
HOPEX Data Architecture
User Guide

HOPEX Aquila 6.2

Information in this document is subject to change and does not represent a commitment on the part of MEGA
International.
No part of this document is to be reproduced, transmitted, stored in a retrieval system, or translated into any
language in any form by any means, without the prior written permission of MEGA International.

© MEGA International, Paris, 1996 - 2026
All rights reserved.
HOPEX Data Architecture and HOPEX are registered trademarks of MEGA International.
Windows is a registered trademark of Microsoft Corporation.
The other trademarks mentioned in this document belong to their respective owners.

3

CONTENTS

Contents . 3

Introduction to HOPEX Data Architecture . 19

The Scope Covered by HOPEX IA . 20
Three Modeling Levels .20
Data Category .20
Design Workflow .20
Definition of Responsibilities .21
Analysis reports .21

Connecting to HOPEX Data Architecture . 22
HOPEX Data Architecture Profiles .22
Business Roles of HOPEX Data Architecture .23

 The HOPEX Information Architecture desktop . 24
HOPEX Data Architecture Home Page .24

Scope Indicators .24
Displaying the working environment of an enterprise .25

Creating an enterprise and its working environment .26

BUSINESS GLOSSARY

Introduction to the Creation of a Business Ontology. 29

Vocabulary Management Process .29
Analysis and organization of business concepts .30
Concept realization .30

4 HOPEX Common Features

Sommaire

Consulting the Business Glossary . 31

Searching for Terms in the Business Glossary .32
Prerequisite . 32
Scope of the Search . 32
Starting the Search . 32

Search filters . 33
Result filters . 33

Displaying the Details of a Term . 35
Standard characteristics . 36
Advanced characteristics . 36

Generating a Glossary. .37
Launching a Glossary Report . 37
Using the Glossary in a Multilingual Context . 37

Defining Business Information . 39

Objects Used .40
Concept and Term . 40
Links Between Concepts . 40

Definition links . 41
Dependency links . 42

Concept Properties . 43
Concept Instances: Individuals . 43
The Life Cycle of a Concept or Individual . 45

Concept life cycle . 45
Individual life cycle . 46

Periods . 47
Classifying Concepts and the Concept Type Notion . 48
The Concept View . 49
Dictionary Element Realization . 49

Presentation of Concept Modeling Diagrams .50
Concept Diagram . 50
Concept structure diagram . 51
Concept type structure diagram . 51
State concept state structure diagram . 51
Individual structure diagram . 51
The concept life cycle structure diagram . 51

Business Dictionary. .52
The Elements of a Business Dictionary . 52

Accessing the elements of a business dictionary. 53
Importing business information . 53

Work Business Dictionary . 53
Creating a Business Dictionary . 54
Initializing a Business Dictionary Using Logical or Physical Data . 54

Initializing a Business Dictionary Using Logical Data . 54
Initializing a Business Dictionary Using Physical Data . 55
Initializing a Business Dictionary from Meta Datasets . 55

Contents

5

Initializing a Business Dictionary when Creating Logical or Physical Data 56
Displaying the Realization Chart .56

Concept Domain Map . 59
Creating a Concept Domain Map .59
The Components of a Concept Domain Map .59
Example of a Concept Domain Map .60
Reports Available on a Concept Domain Map .61

Concept Domain . 62
Creating a Concept Domain .62
Creating the Structure Diagram for a Concept Domain .62
Building a Concept Diagