DEV instance.

• You must have properly imported “has.custom” module in the SystemDb.

4.1. Work Item concepts

When performing customization, you may change a wide range of elements. You must
group this changes into a unit of work that we call a “Work Item” or shortly named
“WI”.

A Work Item represents a set of changes; the nature of the grouping is up to you and
can include a mix of:

• similar functional scope

• similar technical scope

• similar delivery constraint: project or timeline.

4.1.1. Work Item States

A Work Item has, by default, a linear lifecycle composed of 4 steps:

1. New

This is the default state when a Work Item is created.

2. Working

As soon as you dispatch a customization on a Work

Item it goes into this state. This represents a work in

progress. You can continue adding “dispatch” to this

Work Item as long as it is in this state.

3. Completed

The Work Item is closed and cannot be edited anymore.

4. Extracted

The Work Item has been extracted to an MGR/XMG

files.

While in “Working” state the Work Item can be worked on for several days/weeks with
several dispatches.

HAS Custom - Managing customization lifecycle

 Page: 13 / 58

4.1.2. Creating/Using a Work Item

The Work Item can be created or used at the moment of the dispatch of your work.

If you do not see the “Work Item” it is because you do not meet the prerequisite.

To create a Work Item:

1. Enter a name in the Work Item field.

2. Click Dispatch (or press Enter).

4.1.3. Recommendation when working with WI

When working on your customization project you might be facing Scenario where you
want to have several Work Items. This can be due to grouping topics or delivery
timing.

Naming convention

We recommend that you give explicit name to your Work Item.

• Name contains the functional scope.

E.g.: “Metamodel customization”, “Static website customization”.

• Name contains a planned delivery version/time.

E.g.: “Project Customization for V2”, “Next release sprint July”.

• Name contains a functional domain or project name.

E.g.: “ITPM customization”, “Project 1 customization”.

It can be a mix of these propositions.

What you should avoid in naming a Work Item:

• giving a random name.

E.g.: “Work Item 1”, “Work Item 2”, “WI A”, “WI B”.

• giving a non-explicit name.

E.g;: “Oliver WI”, “Today Work Item”.

HAS Custom - Managing customization lifecycle

 Page: 14 / 58

Grouping Work Items

We recommend you limit the number of Work Items in “Working” stage, to limit
confusion of where things can be contained and what needs to be grouped.

4.2. Dispatch customization

In a development platform, once you are done with a customization and you want to
dispatch it into the repository, you must associate a Work Item to a dispatch.

You can associate several dispatches to the same Work Item.

You can repeat the dispatch on Work Item as you are working on your customization.
A Work Item can contain multiple dispatch.

4.2.1. Publication process

From HOPEX (Windows Front-End)

1. From HOPEX toolbar select File > Dispatch.

HAS Custom - Managing customization lifecycle

 Page: 15 / 58

2. In the Work Item dropdown list, select your Work Item.

If you do not have any Work Item or need to create a new one, enter a name in

the Work Item field and press Enter.

3. Click Dispatch.

If prompted click Yes to create the new Work Item.

HAS Custom - Managing customization lifecycle

 Page: 16 / 58

From HOPEX Studio desktop (Web Front-End)

1. From HOPEX main menu, select Dispatch.

2. In the Work Item dropdown list, select your Work Item.

If you do not have any Work Item or need to create a new one, enter a name in

the Work Item field.

HAS Custom - Managing customization lifecycle

 Page: 17 / 58

3. (Optional) In Dispatch comment (Report) enter a description of your Work

Item.

4. Click Dispatch.

4.3. Done with your customization?

You have worked on several customizations and are now ready to push them to
STAGE platform. It is important to do this only when you want to push your work to
STAGE/PRODUCTION.

Before you can extract the customization into files, you must first set your Work Item
as completed. If you have several Work Items that you want to extract, they all must
be in the state “Completed”.

To complete a Work Item at Dispatch:

1. In the Work Item field select the Work Item concerned.

2. Select Complete Work Item:

HAS Custom - Managing customization lifecycle

 Page: 18 / 58

• HOPEX (Windows Front-End)

• HOPEX Studio desktop (Web Front-End)

3. Click Dispatch.

You are now ready to extract the Work Item to files.

 See Extracting Customization.

HAS Custom - Managing customization lifecycle

 Page: 19 / 58

5. Extracting Customization

You can generate a group of Work Items to extract your customization in mgr/xmg
format.

Work Items are sorted in:

• the Active Work Items folder: all Work Items that are not completed yet.

• the Completed Work Items folder: all Work Items that are completed. Only

this completed Work Items are taken into account for the extraction.

5.1. Prerequisites

To extract customizations to files:

1. Connect to HOPEX Studio (HOPEX Customizer profile).

2. From the Navigation menu select Custom Packaging.

If you get the “Please ensure the module 'has.custom' is installed.” error

message, go to the Getting Ready for Customization chapter and launch the

Environment Automatic Update.

HAS Custom - Managing customization lifecycle

 Page: 20 / 58

5.2. Generating the MGR/XMG files

Customizations candidates to extraction are those in Completed Work Items folder.

To extract customizations to files:

1. Connect to HOPEX Studio (HOPEX Customizer profile).

2. From the Navigation menu select Custom Packaging.

3. Click New to generate a Work Item Group.

4. Click Yes to confirm the group generation.

5. All completed Work Items are included.

Although it is possible, we do not recommend you amend dispatches or

work items selected by default at that stage.

HAS Custom - Managing customization lifecycle

 Page: 21 / 58

6. Click Generate.

A Work Item group is created as defined.

HAS Custom - Managing customization lifecycle

 Page: 22 / 58

The naming convention for this group is: YY.MM.DD.HHMMSS

• YY: Year on 2 digits

• MM: Month on 2 digits

• DD: Day on 2 digits

• HHMMSS: timestamp in UTC+0

5.3. Checking generated files

Once the generation of the file is successful, the file is available in the installation
folder.

Location:

C:\...\HOPEX Application Server\<HAS instance

name>\.shadowFiles\has.custom\<Custom module

version>\hopex.core\Install

The folder includes the following sub folders:

• SystemUpdate: This folder contains the modification you made that will be

imported in the SystemDB.

HAS Custom - Managing customization lifecycle

 Page: 23 / 58

• DataUpdate: This folder contains the modification you made that will be

imported in ALL the repositories.

CAUTION: Make sure in the DataUpdate folder you did not embedded

demo/sample data by mistake.

This timestamp is used to know which files have been already imported or not.

You have now successfully completed the creation and extraction of customization
contained in the repositories (SystemDB and Data).

HAS Custom - Managing customization lifecycle

 Page: 24 / 58

6. New/Replace/Override Resource Files

All the custom files you create, whatever their type, must be stored in the has.custom
module. These files will be packaged to be later pushed to STAGE or PROD
environment.

Depending on the nature of the files the location might be different. The general rules
are as follow:

• Each module has a folder with sub-folders within the has.custom module.

• You must create a folder structure that reflects the folder structure of the

standard module.

Note: you cannot replace/delete standard files. You must store your files in

custom folder, even if they have the same name.

6.1. Folders and sub-folders structures

The standard folder structure located in “.shadowsFiles” contains one folder per
module.

For each module you want to customize, create a new sub-folder with the same name
(ID) in the custom module.

HAS Custom - Managing customization lifecycle

 Page: 25 / 58

Standard modules folder name Custom folder structure

 In that example we want to customize login page,
custom graphQL schema, custom scripts…

In the default custom module, you can find tree-structured folders (provided by
default) corresponding to the most popular customizations.

In case the structure is not available, you must reproduce the tree-structure.

Once you have created your structure, you can bring in your custom files.

Example with the hopex.core module:

Standard folder structure Custom folder structure to override

Note: System and Utilities folders cannot be overridden in custom module.

Whether you create files for:

HAS Custom - Managing customization lifecycle

 Page: 26 / 58

• having new behavior,

• replacing or overriding standard files,

you must follow exactly the folder structure.

Most commonly created or changed files are stored in the following folder locations:

Where here 5000 is the HAS instance name.

 See common examples in the following section.

6.2. Examples of common files and folders

customized

6.2.1. Diagram Shapes

To customize shapes in diagrams:

1. Edit the related files with extension “*.MGS”.

2. Create your custom shapes.

3. Store the custom shapes in its dedicated folder.

• The standard shapes are located here:

File type Location

DLL C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module version>\DotNet

JAR C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module version>\Java

ICO C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module
version>\hopex.core\Mega_Std

MGS C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module
version>\hopex.core\Mega_Std

PNG C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module
version>\hopex.core\Mega_Std

DOCX

For document
template

C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module
version>\hopex.core\Mega_Std

CSS

static website
generation

C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module
version>\hopex.core\Mega_Std

CSS

Hopex web CSS

C:\...\HOPEX Application
Server\5000\.shadowFiles\has.custom\<Module version>\wwwroot

HAS Custom - Managing customization lifecycle

 Page: 27 / 58

C:\...\HOPEX Application Server\<HAS instance

name>\.shadowFiles\hopex.core\<Module version>\Mega_Std

• The custum shapes are located here:

C:\...\HOPEX Application Server\<HAS instance

name>\.shadowFiles\has.custom\<Module

version>\hopex.core\Mega_Std

Standard folder structure

Custom folder structure to override

All MGS must be stored directly in Mega_Std of the custom module without subfolder
Pictures.XXXX.

6.2.2. Login page and Portal page

The portal page is contained in the “has.uas” module.

The login page is also contained in the “has.uas” module but has been overloaded by
“hopex.specific.assets” module.

Should you want to change the background image of both the portal page and the
login page, you must add your custom png/jpg images in a folder structure that
matches the one from the standard, i.e. in:

C:\...\HOPEX Application Server\5000\.shadowFiles\
has.custom\<module version>\has.uas\wwwroot\images.

Example: changing the login page background.

HAS Custom - Managing customization lifecycle

 Page: 28 / 58

• The standard file “loginbackground.jpg” is located here:

C:\...\HOPEX Application Server\5000\.shadowFiles\

hopex.specific.assets\6.0.9\has.uas\wwwroot\images

• Your custom file “loginbackground.jpg” is located here:

C:\...\HOPEX Application Server\5000\.shadowFiles\

has.custom\15.2.0+17\has.uas\wwwroot\images

Standard folder structure

Custom folder structure to override

6.2.3. GraphQL custom schema

If you created custom schema for your GraphQL REST API, you must store them in
the following folder:

• If standard location is:

C:\...\HOPEX Application

Server\5000\.shadowFiles\Macros\hopex.graphql\7.87.507+6676\CONFIG

\V3\Standard

• Custom location is:

HAS Custom - Managing customization lifecycle

 Page: 29 / 58

C:\...\HOPEX Application

Server\5000\.shadowFiles\has.custom\15.2.0+17\hopex.graphql\CONFIG\

V3\Custom

You have now successfully completed the tasks to put your files in the right folders.

HAS Custom - Managing customization lifecycle

 Page: 30 / 58

7. Packaging customization

The module custom is what must be pushed to STAGE or PROD. As mentioned, this
package contains all the resources and all MGR/XMG files.

This module is an “HASPKG”, it is a smart “zip” of all the files required.

To create this package:

1. Connect to your DEV instance server in Remote Desktop.

2. Launch a provided PowerShell script called: “3 - create-module-custom.ps1”.

Default location: C:\...\HOPEX Application Server\5000\.shadowFiles\has.custom\...\

When successful you get a message “Packaged Created”.

The newly created package is then copy in the ".hot-install” folder located here :
C:\...\HOPEX Application Server\5000\Modules\.hot-install

• If the HAS instance is running, the file is automatically redeployed in the

DEV instance.

• If the HAS instance is not running, we recommend you start it for the

module to be properly deployed.

3. Get the packaged that was generated for the next step.

HAS Custom - Managing customization lifecycle

 Page: 31 / 58

The file is name “HOPEX Application Server Customization-

15.2023.XXX+XXX.haspkg” and is located: C:\...\HOPEX Application

Server\5000\Modules\has.custom

 

You now have the file that you will push to the next platform.

HAS Custom - Managing customization lifecycle

 Page: 32 / 58

8. Pushing Customization to STAGE/PROD

8.1. Pushing to STAGE or PROD principle

When pushing to STAGE or PROD you must follow these rules:

• All changes you want to perform, in STAGE or PROD, should be packaged

in the custom module.

• No manual action should be performed on the STAGE or PROD concerning

your customization.

• Should something be missing or badly customized you must update the

custom module in DEV and generate a newer version for STAGE/PROD.

To ensure your customization is properly extracted and packaged make sure you do
not alter the haspkg file generated from the previous step.

The push, of this new module custom, consists of the following steps:

1. Upload the new custom module on the server  files will be unzipped and

replicated in all nodes of the cluster.

2. Run the automatic update  all the MGR/XMG will be imported in the

appropriate repositories.

These actions must be done with no users connected to HOPEX as a restart will be
required.

8.2. Uploading the custom module in HAS

To upload a module in HOPEX you have several possibilities. Choose one of the
following ways to upload the new module custom:

1. From the Web  preferred choice.

2. From RDP access

When uploading the new module some of the changes may appear immediately
such as CSS or PNG changes. Some changes require to restart some modules.

8.2.1. Uploading the module from the Web

To upload the HAS Cutomization module from the Web:

1. Connect to the HAS console.

2. Login with admin user.

3. Click Modules > Modules List > Update.

HAS Custom - Managing customization lifecycle

 Page: 33 / 58



4. Click Upload from file.

5. Browse and chose your new custom module “HOPEX Application Server

Customization-15.2023.XXX+XXX.haspkg”.

Caution: the version number of this module must be higher than the previous

one already deployed.

6. Click the Cluster menu.

7. Look for your customization module. Ensure it is ready with the proper version.

8. (If you are in cluster) Click Cluster status and ensure the module has the

same version in all nodes.

HAS Custom - Managing customization lifecycle

 Page: 34 / 58

You can now proceed to the next step: “Running Automatic update to apply

your customization in repositories”.

8.2.2. Uploading the module from the server (RDP)

To upload the HAS Cutomization module from the server:

1. Connect to HAS server (choose a server if you are in cluster).

2. Access the HOPEX installation folder.

3. If your instance:

• is running, put your custom package in the following folder:

C:\...\HOPEX Application Server\5000\Modules\.hot-install

The file will be immediately read and deployed in the right location.

• is not running (or if you plan to restart it), put your custom package in the

following folder:

C:\...\HOPEX Application Server\5000\Modules

A restart is required for the file to be properly deployed.

8.3. Running Automatic update to apply your

customization in repositories

For the changes in the SystemDB or repository to be taken into account the file must
be imported. The tool will take care to import the appropriate file based on folder
location and tag timeline.

To run the Automatic update:

1. From HAS Console, stop the HOPEX Core Back-End module.

HAS Custom - Managing customization lifecycle

 Page: 35 / 58

2. Launch Administration application (Administration.exe), from RDP access.

3. Connect to the environment.

For example: use System user (Default password “Hopex”).

4. Right-click the environment and select Environment Automatic Update.

5. Follow the wizard instruction. If unsure keep default values for the checkboxes.

 

Caution: compilation of permission may take up to 1h

At that stage the system will compute all the files that need to be imported and

will import them. You should see the import of your custom file.

HAS Custom - Managing customization lifecycle

 Page: 36 / 58

Once all the necessary steps have been performed the wizard shows you the

result of the imported files. Make sure you see all the files you expect to be

imported.

The content of this wizard is stored in the MegaCrd.txt file located in the

environment folder.

HAS Custom - Managing customization lifecycle

 Page: 37 / 58

6. Restart the HOPEX Core Back-End module.

You have now successfully completed the full workflow to push your

customization to STAGE or PRODUCTION. It is now time to test that your

changes are taken effectively.

HAS Custom - Managing customization lifecycle

 Page: 38 / 58

9. Managing a Team to Move from DEV to

PROD

Depending on the size of your company and the complexity of topics you are working
on you might choose one way or the other of working.

9.1. Most common (recommended) working way

9.1.1. Principle

The most common way of working when dealing with customization is the following:

• You have one DEV platform with one DEV Instance.

• You have one team of people performing all of the customizations.

• All customizations are done with this unique SystemDb.

• All customizations are done using Work Item with a defined naming

convention.

• If you have multiple projects, the delivery dates are sequential: one project

after the other.

Benefit:

You have a unique source of customization, and all customizations are

always coherent among them.

Drawback:

In case of multiple projects, it requires to align sequentially project timeline

and delivery.

HAS Custom - Managing customization lifecycle

 Page: 39 / 58

9.1.2. Dealing with iterative fix

If you have multiple projects, you need to fix customization from previous project. In
that case two solutions are possible:

• The fixes of project 1 are included in project 2.

• The fixes of project 1 are done at the end of project 2.

HAS Custom - Managing customization lifecycle

 Page: 40 / 58

9.2. Multiple team – Multiple Projects – Multiple DEV

Instance

In some context you may have:

• Several teams that can perform customizations.

• Several projects with overlapping delivery timeline.

In that context you may not be able to manage your work with only one DEV instance.
You need to have multiple DEV instances.

We recommend you try everything to have only one DEV instance

In that situation we recommend having a very rigorous organization and precise
delivery time. The key point for such way of working is to ensure each project is
totally independent from each other from a functional point of view: no overlaps in
customization of objects.

The way of working when dealing with multiple parallel project:

• You have one DEV platform for each project with one DEV instance

• You have one centre DEV Instance to integrate each DEV from each project

• Each project works in their respective DEV instance.

Benefit:

You handle complex organization working on various projects and topics at

the same time.

Drawback:

You need to be rigorous in the merging or overlapping customization to

avoid regression.

9.2.2. Architecture of multiple project

In such architecture you have first a similar architecture as described in “Most
common (recommended) working way” section.

• A DEV instance, a UAT instance, a PROD instance

The DEV instance “zero” will be used to put all common customizations that apply to
all projects (e.g.: login background, css stylesheet changes, common jar or DLL).

You have then a “DEV instance” for each project: DEV instance 1, DEV instance 2,
DEV instance 3…

HAS Custom - Managing customization lifecycle

 Page: 41 / 58

Caution: project means functional scope such as Audit, ITPM, BPA. Technical

split (e.g.: static website, metamodel, UX) is not suitable for this approach.

In each project you must create a “project custom module”. This module is unique to
each project with a unique module ID.

The “default standard” custom module has to be replicated on each project DEV
instance 1, 2 and 3.

The process to follow is:

1. For project 1, perform all your customizations in “DEV instance 1”.

2. Once ready, push your customizations to “DEV instance 0”.

3. Perform a first test of validity of your customizations, to check particularly any

side effect on other project.

4. If no impact, continue with the normal Move to PROD process.

9.2.3. How to create your custom project module

On each DEV instance 1, 2, and 3 you must give a name to your project.

To give a name to your project:

1. Launch Administration.exe.

2. Access the Site options.

HAS Custom - Managing customization lifecycle

 Page: 42 / 58

3. Access Installation > Company Information options.

4. In Service Name enter your project name.

5. Cick OK.

6. Close Administration.exe.

Avoid specific charset and space

Generate your first extract to create the module:

1. Connect to HOPEX Studio (e.g.: with user MEGA, profile “HOPEX Customizer”).

 

HAS Custom - Managing customization lifecycle

 Page: 43 / 58

2. Perform the task as described in chapter “Extracting Customization”.

3. Create a “Project1” Work Item and set it as complete and extract it



HAS Custom - Managing customization lifecycle

 Page: 44 / 58

A new folder appears in shadowFiles: “Has.custom.project1”

4. Perform the task as described in chapter “Packaging customization”.

A new custom module project 1 is now available for you to put all the

customizations for this specific project.

9.2.4. Workflow to manage the project

You must follow these rules:

• On “DEV instance 0” the custom module is the reference.

This module must always be up-to-date and replicated in all “DEV instance

1, 2, and 3.

• For a project push the custom module to “DEV instance 0” first.

• If you want to share element across project, push the project other project

instance.

HAS Custom - Managing customization lifecycle

 Page: 45 / 58

10. Use Case: Property Page Customization

This use case shows the main steps regarding easy property page customization.

The following property pages are customized in a DEV environment and then push to
Staging environment:

• Application: customization of Characteristics page and new page added

• Org-Unit: new page added

• Process: customization of Characteristics page

10.1. Prerequisites

Prerequisites in DEV instance as HAS Administrator

1. Install HAS Custom module.

 See Installing HAS Customization module.

2. Install NuGet package.

 See Getting NuGet package.

HAS Custom - Managing customization lifecycle

 Page: 46 / 58

10.2. Customizing

Perform your customizations in DEV instance as any profile

You can customize HOPEX object property pages directly from the object property
pages. You can:

• customize existing pages and/or create your own pages

• add existing attributes and/or create your own attributes

For each MetaClass, you can at the same time:

• customize several pages

• create and customize one single page

 See Property Page customization.

10.3. Dispatching customizations via Work Items

Dispatch your customizations via a Work Item in DEV instance as any profile

Once ready with your customization apply it to all the objects of the same type.

You can use the same Work Item for several customizations:

• Keep the Work Item open as long as you want to feed it with customizations

https://doc.mega.com/hopex-v6-2-en/HOPEX/RepositoryBasics.Property_Page_Customization.html

HAS Custom - Managing customization lifecycle

 Page: 47 / 58

• Select Close the Work Item once ready with customizations

For example, you can either:

• use the same Work Item for customizations on several MetaClasses

• use a dedicated Work Item for customizations on each MetaClass

HAS Custom - Managing customization lifecycle

 Page: 48 / 58

10.4. Generating the custom files (DEV)

Generate the customization file in DEV instance as HOPEX Customizer

 See Extracting Customization.

HAS Custom - Managing customization lifecycle

 Page: 49 / 58

10.5. Creating the Custom Package (DEV)

Create the Custom Package in DEV instance as HAS Administrator

 See Packaging customization.

HAS Custom - Managing customization lifecycle

 Page: 50 / 58

10.6. Pushing customization to Staging

Install the Custom Package in Staging instance as HAS Administrator

 See Pushing Customization to STAGE/PROD.

HAS Custom - Managing customization lifecycle

 Page: 51 / 58

10.7. Pushing customization to Prod

Install the Custom Package in Prod instance as HAS Administrator

 See Pushing Customization to STAGE/PROD.

HAS Custom - Managing customization lifecycle

 Page: 52 / 58

11. Migrating to HOPEX V5?

If you are an existing customer of HOPEX, you will be migrating your environment to
HOPEX V5.

You must follow the following rules:

• The custom package is now mandatory starting from HOPEX V5 onward.

• All resources previously contained in Mega_Usr folder must now be stored

in the custom module.

For the customization already imported within the SystemDb. You have 2 possibilities:

Option 1: Use the existing customization

This means:

• Let the customizations within the SystemDB repository.

• Add all of the new customizations (even modifications of existing

customization) following the process described in this document.

Benefit:

Safe to avoid regression on customization.

Drawback:

The custom module does not contain “all” the customizations since “Day-0”.

Option 2: Rebuilt the environment

This means:

• Start from a totally new environment (with no customization).

• Recreate previous customization and package them following the process

described in this document.

• Any new customizations must follow the process described in this document.

Benefit:

Safe to start from a “clean” ground and get rid of the past.

Drawback:

Takes more time and a is bit riskier in terms of regression.

HAS Custom - Managing customization lifecycle

 Page: 53 / 58

12. Frequently Asked Questions

12.1.1. The Work Item dropdown is not available when

dispatching

Your HAS instance is not in DEV mode. Customization cannot be performed in STAGE
or PROD.

12.1.2. The Custom Packaging menu content is not

available to extract my customization

Either:

• your HAS instance is not in DEV mode.

• your HAS instance is in DEV mode, but you forgot to launch the automatic

update after adding the has.custom module.

12.1.3. I forgot to attach my dispatches to a Work Item,

what can I do?

You can connect to HOPEX.exe and manually connect the required dispatch to the
Work Item you want.

1. In the Repository Activity tab, search for your dispatch.

HAS Custom - Managing customization lifecycle

 Page: 54 / 58

2. Right-click the dispatch and select Explore.

3. In the yellow folders, right-click the Work Item folder and select Connect.

4. Select the work item you want to attached it to.

Select only active work item.

12.1.4. I have embedded demo data in my dispatch, how

can I remove them?

You can remove this unwanted data either:

• Case 1: by removing the dispatch from the Work Item.

• Case 2: by removing the dispatch at extraction phase.

See “Extracting Customization” chapter.

HAS Custom - Managing customization lifecycle

 Page: 55 / 58

• Case 3: by removing the files generated in the .shadowfiles folder.

Note: this removal action can only be done prior to import in STAGE or PROD.

Case 1: Removing the dispatch from the work item

1. Search for your Work Item in the repository.

2. Right-click your Work Item and select Explore.

3. Search for Dispatch (Data) folder (Green folder).

4. Right-click the Dispatch that contains the data you want to remove and select

Remove.

You can only remove the full dispatch with all its content. If you want to

delete only one item of the dispatch, you must delete the object and dispatch

this deletion on a new dispatch.

Case 2: Removing the dispatch at extraction.

1. From HOPEX Administration desktop, in the Customization extraction wizard.

2. In the Dispatches section, select the dispatch you do not want.

3. Click Remove.

4. Click Generate.

HAS Custom - Managing customization lifecycle

 Page: 56 / 58

Case 3: Removing the dispatch at extraction.

1. In Windows file explorer go to the folder:

C:\...\HOPEX Application Server\5000\.shadowFiles\has.custom\<module

version>\hopex.core\Install\DataUpdate

2. Select the file that contains the data you do not need and Delete it.

HAS Custom - Managing customization lifecycle

 Page: 57 / 58

12.1.5. How can I remove imported XMG/MGR in stage or

prod?

Once the automatic update has run and imported element in the SystemDb or
repository you cannot delete them with an automated process.

You can either:

• Do a new custom module that contains the delete instructions  preferred

choice.

• Do a manually removal of the item directly in the repository

12.1.6. How to force re-import of MGR/XMG files?

Once a file has been imported, the automatic update wizard cannot re-import it again.
This is due to a marker contained in the file and within the repository that says the file
has been already imported.

The recommended solution is to manually re-import the file you want, by following the
proper order from Administration.exe.

12.1.7. My custom files got imported with errors, What

should I do?

You should create a newer version of the custom module with all the missing items
(creation, connection…).

12.1.8. I did customization but I don’t have the initial

custom module, what should I do?

The HAS Custom module should contains all the customization from “Day-0”. Before
performing any additional customization you must start from the last published
custom module.

12.1.9. Can I launch the automatic update without service

interruption?

No, for the moment the automatic update must be performed with the HOPEX Core

Back-End module stopped.

12.1.10. Is delta custom module package possible ?

No, the custom module must contain all files and XMG/MGR from all time (since Day-0
of customization).

MEGA International

Headquarters: 9 avenue René Coty - 75014 Paris, France
Phone +33 (0)1 42 75 40 00 - Fax +33 (0)1 42 75 40 95 - www.mega.com

The End

HOPEX diagrams in MS Teams

 MEGA HOPEX App configuration for MsTeams.docxpdf

C0 – Public Use Page: 2 / 12

1. Teams Module Description .. 3

2. HOPEX in Microsoft Teams ... 4

2.1. Adding the App to your Teams (optional) .. 4

2.2. Adding a diagram tab in your Team ... 5

2.3. Viewing a HOPEX diagram .. 6

2.4. Editing the HOPEX diagram .. 7

3. HOPEX Configuration ... 8

3.1. Installing Teams Module ... 8

3.2. Configuring Http Security .. 9

3.3. Setting SameSite cookie .. 10

3.4. Configuring the authentication .. 10

3.4.1. User accounts ... 10

3.4.2. API Key .. 11

3.4.3. Authorizing HOPEX connection from Teams ... 11

MEGA International mega.com

1. Teams Module Description

The Teams module enables to share MEGA HOPEX diagrams in Microsoft Teams.

Add a MEGA HOPEX diagram as a tab in your Teams channel, with an embedded editor,
anyone in the channel can view and comment on your diagram without ever leaving Microsoft

Teams. You can also edit your HOPEX diagram from a tab if you have a MEGA HOPEX license.

Sharing diagrams in Teams will help you to onboard your team members as subject matter

expert in your transformation project.

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 4 / 12

2. HOPEX in Microsoft Teams

If this is the first time you use the app to embed HOPEX in Microsoft Teams, go to HOPEX
Configuration section and follow the step-by-step instructions to configure the module.

2.1. Adding the App to your Teams (optional)

In your Teams:

1. Open the menu to manage your team.

2. Select the Apps tab.

3. Search for MEGA HOPEX app.

4. Click Add.

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 5 / 12

2.2. Adding a diagram tab in your Team

To add a tab on a channel:

1. Click the plus sign.

2. Select MEGA HOPEX app.

3. Fill in the Login information given

by your HOPEX administrator (see

Authentication):

• URL of your HOPEX server

• API credentials/API Key

4. Click Login.

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 6 / 12

5. Select a Diagram:

a) Search for the diagram in the

list or enter its name (e.g.
Car Repair)

b) Select the diagram.

c) Use the preview to check if it

is the diagram you want to
share.

d) Click Save to create the tab

corresponding to the
diagram.

2.3. Viewing a HOPEX diagram

On the channel select the diagram you want to see. Every team member can view the shared

diagram.

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 7 / 12

2.4. Editing the HOPEX diagram

To edit the HOPEX diagram:

1. In the channel, select the diagram you want to edit.

2. Click Go to the diagram.

A popup appears.

3. Enter your HOPEX credential.

According to your organization, it can

be a simple authentication, OpenID

Connect, or SAML2.

HOPEX can leverage your company

authentication system.

4. Click Sign in.

HOPEX loads into a frame embedded

into Microsoft Teams.

5. Click Logout to logout and return to the view mode.

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 8 / 12

3. HOPEX Configuration

To be able to use HOPEX in Microsoft Teams you need to install the module and configure
HOPEX as described below.

3.1. Installing Teams Module

To install Teams module:

1. Connect to HOPEX Application Server – Console.

2. Select Modules > Module List.

3. In Add new tab, search for “Teams”.

4. Install Teams Module.

5. In the Administration application (administration.exe), run the “Environment

Automatic Update” (right-click the environment and select Environment automatic

update).

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 9 / 12

3.2. Configuring Http Security

To configure http security:

1. Connect to HOPEX Application Server – Console.

2. Select Modules > Module Settings.

3. Edit Http Security Headers and ensure Enable Security Header is selected.

4. In the Content Security Policy field, copy-paste the following content:

block-all-mixed-content; default-src 'self'; script-src 'self' 'unsafe-eval' 'unsafe-
inline'; style-src 'self' 'unsafe-inline'; img-src 'self' *.mega.com data: ; frame-

ancestors 'self' teams.microsoft.com *.teams.microsoft.com *.skype.com

*.mega.com

5. Set the Frame-option as displayed below:

 ALLOW-FROM https://teams.microsoft.com/

Your settings should look like the following:

https://teams.microsoft.com/

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 10 / 12

3.3. Setting SameSite cookie

You must set SameSite cookie attribute to none, secure (SameSite cookie attribute - Teams |

Microsoft Docs).

To set SameSite cookie:

1. Connect to HOPEX Application Server - Console.

2. Select Installation > HAS Settings.

3. In the Web settings tab, set Cookies SameSite option to “None”.

3.4. Configuring the authentication

Create an API Key or, alternatively, a user Account for sharing diagrams in read only mode.

This will be used to open a session in read only mode on the repository that contains the

diagrams to share.

3.4.1. User accounts

Create a user account and communicate its username and password to all of the users who
need to share diagrams in Teams.

1. Connect to HOPEX Application Server - Console.

2. Select Modules > Authentication.

3. Select User accounts menu and click Create.

4. Set the User Name and Password.

5. Configure Hopex session:

• Select Open session

• Enter a valid HOPEX login

• Select the EnvironmentId

• Select the Repository

https://docs.microsoft.com/en-us/microsoftteams/platform/resources/samesite-cookie-update
https://docs.microsoft.com/en-us/microsoftteams/platform/resources/samesite-cookie-update

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 11 / 12

• Select the Profile with which you want to connect

6. Click Submit.

3.4.2. API Key

Create the API Key and communicate it to all of the users who need to share diagrams in
Teams.

See Managing API Keys.

3.4.3. Authorizing HOPEX connection from Teams

To allow to share HOPEX objects in Microsoft Teams:

1. Connect to HOPEX Application Server – Console.

2. Select Modules > Modules Settings.

3. In CORS Policy row, click Edit .

4. In the Allowed CORS origins pane, enter: https://app.mega.com

https://doc.mega.com/hopex-v6-2-en/
https://app.mega.com/

MEGA HOPEX App integration with Microsoft Teams

| Sommaire

C0 – Public Use Page: 12 / 12

5. Click Save.

MEGA International mega.com

REST API and GraphQL

|Error! Reference source not found.

 Page: 2 / 66

1. REST API Documentation ... 5

2. GraphQL endpoints ... 6

2.1. Synchronous versus Asynchronous .. 6

2.2. Version of the endpoint .. 6

3. GraphQL and Data Confidentiality (CRUD) .. 7

3.1. Query ... 7

3.2. Mutation ... 7

3.3. Managing permission ... 7

4. Selecting the data language with the REST API 8

4.1. Querying data in the current data language .. 8

4.2. Querying data in a selected data language ... 8

4.3. Changing the current data language ... 9

4.4. Changing the data language for a given user ... 10

4.4.1. Query to know the language of a given user ... 10

4.4.2. Mutation to update the language of a given user ... 10

4.5. Getting the list of available data languages ... 11

4.6. Adding data languages and seeing them in the API .. 11

5. Basic Auth vs API Key ... 13

5.1. Basic Auth .. 13

5.1.1. How to use it? ... 13

5.1.2. How to enable it? ... 13

5.2. API Key ... 16

5.2.1. Security .. 16

5.2.2. Use case ... 16

5.2.3. How to use it? ... 16

5.2.4. How to enable it? ... 17

5.3. Multi or Single Mode.. 17

6. Querying/Creating/Updating/Deleting with GraphQL 18

6.1. Basic queries ... 18

6.1.1. Getting an object with its attributes .. 18

6.1.2. Getting an object with its relations ... 18

6.2. Basic mutations ... 19

6.2.1. Creating an object .. 19

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 3 / 66

6.2.2. Creating an object with a relationship .. 19

6.2.3. Updating an object ... 20

6.2.4. Deleting an object .. 20

7. Creating custom schema (SDL/JSON) / custom endpoint 22

7.1. How it works ? ... 22

7.1.1. General principle ... 22

7.1.2. Creating/Updating a schema .. 24

7.2. Step 1: Create your metamodel to expose in the REST API 26

7.2.1. Creating Custom Metamodel .. 26

7.2.2. Completing default metamodel ... 26

7.2.3. Important rules ... 26

7.3. Step 2: Configure the generator ... 27

7.4. Step 3: Run the generator .. 28

8. Pagination in REST API with GraphQL ... 30

8.1. First elements with Skip or After ... 30

8.2. Last elements with Skip and Before ... 32

8.3. Pagination and Sort ... 34

9. Filtering data (where condition) in REST API with GraphQL 35

9.1. How to make a filter? ... 35

9.2. How to combine filters? .. 37

9.3. Type of filters by types of fields .. 38

9.3.1. String filters ... 39

9.3.2. Date or DateTime filters .. 40

9.3.3. Numbers filters ... 41

9.3.4. Enumeration filters ... 42

9.3.5. Boolean filters .. 43

10. Mutation: Absolute/External/Temporary - Identifier 44

10.1. Making a Query ... 44

10.1.1. Example: query with a result containing the identifiers 44

10.1.2. Example: query containing a filter on the external identifier 45

10.2. Making a Mutation .. 45

10.2.1. Creation without an Identifier .. 45

10.2.2. Creation with an External Identifier .. 46

10.2.3. Creation with a Temporary Identifier .. 47

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 4 / 66

11. Asynchronous versus Synchronous Web service call 48

11.1. What does the endpoint return?... 48

11.2. Calling the API in asynchronous way .. 48

11.3. How the endpoint is called? .. 49

11.4. Which is the best option? .. 49

12. Diagram API: dowloading a diagram by REST API 50

12.1. Use case .. 50

12.1.1. Downloading a diagram (Metaclass Diagram or System Diagram) 50

12.1.2. Result of the API.. 53

13. Attachment API: Uploading or Downloading Business Document 54

13.1. Use case .. 54

13.2. Downloading an attachment (Business Document) .. 54

13.3. Uploading an attachment (Business Document) ... 57

14. Getting GraphQL Schema as a file (SDL schema file) 60

14.1. In GraphiQL .. 60

14.2. In Postman ... 61

15. ID Converter From HexaIdAbs to Absolute identifier 64

16. Using Postman to call the REST API .. 66

MEGA International

Headquarters: 9 avenue René Coty - 75014 Paris, France
Phone +33 (0)1 42 75 40 00 - Fax +33 (0)1 42 75 40 95 - www.mega.com

1. REST API Documentation

HOPEX Platform comes with REST API that can be used in a wide range of use cases.

The documentation of the endpoints of the HOPEX REST API is available as catalog as
well as classical textual documentation.

To access the documentation, click https://www.postman.com/mega-international

 A Postman collection is published online on the MEGA profile for you to:

• get a description of what the API is providing and how it works

• get the list of all the available endpoints: GET / POST

• see examples of call request and result: status code, json response format...

• download ready to use in postman with parameters to adapt to your
environment.

https://www.postman.com/mega-international

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 6 / 66

2. GraphQL endpoints

The REST API heavily leverages the GraphQL framework. The GraphQL framework
enables to have only one endpoint for all REST API call.

To ease navigation in the HOPEX platform repository each Solution has its endpoint.
The endpoint corresponds to the published schema:

• https://<<server url>>/HOPEXGraphQL/api/ITPM

• https://<<server url>>/HOPEXGraphQL/api/BPA

• https://<<server url>>/HOPEXGraphQL/api/GDPR

• https://<<server url>>/HOPEXGraphQL/api/Audit

Other endpoints are available for focused topics like:

• upload/download of documents

• download of diagrams

2.1. Synchronous versus Asynchronous

The endpoint can be called in synchronous or asynchronous way:

• https://<<server url>>/HOPEXGraphQL/api/async/ITPM

• https://<<server url>>/HOPEXGraphQL/api/async/BPA

• https://<<server url>>/HOPEXGraphQL/api/async/GDPR

• https://<<server url>>/HOPEXGraphQL/api/async/Audit

2.2. Version of the endpoint

The endpoint can also have version if the schema evolves overtime. In that case the
particular version of the endpoint can be called by adding the version number in the
URL:

• https://<<server url>>/HOPEXGraphQL/api/v5/ITPM

• https://<<server url>>/HOPEXGraphQL/api/v5/BPA

• https://<<server url>>/HOPEXGraphQL/api/v5/GDPR

• https://<<server url>>/HOPEXGraphQL/api/v5/Audit

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 7 / 66

3. GraphQL and Data Confidentiality (CRUD)

When making query or mutation to GraphQL REST API all access rights are checked
based on the profile used.

The access rights are defined, in this order, at several level:

1. License level

2. Option level

3. Profile level

4. Workflow level

5. Data Reading or Writing access rules (graph or macro)

Each time you make a query or a mutation, HOPEX checks that you are allowed to
perform this action:

• For a query: it checks the "Read" access rights (R).

• For a mutation: it checks the "Write" access rights (CRUD).

o Create when creating an object

o Update when trying to update an existing object

o Delete when trying to delete an existing object

3.1. Query

In a query, if you are not allowed to view the requested information you will get:

• a null value for a field (MetaAttribute)

• an empty array for a relationship (MetaAssociation)

3.2. Mutation

In a mutation, if you are not allowed to create/update/delete the requested object or
its fields you will get:

• an error on each field you are not allowed to edit, with a message:
"You are not allowed to perform this action..."

3.3. Managing permission

You should ensure that the profile you use when querying the application is properly
configured with the CRUD.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 8 / 66

4. Selecting the data language with the REST

API

In HOPEX the data can be entered in different languages (English, French, Spanish,
Italian, German...). When connected by the GraphQL REST API it is possible to select
the data language.

4.1. Querying data in the current data language

By default all the queries are performed in the current data language.

• The following query returns the name of the application in English:

Query Result

query app {

 application {

 name

 }

}

{

 "data": {

 "application": [

 { "name": "AA" },

 { "name": "Account Management" }

]

 }

}

• The following query returns the current language:

Query Result

query currentLanguage {

 _currentContext {

 language

 languageId

 languageName

 }

}

{

 "data": {

 "_currentContext": {

 "language": "EN",

 "languageId": "00(6wlHmk400",

 "languageName": "English"

 }

 }

}

4.2. Querying data in a selected data language

When requesting the data you can force the language of the return data for all
translatable fields (e.g.: name, comment). The selection of the language is done by its
code (e.g.:EN, DE, JA, FR, ES, NL, IT).

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 9 / 66

In a query you can get the data in one or multiple languages.

• The following query returns the name of the application in English, French, and
Italian. As there can be only one field with name, alias of the name are created.
As seen in the example the translation may not be available and an empty
string is returned.

Query Result

query app {

 application {

 name(language:EN)

 nameFR:name(language:FR)

 nameIT:name(language:IT)

 }

}

{

 "data": {

 "application": [

 { "name": "Management", "nameFR":
"Management", "nameIT": "" },

 { "name": "Account Payable", "nameFR":
"", "nameIT": "" },

 { "name": "Account", "nameFR":
"Comptabilité", "nameIT": "Conto" }

]

 }

}

These requests do not change the default language of the user. Any next query
performed without defining the language is returned in the default language.

4.3. Changing the current data language

To change the current data language you need to update the user context: execute a
graphQL mutation on the context.

• In the following example the context will be changed to French.

Query Result

mutation updateLanguage {

 _updateCurrentContext(

 currentContext:{

 language:FR

 }

)

 { language }

}

{

 "data": {

 "_updateCurrentContext": {

 "language": "FR"

 }

 }

}

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 10 / 66

4.4. Changing the data language for a given user

Aside from the current user it is also possible to update the data language of a group
of users.

4.4.1. Query to know the language of a given user

You can query the user to know his/her default language. If the returned value is
blank the default language is the same as the installation one.

Query Result

query user {

 personSystem(filter:{name:"Thomas"}) {

 id

 name

 dataLanguage {

 ...on Language {

 language:languageCode

 }

 languageId:id

 languageName:name

 }

 }

}

{

 "data": {

 "personSystem": [

 {

 "id": "qqcxS(UhHzHC",

 "name": "Thomas",

 "dataLanguage": {

 "language": "EN",

 "languageId": "00(6wlHmk400",

 "languageName": "English"

 }

 }

]

 }

}

4.4.2. Mutation to update the language of a given user

You can set the language of a given user by its ID.

Query Result

mutation updateUser {

updatePersonSystem(

 id:"qqcxS(UhHzHC"

 idType:INTERNAL

 personSystem:{

 dataLanguageCode:FR

 }

) {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 11 / 66

 dataLanguage {

 ...on Language {

 language:languageCode

 }

 languageId:id

 languageName:name

 } } }

4.5. Getting the list of available data languages

To know the possible value of the language code available you can query graphQL.

query availableLanguage {

 language(filter:{id:"I9o3by0knG00"}) {

 language_SpecializedLanguage {

 language:languageCode

 languageId:id

 languageName:name

 }

 }

}

You may have to do it on the MetaModel schema so that the query can work.

4.6. Adding data languages and seeing them in the
API

The list of available data languages depends on the options defined in HOPEX.

In the Environment options, check the available languages in the Installation >

languages folder:

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 12 / 66

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 13 / 66

5. Basic Auth vs API Key

From HOPEX V5 and onward, the method for authentication for API has evolved.

1. With a Basic Auth.

2. With an API Key (preferred choice)

Former Bearer Token is not available in V5. Oauth2 Authentication is not supported
for the moment for API calls.

Depending on the use case you want to use the API you may use one or the other
authentication method. Regardless of the chosen authentication methods the other
headers and body information remain the same.

5.1. Basic Auth

The basic Auth allows you to access the API directly with credentials: login/password.

5.1.1. How to use it?

For example:

• In Postman when calling the API choose "Basic Auth" and fill-in the user
password. The information will be encoded with Base64 to avoid to be readable
when sent.

• In a script in curl add the header Authorization: Basic and pass the encoded
value of the login and password.

curl --location --request POST 'httpx://www.myserver.com/HOPEXGraphQL/api/ITPM' \

--header 'Content-Type: application/json' \

--header 'Authorization: Basic V2Vic2VydmljZTpIb3BleA==' \

--data-raw '{"query":"query {\n application {\n id\n name\n cloudComputing\n

}\n}","variables":{}}'

This authentication method is useful when you need to check identity and get the data
with a login/password logic. It is nonetheless less secure than an API Key.

5.1.2. How to enable it?

You need to create a dedicated User/Password within the HAS console to be able to
use it in API Call. This user can be:

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 14 / 66

• Admin user.

• HOPEX user that connects with a profile.

Process step:

1. Connect to HAS Console.

2. Select Modules > Authentication.

3. Select User accounts.

4. Click Create.

5. Fill in the form:

a) Enter a login (User Name) to your user.

b) Enter a Password or generate one.

c) Select the Role: Administrator or Custom.

d) Select if you allow to open a session on a specific Repository and
Profile.

e) Enter the login of the HOPEX user.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 15 / 66

f) Select the Environment (there should be only one).

g) Select the Repository (if more than one).

h) Select the Profile (if more than one)

i) Selection the Session mode: multi or single (see below for more details
on what to chose).

j) Select the Connection mode: read/write or read only.

k) Click Submit.

You can now use this login/password for API call.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 16 / 66

5.2. API Key

To access the API with an API Key you need to create it and define all the technical
information:

• admin or user api key

• repository and profile to connect to.

Once done, the system gives you the API key. This API Key can be valid for all time or
have a validity period.

5.2.1. Security

The API Key generated does not contain any information that can be decrypted or
decoded.

5.2.2. Use case

It is recommended Authentication methods whenever possible. It is ideal when
scripting, when developing external app, or when doing integration with external
tools.

5.2.3. How to use it?

For example:

• In Postman when calling the API choose "API Key" and fill-in the API Key value.

o Key: x-api-key

o Value: xxxxxxxxx

Now you can make call to any endpoint.

• In a script in curl add the header x-api-key and pass the value of the API Key.

curl --location 'https://w-ogd/HOPEXGraphQL/api/ITPM' \

--header 'x-api-key:

5snybEHxGR8uTRAks2ySEgYs8t82rQ6KqkrcEsp9srw737WmPZcJvpk1gNctBCjVQZvBwrryaFzJkHk61

Q1eFJex' \

--header 'Content-Type: application/json' \

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 17 / 66

--data '{"query":"query\n{\n application\n {\n id\n name\n }\n}","variables":{}}'

5.2.4. How to enable it?

You need to create a dedicated API Key in HOPEX Administration to be able to use it in
API Call. This API Key can be:

• Admin API Key.

• HOPEX user that connects with a profile.

See Managing API Keys.

5.3. Multi or Single Mode

The mode choice changes the behavior in the back-end to process the request.

Choose:

• Multi for all purposes where you need responsiveness in the API calls.

• Advantage: you benefit from cache, ready to use process to respond your
query.

• Drawback: not adapted to static website generation

• Single for heavy computing treatment. Ideal for heavy batch or static website
generation.

https://doc.mega.com/hopex-v6-2-en/

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 18 / 66

6. Querying/Creating/Updating/Deleting

with GraphQL

The REST API based on GraphQL allows to perform all actions of the CRUD:

• Create

• Read

• Update

• Delete

This mechanism allows to perform a various kind of action into the repository. Read

actions are performed with the keyword "query" in GraphQL whereas

Read/Update/Delete actions are performed with the "mutation" keyword.

All the examples below are performed with the ITPM schema.

6.1. Basic queries

6.1.1. Getting an object with its attributes

The following query returns the name of the applications:

Query Result

query app {

 application {

 name

 }

}

{

 "data": {

 "application": [

 { "name": "AA" },

 { "name": "Account Management" }

]

 }

}

6.1.2. Getting an object with its relations

The following query returns the applications and their related business process:

Query Result

query {

 application {

 id

 name

 businessProcess {

 id

{

 "data": {

 "application": [

 {

 "id": "snf5hRn0U91K",

 "name": "AA",

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 19 / 66

 name

 }

 }

}

 "businessProcess": []

 },

 {

 "id": "IubjeRlyFfT1",

 "name": "Account Management",

 "businessProcess": [

 {

 "id": "12qog2pV99fG",

 "name": "Financial Reporting"

 }

]

 },

6.2. Basic mutations

6.2.1. Creating an object

The following mutation creates an application. If creation is successful the result
returnes the created object.

Query Result

mutation {

 createApplication(application:{

 name:"new application"

 }) {

 id

 name

 }

}

{

 "data": {

 "createApplication": {

 "id": "x2wrAYDkWP8H",

 "name": "new application"

 }

 }

}

6.2.2. Creating an object with a relationship

The following mutation creates an application and links it to an existing business
process. If creation is successful the result returnes the created object.

Query Result

mutation {

 createApplication(application : {

 name: "new app 3"

{

 "data": {

 "createApplication": {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 20 / 66

 businessProcess: {

 action:ADD

 list:[{id:"39cXIxu2HHrI"}]

 }

 }) {

 id

 name

 businessProcess {

 id

 name

 }

 }

}

 "id": "Q2wradDkWbGH",

 "name": "new app 3",

 "businessProcess": [

 {

 "id": "39cXIxu2HHrI",

 "name": "Accounting"

 }

]

 }

 }

}

6.2.3. Updating an object

The following mutation updates an existing application. If update is successful the
result returnes the updated object.

Query Result

mutation {

updateApplication(id:"IubjeRlyFfT1"
application:{

 cloudComputing:Cloud_IaaS

}) {

 id

 cloudComputing

}

}

{

 "data": {

 "updateApplication": {

 "id": "IubjeRlyFfT1",

 "cloudComputing": "Cloud_IaaS"

 }

 }

}

6.2.4. Deleting an object

The following mutation deletes an existing application. If delete is successful the result
returnes the number of deleted objects.

Query Result

mutation {

 deleteApplication (id:"snf5hRn0U91K"
cascade:false) {

{

 "data": {

 "deleteApplication": {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 21 / 66

 deletedCount

 }

}

 "deletedCount": 1

 }

 }

}

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 22 / 66

7. Creating custom schema (SDL/JSON) /

custom endpoint

The GraphQL REST API exposes in standard a subset of the full HOPEX Metamodel.
This subset is organized into several endpoint represented by a schema (SDL). The
split is mainly done by solution scope or technical grouping (e.g.: ITPM, BPA, Audit)

It is possible to extend the delivered schema or to create new schema. The result of
this customization will end up with a new endpoint to call by HTTP request.

7.1. How it works ?

7.1.1. General principle

To create a schema you need to convert the HOPEX Metamodel into a GraphQL syntax
compatible. This mapping is done through a JSON file that maps the HOPEX ID with a
naming convention compatible with GraphQL. From this file the system generates a
GraphQL syntax. The default JSON mapping schema are installed in the CONFIG
folder of the HOPEX installation:

C:\ProgramData\MEGA\Hopex Application Server\<Has instance
name>\Modules\hopex.graphql\<GraphQL module version>\CONFIG\V3\Standard

Example:

C:\ProgramData\MEGA\Hopex Application Server\5000\Modules\hopex.graphql\HOPEX
GraphQL-7.87.507+6623.zip\CONFIG\V3\Standard

Moreover, in the web part a key in the web.config exposes the list of available
schema.

<add key="GraphQLSchemas" value="ITPM, Assessment, Audit, BPA, Data, DataPrivacy,
MetaModel, Reporting, Risk, Workflow"/>

<!-- GraphQLSchema-->

In this example there are several schema about: ITPM, Assessment, Audit…

Within this JSON file the metamodel in terms of MetaClass, MetaAttribute,
MetaAttributeValue, MetaAssociation.

Here is an extract of a JSON mapping schema for ITPM:

...

"metaclass": [{

"id": "MrUiM9B5iyM0",

"name": "Application",

"description": "An application is a software component that can be deployed and provides
users with a set of functionalities.",

...

"properties": [{

"id": "Z20000000D60",

"name": "Name",

"description": "Short Name of the object ...",

"constraints": {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 23 / 66

"type": "String",

"mandatory": true,

"maxLength": "1024",

"readOnly": false,

"translatable": true,

"formattedText": false

}}],

"relationships": [

{

"id": "7ChrtiDo4vb0_YChrYpDo4ri0_MrUiM9B5iyM0",

"name": "TimePeriod",

...

"pathToTarget": [

{

 "id": "VChrYpDo4fi0",

 "name": "TimeDependentObjectTimePeriod",

 "maeName": "PeriodOfValidity",

 "maeID": "YChrYpDo4ri0",

 "metaClassName": "TimePeriod",

 "metaClassID": "7ChrtiDo4vb0",

 "multiplicity": "*"

}]}]

...

See ITPM file for full JSON:

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 24 / 66

7.1.2. Creating/Updating a schema

To create your own schema you can:

• Create a totally new schema

In this case you are free to define what is exposed and you will not be impacted
by future updates of the API.

• Extend an existing schema.

This limits the customization to be performed but you will benefit from future
updates of the default delivered schema..

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 25 / 66

In both cases the principle is the same. You need to create a custom JSON file that
you will put in the custom folder:

C:\...\HOPEX Application Server\<HAS instance

name>\.shadowFiles\has.custom\<Module version>\hopex.graphql\<GraphQL module

version>\CONFIG\V3\Standard

e.g.: C:\ProgramData\MEGA\HOPEX Application

Server\5000\.shadowFiles\has.custom\<Module version>\hopex.graphql\HOPEX

GraphQL-7.87.507+6623\CONFIG\V3\Standard

In case of a new JSON the name of the schema must be added in the web.config.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 26 / 66

7.2. Step 1: Create your metamodel to expose in the
REST API

The JSON delivered out of the box have been generated by a java program that reads
a diagram of metamodel. To generate a schema JSON you can use the same tool on
existing metamodel diagram or with your new metamodel diagram.

7.2.1. Creating Custom Metamodel

1. Connect to HOPEX (Windows Front-End).

2. In the MetaStudio tab create a new Metamodel.

3. Add a new diagram to this metamodel.

4. Add the elements of metamodel you want.

5. Copy and keep for later the absolute identifier of the metamodel object.

7.2.2. Completing default metamodel

Should you want to complete the default schema with additional MetaClass,
MetaAttribute:

1. Import the MGL file located in "MGL" folder.

2. Duplicate the standard Metamodel and diagram you want to complete.

3. Add the elements of metamodel you want.

4. Copy and keep for later the absolute identifier of the metamodel object.

7.2.3. Important rules

This generator applies the following rules:

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 27 / 66

• Only concrete metamodel is generated

• MetaAssociation must be in the diagram to be generated, including the abstract
version of the MetaAssociation.

7.3. Step 2: Configure the generator

From HOPEX store (https://store.mega.com/modules/) download GraphQL Mapping

Json Generator modulehttps://community.mega.com/t5/HOPEX-Store/GraphQL-
REST-API/td-p/21381.

Unzip the GraphQL Mapping Json Generator.haspkg in “java” folder (you may
need to create it):

C:\temp\java

You can adjust according to your case:

• Open the "00_SchemaToGenerate.json" to add your schema. Past the
absolute identifier you have saved from previous step.

• Edit the included section to false to avoid generating the other schema.

Example of "00_SchemaToGenerate.json":

{

"included": "true",

"schemaName": "ITPM",

"metaModelAbsoluteIdentifier": "TeEKeRMmSPYK",

"login": "Tibere",

"password": "Hopex",

"profile": "ITPM Functional Administrator"

},

• Login, password, and profile should reflect the restriction of metamodel you
want to apply to the API. If you do not know which profile put 'HOPEX
Customizer'. Access right will be read at runtime.

https://store.mega.com/modules/
https://community.mega.com/t5/HOPEX-Store/GraphQL-REST-API/td-p/21381
https://community.mega.com/t5/HOPEX-Store/GraphQL-REST-API/td-p/21381

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 28 / 66

7.4. Step 3: Run the generator

Before running the generator edit the file 'run.bat' to adjust:

• folder location: HOPEX, log, config file

• environment path

• repository name

• debug option (-d)

To run the program, execute the run.bat file. In case of success the message appears
in the console.

Processing the request may take between 30 to 45 min... Be

patient! depending on the metamodel complexity.

Example of console message in debug:

[2020-09-14 08:35:21] [CONFIG] debug = true

[2020-09-14 08:35:21] [CONFIG] verbose = false

[2020-09-14 08:35:21] [CONFIG] Folder = c:\temp\java\

[2020-09-14 08:35:21] [CONFIG] Log Folder = c:\temp\java\

[2020-09-14 08:35:21] [CONFIG] File Name Override = 00_OverrideName_Global.JSON

[2020-09-14 08:35:21] [CONFIG] File Name Schema = 00_SchemaToGenerate.JSON

[2020-09-14 08:35:21] [CONFIG] Environment = C:\Users\Public\Documents\HOPEX
V4\PRESALESV4

[2020-09-14 08:35:21] [CONFIG] Repository = SOHO

[2020-09-14 08:35:21] [INFOS] Read schema name

[2020-09-14 08:35:22] [INFOS] ########### Starting ###########

[2020-09-14 08:35:22] [INFOS] ########## Starting : Custom

[2020-09-14 08:35:22] [INFOS] Open HOPEX

[2020-09-14 08:35:29] [INFOS] Open Session

[2020-09-14 08:35:29] [INFOS] sAdministrator: Mega - sPassword: *****

[2020-09-14 08:35:30] [INFOS] Read overRideName JSON

[2020-09-14 08:35:30] [INFOS] Creating JSON

[2020-09-14 08:35:30] [INFOS] Start Metaclass

[2020-09-14 08:35:32] [INFOS] Size = 1

[2020-09-14 08:35:33] [INFOS] MetaClass = Application

[2020-09-14 08:36:01] [INFOS] Starting Reverse Id

[2020-09-14 08:36:01] [INFOS] Start Interfaces

[2020-09-14 08:36:01] [INFOS] Wrting filec:\temp\java\SBB.JSON

[2020-09-14 08:36:01] [INFOS] Write overRideName JSON

[2020-09-14 08:36:01] [INFOS] HOPEX Closed

[2020-09-14 08:36:01] [INFOS] ########### All done ###########

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 29 / 66

• Advantage: you benefit from dedicated process. Adapted to heavy
computation that will need several minutes/hours to respond.

• Drawback: takes time to respond.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 30 / 66

8. Pagination in REST API with GraphQL

When querying elements through the REST API a lot of items can be returned. To limit
the size of items returned it can be relevant to paginate the data.

Pagination allows you to request a certain chunk of objects. You can seek forward or
backward through the objects and supply an optional starting object:

• To seek forward, use first; specify a starting object with after.

• To seek backward, use last; specify a starting object with before.

To describ the pagination here is an example of a list of 30 objects.

This sample query is on the Application object. With no pagination:

query application {

 application {

 id

 name

 }

}

Caution

As soon as a pagination is applied an implicit sort by "ID" is executed,
therefore a query without pagination and order will not be sorted as a query

with pagination.

8.1. First elements with Skip or After

You can get the first element and skip an arbitrary amount of objects
in forward direction you are seeking by supplying the first, skip and after.

Five possibility of queries:

1. First: will take the number of elements given in first starting form the first item

query application {

 application(first:3) {

 id

 name

 }

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 31 / 66

}

2. First with Skip: will take the number of elements given in first skipping the
numbered of skipped elements

query application {

 application(first:3 skip:5) {

 id

 name

 }

}

3. First with After: will take the number of elements given in first starting after the
given object ID

query application {

 application(first:3 after:"exeiHMRhHjHI") {

 id

 name

 }

}

4. Fist with After and Skip: will take the number of elements given in first starting
after the given object ID and skipping the numbered of skipped elements

query application {

 application(first:3 skip:5 after:"exeiHMRhHjHI") {

 id

 name

 }

}

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 32 / 66

5. After alone: will start after the given object ID and take all the remaining
objects

query application {

 application(after:"exeiHMRhHjHI") {

 id

 name

 }

}

8.2. Last elements with Skip and Before

You can get the last element and skip an arbitrary amount of objects

in backward direction you are seeking by supplying the first, skip and before.

Five possibility of queries:

1. Last: will take the number of element given in last starting form the end of the
item

query application {

 application(last:3) {

 id

 name

 }

}

2. Last and Skip: will take the number of element given in last starting form the
end of the item skipping the number of object in skip

query application {

 application(last:3 skip:5) {

 id

 name

 }

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 33 / 66

}

3. Last and Before: will take the number of element given in last starting form the
given id object

query application {

 application(last:3 before:"ZEQyZ7FqOnxL") {

 id

 name

 }

}

4. Last, Skip and Before: will take the number of element given in last starting
form the given id object skipping the number of object in skip

query application {

 application(last:3 skip:5 before:"ZEQyZ7FqOnxL") {

 id

 name

 }

}

5. Before Only: will take all the object before the given object

query application {

 application(before:"ZEQyZ7FqOnxL") {

 id

 name

 }

}

Important

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 34 / 66

You cannot combine first with before or last with after. If you do so in a query,
before or after will simply be ignored and only first or last is applied (at the

very beginning or end of the list, depending on which you're using).

Note that you can query for more nodes than exist without an error message.

8.3. Pagination and Sort

If you combine pagination option and order capabilities the pagination will be done
after the sort is executed.

Example of query:

query application {

 application(orderBy:[cloudComputing_ASC] first:3) {

 id

 name

 cloudComputing

 }

}

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 35 / 66

9. Filtering data (where condition) in REST

API with GraphQL

When building graphQL to query element, it is sometime interesting to filter the data
by different criteria: filtering by name, by Id, by relationships... Filters represent a
"where" condition in queries.

Filtering can:

• filter by fields (MetaAttributes)

• filter by relationships (MetaAssociation)

• combine criteria: and, or

• adapt the criteria to the type: string, date, numbers...

9.1. How to make a filter?

The filter is an argument of the query with the keyword "filter". When using the auto-
completion (with GraphiQl or Postman) the system propose the possible filter criteria.
Technically the filter represents a "where" in an query (ERQL / SQL).

• Filtering an application by its name

Query Result

query {

 application(filter:{name:"Account Management"})

 {

 id

 name

 }

}

{

 "data": {

 "application": [

 {

 "id": "IubjeRlyFfT1",

 "name": "Account Management"

 }

]

 }

}

The current filter will limit the applications that have the name strictly equals to the
element given in the double quotes (see String filters for all string filters options).

• Filtering an application by its status

Query Result

query {

application(filter:{statusReview_in:[Validated,UpdateInProgress]})

 {

 id

{

 "data": {

 "application": [

 {

 "id": "IubjeRlyFfT1",

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 36 / 66

 name

 }

}

 "name": "Account
Management"

 },

 {

 "id": "pGCe26yn8zc3",

 "name": "Booking
Management"

 }

]

 }

}

The current filter will limit the applications that have their status review MetaAttribute
strictly equals to Validated or UpdateInProgress . See below for all enumeration filters
options.

• Filtering an application by its owner

Query Result

query {

 application(filter:{iTOwner_PersonSystem_some:{name:"Eric"}})

 {

 name

 iTOwner_PersonSystem {

 name

 }

 }

}

{

 "data": {

 "application": [

 {

 "name": "MyCompany.com",

 "iTOwner_PersonSystem": [

 {

 "name": "Eric"

 }

]

 },

 {

 "name": "Splio EmailForge",

 "iTOwner_PersonSystem": [

 {

 "name": "Eric"

 }

]

 },

...

The current filter will limit the application that have at least one IT owner strictly
named "Eric". See below for all relationships filters options.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 37 / 66

9.2. How to combine filters?

By default combining filtering criteria will be an "and" operator. You can explicitly

select the "and" or "or" operator.

1. Default "and" behavior

Query Result

query {

 application(filter:{

modificationDate:"2020-04-07"

name_contains:"CRM"})

 {

 name

 modificationDate

 }

}

{

 "data": {

 "application": [

 {

 "name": "CRM US",

 "modificationDate": "2020-04-07"

 },

 {

 "name": "CRM Europe",

 "modificationDate": "2020-04-07"

 }

]

 }

}

In the filter curly bracket just add the filtering criteria and they will need to

be all valid to return a result.

• Explicit "and" or "or"

In the filter you can select as a filter "and" or "or" as shown in the screenshot:

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 38 / 66

Query Result

query {

application(filter:{or:{modificationDate:"2020-
04-07" name_contains:"CRM"}})

 {

 name

 modificationDate

 }

}

{

 "data": {

 "application": [

 {

 "name": "MyCompany.com",

 "modificationDate": "2020-04-07"

 },

 {

 "name": "CRM Management",

 "modificationDate": "2017-09-28"

 },

 ...

Because this filter contains an "or" one of the criteria must be valid to return a
result. In this example either the date or the name.

9.3. Type of filters by types of fields

There are several types of fields:

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 39 / 66

• String

• Date and DateTime

• Numbers: float, int, double, currency

• Enumeration

• Boolean

For each field the available filter allows various combination of criteria: equals,
contains, greater than, in, not in.

9.3.1. String filters

All string fields propose the following filter criteria. For instance for Name:

name: String # matches all fields with exact value

name_not: String # matches all fields with different value

name_in: [String!] # matches all fields with value in the passed list

name_not_in: [String!] # matches all fields with value not in the

passed list

name_lt: String # matches all fields with lesser value

name_lte: String # matches all fields with lesser or equal value

name_gt: String # matches all fields with greater value

name_gte: String # matches all fields with greater or equal value

name_contains: String # matches all fields with a value that contains

given substring

name_not_contains: String # matches all fields with a value that does

not contain given substring

name_starts_with: String # matches all fields with a value that starts

with given substring

name_not_starts_with: String # matches all fields with a value that

does not start with given substring

name_ends_with: String # matches all fields with a value that ends

with given substring

name_not_ends_with: String # matches all fields with a value that

does not end with given substring

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 40 / 66

9.3.2. Date or DateTime filters

All date fields propose the following filter criteria. For instance for Creation Date:

creationDate: DateTime # matches all fields with exact value

creationDate_not: DateTime # matches all fields with different value

creationDate_in: [DateTime!] # matches all fields with value in the

passed list

creationDate_not_in: [DateTime!] # matches all fields with value not

in the passed list

creationDate_lt: DateTime # matches all fields with lesser value

creationDate_lte: DateTime # matches all fields with lesser or equal

value

creationDate_gt: DateTime # matches all fields with greater value

creationDate_gte: DateTime # matches all fields with greater or equal

value

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 41 / 66

9.3.3. Numbers filters

All numbers (int, float, double) fields propose the following filter criteria.

For example for Cost Per User:

costPerUser: Number # matches all fields with exact value

costPerUser_not: Number # matches all fields with different value

costPerUser_in: [Number!] # matches all fields with value in the

passed list

costPerUser_not_in: [Number!] # matches all fields with value not in

the passed list

costPerUser_lt: Number # matches all fields with lesser value

costPerUser_lte: Number # matches all fields with lesser or equal

value

costPerUser_gt: Number # matches all fields with greater value

costPerUser_gte: Number # matches all fields with greater or equal

value

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 42 / 66

9.3.4. Enumeration filters

All enumeration fields (MetaAttribute Value) propose the following filter criteria. For

instance for Cloud Computing:

cloudComputing: cloudComputing # matches all fields with exact

value

cloudComputing_not: cloudComputing # matches all fields with

different value

cloudComputing_in: [cloudComputing] # matches all fields with value

in the passed list

cloudComputing_not_in: [cloudComputing] # matches all fields with

value not in the passed list

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 43 / 66

9.3.5. Boolean filters

All boolean propose the following filter criteria. For instance for Freeze Past

Time Period:

FreezePastTimePeriod: Boolean # matches all fields with exact value

FreezePastTimePeriod_not: Boolean # matches all fields with different

value

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 44 / 66

10. Mutation: Absolute/External/Temporary -

Identifier

With GraphQL you can make query or mutation on object of the repository. When
syncing with an external tool you may want to use the identifier of the other tool to
create or connect object.

GraphQL provides 3 types of identifiers:

• Absolute Identifier: this is the ID generated by HOPEX when a new object is
created. The value cannot be set by the API. It can be used when making query
to get the HOPEX unique identifier global.

o This field cannot be blank or null.

o This field is composed of 12 characters composed of letter and digit and
special characters.

o This field is invariant overtime.

• External Identifier: this is an ID that can be given when a new object is
created. The uniqueness is limited to the MetaClass for which you are creating
an object. This ID is used when importing data from another system to be able
to retrieve, at a later stage, the object created from this system.

o This field can be blank or null

o This field as a maximum length of 1024 characters

o This field is not invariant overtime

2. Temporary Identifier: this is the same principal as the External Identifier.
The main difference is that the validity of this ID is limited to the mutation
you are doing. The information will not be store in the database and cannot
be reused at a later stage.

10.1. Making a Query

A query can only be made on:

• the Absolute Identifier shortly called “id" or

• the External Identifier shortly called "externalId".

Note: As the Temporary identifier is not physically stored it cannot be queried.

“id" and "externalId" identifiers can be used to:

• filter query

• ensure that the retrieved object is the expected one.

10.1.1. Example: query with a result containing the

identifiers

Query 1 Result 1

query AppID { {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 45 / 66

 application {

 id

 externalId

 name

 }

}

 "data": {

 "application": [

 {"id": "IubjeRlyFfT1", "externalId": "My
ID App1", "name": "Account Management"},

 {"id": "iSS7AQY6NrgU","externalId": "My
ID App2","name": "Account Payable"

 }

]

 }

}

10.1.2. Example: query containing a filter on the external

identifier

Query 2 Result 2

query AppID {

 application

 (filter:{externalId_contains:"My ID"}) {

 id

 externalId

 name

 }

}

{

 "data": {

 "application": [

 {"id": "IubjeRlyFfT1", "externalId": "My
ID App1", "name": "Account Management"},

 {"id": "iSS7AQY6NrgU","externalId": "My
ID App2","name": "Account Payable"

 }

]

 }

}

10.2. Making a Mutation

10.2.1. Creation without an Identifier

The default behavior is to let the system give an absolute identifier to an object. The
identifier is unique in the whole HOPEX repository. If you create several objects, even
with the same characteristics, each object has a unique.

Query Result

mutation basicCreation {

 createApplication(application:{

{

 "data": {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 46 / 66

 name:"my new app"

 }) {

 id

 name

 }

}

 "createApplication": {

 "id": "magoMpShXLDE",

 "name": "my new app"

 }

 }

}

10.2.2. Creation with an External Identifier

The only way to control the identifier is to use the External Identifier. When the object

is created you can specify the value. This value is unique but limited to the

MetaClass object you are creating. Moreover this external identifier is not

invariant so you can modify it after the object was created.

CAUTION: the profile you use must be granted to right to read and write this
MetaAttribute. This is not always the default right in standard HOPEX.

Query Result

mutation basicCreation {

 createApplication(id:"My ID App3"

 idType:EXTERNAL

 application:{

 name:"my new app 3"

 }) {

 id

 externalId

 name

 }

}

{

 "data": {

 "createApplication": {

 "id": "RcgoRyShXXFE",

 "externalId": "My ID App3",

 "name": "my new app 3"

 }

 }

}

Should you want to update the External Identifier you need to first query the object
with the Absolute Identifier.

Query Result

mutation updateExtId {

 updateApplication(id:"RcgoRyShXXFE"

 idType:INTERNAL

 application:{

 externalId:"my new app 3 -updated "

 }) {

 id

 externalId

{

 "data": {

 "updateApplication": {

 "id": "RcgoRyShXXFE",

 "externalId": "my new app 3 -updated ",

 "name": "my new app 3"

 }

 }

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 47 / 66

 name

 }

}

}

If you do several mutations in a row you can use this External Identifier as a mean to
connect object together.

For example: the following mutation performs

1. Creation of an Application.

2. Creation of a Busines Process.

3. Connection of the two created objects.

Query Result

mutation multiple {

 createApplication(id:"MyAPPID5"
idType:EXTERNAL

 application:{name:"Application 5"}) {

 name

 }

 createBusinessProcess(id:"My Process 5"
idType:EXTERNAL

 businessProcess:{name:"Process 5"

 application:{

 action:ADD

 list:[{id:"MyAPPID5"
idType:EXTERNAL}]

 }

 }) {

 name

 application {

 name

 externalId

 }

 }

}

{

 "data": {

 "createApplication": {

 "name": "Application 5"

 },

 "createBusinessProcess": {

 "name": "Process 5",

 "application": [

 {

 "name": "Application 5",

 "externalId": "MyAPPID5"

 }

]

 }

 }

}

10.2.3. Creation with a Temporary Identifier

The temporary Identifier works as the external identifier. The only difference is that
the value of this identifier is not stored in the database.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 48 / 66

11. Asynchronous versus Synchronous Web

service call

Each of the GraphQL endpoints, to query the repository, can return results in
synchronous or asynchronous way.

To avoid confusion, it is important to make the difference between:

• What does the endpoint return ? Synchronous/Asynchronous response

• How the endpoint is called ? Synchronous/Asynchronous call

11.1. What does the endpoint return?

There are two cases:

1. synchronous (response): the endpoint returns always a response (good or bad)
with the result regardless of the time it took to compute the result. The URL like
this one {{server_url}}/HOPEXGraphQL/api/ITPM are synchronous.

2. asynchronous (response): the endpoint returns a task ID to use to recall the
endpoint to get the result. The URL like this
one {{server_url}}/HOPEXGraphQL/api/async/ITPM are asynchronous.

The first case: is particularly useful to get immediate results when calling the API. The
drawback is that if it takes time to get a result, the caller is hanging and wait for the
response. In case of response taking several seconds, timeout may occur on the
network or web browser.

The second case: is particularly useful for requests that are time consuming to

compute. A first call is made to the API. This call returns a x-hopex-task and a x-

hopex-sessiontoken. The status code of the response will be HTTP 206 Partial

response. This information is then used to recall, in a pooling mechanism, the same

endpoint until it returns 200 success.

11.2. Calling the API in asynchronous way

1. Make a first call to the async
endpoint {{server_url}}/HOPEXGraphQL/api/async/ITPM request header should
contain: x-hopex-context and x-hopex-wait

2. If the time to compute the query is:

a. lower than x-hopex-wait time: the API returns the x-hopex-task and x-
hopex-sessiontoken in a 206 status

b. higher than x-hopex-wait time: the API returns the body JSON response
in a 200 status

3. In case of 206 status code: make several calls to the end point with in the
header x-hopex-task and x-hopex-sessiontoken

a. While you get 206 status the result is not available and the API is still
computing.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 49 / 66

b. As soon as you get 200 status the result is available in the body of the
response.

The mechanism for asynchronous call is web pooling. As of now we do not

provide any webhook mechanism.

11.3. How the endpoint is called?

Regardless of the endpoint called (sync or async) each programming language has its
own way to make an HTTP request.

Then HTTP request can be made via a synchronous or asynchronous call. For
instance, the programming can be "stuck" and wait for the response before to proceed
to the next step of the programming; or the programming can "continue" and get
triggered when the response is available.

 As a result you can end up in the following situation:

• A synchronous call to the synchronous endpoint

• A synchronous call to the asynchronous endpoint

• An asynchronous call to the synchronous endpoint

• An asynchronous call to the asynchronous endpoint

11.4. Which is the best option?

The best option depends on the use case:

• Is it a web application?

• Is it a mobile app?

• What is the quality of the network?

• What are timeout options?

Asynchronous are better when the system can deal with the response at a later
stage: web application, mobile app for instance.

Synchronous are better when the system needs the information to proceed to the
next steps: integration with other systems for instance.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 50 / 66

12. Diagram API: dowloading a diagram by

REST API

HOPEX contains diagrams that have been designed or generated. Within the Web
Front-End you can see and download the diagrams as images. The REST API also
provides the ability to export the diagram as a file.

Supported formats are: PNG, JPEG and SVG.

12.1. Use case

You want to expose, as a read only, the diagrams of HOPEX into another application
or an external website. This API is for download only, updates on the diagram are not
allowed.

To perform this action:

1. Select the diagram in HOPEX via the GraphQL API.

2. Download the images file via a dedicated endpoint.

Depending on the use case you are, you may call the endpoint in a synchronous or
asynchronous way. For details on how to call the API in asynchronous way, see
Asynchronous versus Synchronous Web service call.

Note that the API complies with the confidentiality. If the diagram you try to access is
confidential with the credential you used you will not be able to get the image.

12.1.1. Downloading a diagram (Metaclass Diagram or

System Diagram)

To get your diagram as an image:

1. Make a graphQL query to get the download URL of the diagram.

2. Call this URL to get the binary image file.

Step 1: Getting the download URL

Execute a GraphQL query on the endpoint of your

choice {{server_url}}/HOPEXGraphQL/api/{{schemaName}} :

Query Result

query getDiagram {

 application {

 name

 diagram {

 name

 downloadUrl

 }

{

 "data": {

 "application": [

 {

 "name": "Excel Checker",

 "diagram": [

 {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 51 / 66

 }

}

 "name": "Application Structure Diagram Excel Checker",

 "downloadUrl": "http://w-

ogd/hopexgraphql/api/diagram/uPRCRnJ(Hn95/image"

 }

]

 }

]

 }

}

 The download URL are like:

{{server_url}}/hopexgraphql/api/diagram/{{diagramId}}/image

where {{diagramId}} represent the absolute identifier of the object in HOPEX. They

must be called with GET verb.

• Example with GraphiQL:

• Examples with Postman:

 Get a bearer

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 52 / 66

query and result

Step 2: Getting the image

When you call the download URL the header should contains, in addition to default
headers:

• Accept: which defines the format of the image you expect to get. If not defined,
the default value is PNG.

o image/png

o image/jpeg

o image/svg+xml

As a result of the call the body contains the picture of the diagram.

Example with Postman:

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 53 / 66

12.1.2. Result of the API

• Status 200: the diagram has been found and is returned in the body

• Status 500: an error has occurred with a body that contains the following
message.

o the absolute identifier you gave is not valid

o the absolute identifier yet the diagram you are trying to acces is not
visible with your credentials.

Example of error message:

{

 "Message": "An error has occurred.",

 "ExceptionMessage": "Empty Object Invocation:Only default and GetID methods are

available on a Empty Object",

 "ExceptionType": "System.Exception",

 "StackTrace": null

}

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 54 / 66

13. Attachment API: Uploading or

Downloading Business Document

In HOPEX, you can store attachments in the concept called Business Document.

Supported files (e.g: DOCX, XLSX, JPEG, PNG, PDF) can be uploaded/downloaded
from the web interface. You may want to access this information by REST API to
perform the same upload/download action.

See video: https://youtu.be/nS7WYsDtr0Q.

13.1. Use case

The Attachment API allows you to upload and query file attachments. You can upload
or retrieve a single file with each request. The Attachment API complies with HOPEX
limitations on uploaded files, such as maximum file size and allowed attachment
types.

The API supports the following features:

• Upload: it manages new business documents or new version of an existing
document

• Download: it allows to download the latest version or a selected version of a
business document.

To perform this action:

1. Create or select the object in HOPEX via the GraphQL API.

2. Upload/download the binary file via a dedicated endpoint.

13.2. Downloading an attachment (Business
Document)

To download an attachment with the REST API:

1. Create a GraphQL query to get the download URL for your document.

2. Call the URL to download the file.

GraphQL query executed on

the {{server_url}}/HOPEXGraphQL/api/{{schemaName}} endpoint

Query Result

query {

 businessDocument{

 id

 name

 downloadUrl

 }

}

{

 "data": {

 "businessDocument": [

 {

 "id": "Dbm4QHHbM5vH",

 "name": "Audit Report",

 "downloadUrl": "http://w-

ogd/hopexgraphql/api/attachment/Dbm4QHHbM5vH/file"

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 55 / 66

 }

]

 }

}

The download URL are like:

{{server_url}}/HOPEXGraphQL/api/attachment/{{documentId}}/file

where {{documentId}} represents the absolute identifier of the object in HOPEX. They

must be called with GET verb.

Should you want to access a specific version of the business document, use the
absolute identifier of the version you want to download. You can make a graphQL
query on the business document version.

Query Result

query {

businessDocument(filter:{id:"Dbm4QHHbM5

vH"}){

 id

 name

 downloadUrl

businessDocumentVersion_DocumentVersion

s {

 id

 name

 documentVersion

 downloadUrl

 }

 }

}

{

 "data": {

 "businessDocument": [

 {

 "id": "Dbm4QHHbM5vH",

 "name": "Audit Report",

 "downloadUrl": "http://w-

ogd/hopexgraphql/api/attachment/Dbm4QHHbM5vH/

file",

"businessDocumentVersion_DocumentVersions": [

 {

 "id": "sLD2611MNbrE",

 "name": "Audit Report v2.docx",

 "downloadUrl": "http://w-

ogd/hopexgraphql/api/attachment/sLD2611MNbrE/

file",

 "documentVersion": "2"

 },

 {

 "id": "Kcm4RHHbMTzH",

 "name": "Audit Report v1.docx",

 "downloadUrl": "http://w-

ogd/hopexgraphql/api/attachment/Kcm4RHHbMTzH/

file",

 "documentVersion": "1"

 }

]

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 56 / 66

 }

]

 }

}

 Example with Postman:

Query

Result

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 57 / 66

13.3. Uploading an attachment (Business
Document)

When you upload an attachment you need to know if the business document already
exists or not in HOPEX. Below you will find the 2 cases.

Case 1: Upload for a new business document

You must:

1. Creat the business document object via GraphQL

2. Upload the binary content in this newly create via the dedicated endpoint

Query Result

mutation newBusinessDocument {

 createBusinessDocument(

 businessDocument:{

 name:"My new Document"

 }

) {

 id

 uploadUrl

 }

}

{

 "data": {

 "createBusinessDocument": {

 "id": "Sjot25kbUvI3",

 "uploadUrl": "http://w-

ogd/hopexgraphql/api/attachment/Sjot25kbUvI3/file"

 }

 }

}

You now have the ID and upload URL for your document. The upload URL are like this:

{{server_url}}/HOPEXGraphQL/api/attachment/{{documentId}}/file

where {{documentId}} represent the absolute identifier of the object in HOPEX. They

must be called with POST verb.

Then follow the instruction described in final step below.

Case 2: Update of an existing business document

You must:

1. Get the business document upload URL.

2. Upload the binary content and decided to update or create a new version of the
binary content.

Query Result

query {

businessDocument(filter:{id:"Dbm4QHHbM5vH"}){

 id

{

 "data": {

 "businessDocument": [

 {

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 58 / 66

 name

 uploadUrl

 }

}

 "id": "Dbm4QHHbM5vH",

 "name": "Audit Report",

 "uploadUrl": "http://w-

ogd/hopexgraphql/api/attachment/Dbm4QHHbM5vH/file"

 }

]

 }

}

 Final step:

When you call the upload URL the header should contains:

• The document version: x-hopex-documentversion with possible
value new or replace

o New: will upload a new binary content and thus create a new version of
business document version

o Update: will upload a binary content and replace the current existing
binary content for the latest business document version

• The document file name: x-hopex-filename that contain the name of the file
with the extension

o Only the extension of the file is important as it will be used to defined the
file content type

When you call the upload URL the body should contains:

• the binary content of the attachment

Example with Postman:

Query

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 59 / 66

Result

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 60 / 66

14. Getting GraphQL Schema as a file (SDL

schema file)

When building graphQL query it can be convenient to use auto-completion to navigate
the available information in the schema. Thus, useful to write the graphQL to
read/write in the REST API.

For example, for ITPM to know which MetaClass, MetaAttributes or MetaAssociation
are available.

See video: https://youtu.be/gSOTxi3Hh2w.

14.1. In GraphiQL

If you use a tool like GraphiQL the auto completion is native and will be displayed

while you are writing. You can also navigate the embedded documentation on the
schema to get additional information on the fields available.

For example: for an enumeration field you can access the value of the enum.

https://github.com/graphql/graphiql

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 61 / 66

 In this tool use:

• On Mouse over to get high level description of the field

• Ctrl+Space to access the possible option.

• Ctrl+Click on an item to access the documentation tab in graphiQL

While GraphiQL meets this use case it is not often used by developer who will prefer
tools like Postman.

14.2. In Postman

The GraphQL query language has its own schema definition based on a format called

"SDL". This SDL format file can be downloaded via the API itself. Once retrieved it can
be used in tools that can parse this standard.

For instance, Postman is a developer tool that can handle GraphQL and SDL schema.
To access the SDL file follow this steps:

• Get a bearer token

• Call of of the endpoint of the required
schema {{server_url}}/HOPEXGraphQL/api/ITPM/sdl. The response will be a
filenamed "schema".graphql.

• Import this file in Postman

• In the body parameters select GraphQL and in the dropdown your schema

https://graphql.org/

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 62 / 66

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 63 / 66

Sample for graphQL available here:
https://community.mega.com/mega/attachments/mega/technical-
product/7814/2/SampleSDL.zip.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 64 / 66

15. ID Converter From HexaIdAbs to Absolute

identifier

When calling HOPEX REST API you need to provide the absolute identifiers of the
environment and the repository. You will find below some explaination on how and
where to find this information.

On the server side you can access the:

• HexaIdAbs of the environment in the megasite.ini located in the installation
folder. Default path is <HOPEX installation>\Cfg

E.g.: C:\ProgramData\MEGA\Hopex Application
Server\5000\.shadowFiles\hopex.core\17.0.0+6637\Cfg

• HexaIdAbs of the repository in the megaenv.ini located in the environment
folder.
Default path is C:\...\HOPEX Application Server\<HAS instance
name>\Repos\<Environment name>

E.g.: C:\ProgramData\MEGA\Hopex Application Server\5000\Repos\EnvTestsLab

You can find the ID converter in the <HOPEX installation>\Utilities\HOPEX ID

Converter folder.

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 65 / 66

For example:

C:\ProgramData\MEGA\Hopex Application

Server\5000\.shadowFiles\hopex.core\17.0.0+6637\Utilities\HOPEX ID Converter

Perfom the following steps:

1. Launch the Hopex ID Converter executable.

2. In the "INI" file copy the HexaIdAbs you want to convert (from the megasite or
megaenv).

3. Paste the value in the hexa idabs (16 char).

4. Select the below field cn64 idabs (12 char).

5. Right-click Copy and Paste it wherever you need to use it

More on yuoutube: https://youtu.be/yujkirLXawY

https://youtu.be/yujkirLXawY

CLIENTXX Architecture Repository implementation project
| Sommaire

 Page: 66 / 66

16. Using Postman to call the REST API

Calling the REST API can be done with a wide range of tools.

In this post we explain how to leverage postman to make HTTP request to the API.

The main steps to use postman with the HOPEX REST API are:

1. Download postman

2. Download postman collection that contains all the endpoints

3. Import the collection in postman (replace or copy when prompted)

4. Download the environments variables (file is located on this post Sample.postman_environment.zip) to

be resolve for the endpoints: URL, login, password...

5. Import the environments variables (replace or copy if prompted)

6. Fill(in the variables with the value applicable for your installation

7. Execute the fist HTTP request to get an UAS bearer token

8. Call the SDL schema and save the file to add in postman API

9. Use any of the endpoints to build you graphQL queries

More here https://youtu.be/Db93On4nH7I

https://www.getpostman.com/
https://www.postman.com/mega-international?tab=collections
https://community.mega.com/mega/attachments/mega/api/4/1/Sample.postman_environment.zip
https://youtu.be/Db93On4nH7I

	Importing a Module into HOPEX
	Module
	Module description
	Required dependent modules

	Importing a Module into HOPEX
	Updating an environment manually
	Authentication via an API key

	Customization Lifecycle Management
	1. Foreword
	1.1. Vocabulary
	1.1.1. Definitions
	1.1.2. Synonym

	1.2. From DEV to PROD process
	1.3. The big picture

	2. Customization Capabilities
	2.1. Metamodel, desktops, profiles
	2.2. Other resources

	3. Getting Ready for Customization
	3.1. Installing HAS Customization module
	3.1.1. Online mode
	3.1.2. Offline mode

	3.2. Getting NuGet package
	3.2.1. Online mode

	4. Creating Customization (SystemDB)
	4.1. Work Item concepts
	4.1.1. Work Item States
	4.1.2. Creating/Using a Work Item
	4.1.3. Recommendation when working with WI

	4.2. Dispatch customization
	4.2.1. Publication process

	4.3. Done with your customization?

	5. Extracting Customization
	5.1. Prerequisites
	5.2. Generating the MGR/XMG files
	5.3. Checking generated files

	6. New/Replace/Override Resource Files
	6.1. Folders and sub-folders structures
	6.2. Examples of common files and folders customized
	6.2.1. Diagram Shapes
	6.2.2. Login page and Portal page
	6.2.3. GraphQL custom schema

	7. Packaging customization
	8. Pushing Customization to STAGE/PROD
	8.1. Pushing to STAGE or PROD principle
	8.2. Uploading the custom module in HAS
	8.2.1. Uploading the module from the Web
	8.2.2. Uploading the module from the server (RDP)

	8.3. Running Automatic update to apply your customization in repositories

	9. Managing a Team to Move from DEV to PROD
	9.1. Most common (recommended) working way
	9.1.1. Principle
	9.1.2. Dealing with iterative fix

	9.2. Multiple team – Multiple Projects – Multiple DEV Instance
	9.2.2. Architecture of multiple project
	9.2.3. How to create your custom project module
	9.2.4. Workflow to manage the project

	10. Use Case: Property Page Customization
	10.1. Prerequisites
	10.2. Customizing
	10.3. Dispatching customizations via Work Items
	10.4. Generating the custom files (DEV)
	10.5. Creating the Custom Package (DEV)
	10.6. Pushing customization to Staging
	10.7. Pushing customization to Prod

	11. Migrating to HOPEX V5?
	12. Frequently Asked Questions
	12.1.1. The Work Item dropdown is not available when dispatching
	12.1.2. The Custom Packaging menu content is not available to extract my customization
	12.1.3. I forgot to attach my dispatches to a Work Item, what can I do?
	12.1.4. I have embedded demo data in my dispatch, how can I remove them?
	12.1.5. How can I remove imported XMG/MGR in stage or prod?
	12.1.6. How to force re-import of MGR/XMG files?
	12.1.7. My custom files got imported with errors, What should I do?
	12.1.8. I did customization but I don’t have the initial custom module, what should I do?
	12.1.9. Can I launch the automatic update without service interruption?
	12.1.10. Is delta custom module package possible ?

	HOPEX diagrams in MS Teams
	1. Teams Module Description
	2. HOPEX in Microsoft Teams
	2.1. Adding the App to your Teams (optional)
	2.2. Adding a diagram tab in your Team
	2.3. Viewing a HOPEX diagram
	2.4. Editing the HOPEX diagram

	3. HOPEX Configuration
	3.1. Installing Teams Module
	3.2. Configuring Http Security
	3.3. Setting SameSite cookie
	3.4. Configuring the authentication
	3.4.1. User accounts
	3.4.2. API Key
	3.4.3. Authorizing HOPEX connection from Teams

	REST API and GraphQL
	1. REST API Documentation
	2. GraphQL endpoints
	2.1. Synchronous versus Asynchronous
	2.2. Version of the endpoint

	3. GraphQL and Data Confidentiality (CRUD)
	3.1. Query
	3.2. Mutation
	3.3. Managing permission

	4. Selecting the data language with the REST API
	4.1. Querying data in the current data language
	4.2. Querying data in a selected data language
	4.3. Changing the current data language
	4.4. Changing the data language for a given user
	4.4.1. Query to know the language of a given user
	4.4.2. Mutation to update the language of a given user

	4.5. Getting the list of available data languages
	4.6. Adding data languages and seeing them in the API

	5. Basic Auth vs API Key
	5.1. Basic Auth
	5.1.1. How to use it?
	5.1.2. How to enable it?

	5.2. API Key
	5.2.1. Security
	5.2.2. Use case
	5.2.3. How to use it?
	5.2.4. How to enable it?

	5.3. Multi or Single Mode

	6. Querying/Creating/Updating/Deleting with GraphQL
	6.1. Basic queries
	6.1.1. Getting an object with its attributes
	6.1.2. Getting an object with its relations

	6.2. Basic mutations
	6.2.1. Creating an object
	6.2.2. Creating an object with a relationship
	6.2.3. Updating an object
	6.2.4. Deleting an object

	7. Creating custom schema (SDL/JSON) / custom endpoint
	7.1. How it works ?
	7.1.1. General principle
	7.1.2. Creating/Updating a schema

	7.2. Step 1: Create your metamodel to expose in the REST API
	7.2.1. Creating Custom Metamodel
	7.2.2. Completing default metamodel
	7.2.3. Important rules

	7.3. Step 2: Configure the generator
	7.4. Step 3: Run the generator

	8. Pagination in REST API with GraphQL
	8.1. First elements with Skip or After
	8.2. Last elements with Skip and Before
	8.3. Pagination and Sort

	9. Filtering data (where condition) in REST API with GraphQL
	9.1. How to make a filter?
	9.2. How to combine filters?
	9.3. Type of filters by types of fields
	9.3.1. String filters
	9.3.2. Date or DateTime filters
	9.3.3. Numbers filters
	9.3.4. Enumeration filters
	9.3.5. Boolean filters

	10. Mutation: Absolute/External/Temporary - Identifier
	10.1. Making a Query
	10.1.1. Example: query with a result containing the identifiers
	10.1.2. Example: query containing a filter on the external identifier

	10.2. Making a Mutation
	10.2.1. Creation without an Identifier
	10.2.2. Creation with an External Identifier
	10.2.3. Creation with a Temporary Identifier

	11. Asynchronous versus Synchronous Web service call
	11.1. What does the endpoint return?
	11.2. Calling the API in asynchronous way
	11.3. How the endpoint is called?
	11.4. Which is the best option?

	12. Diagram API: dowloading a diagram by REST API
	12.1. Use case
	12.1.1. Downloading a diagram (Metaclass Diagram or System Diagram)
	12.1.2. Result of the API

	13. Attachment API: Uploading or Downloading Business Document
	13.1. Use case
	13.2. Downloading an attachment (Business Document)
	13.3. Uploading an attachment (Business Document)

	14. Getting GraphQL Schema as a file (SDL schema file)
	14.1. In GraphiQL
	14.2. In Postman

	15. ID Converter From HexaIdAbs to Absolute identifier
	16. Using Postman to call the REST API

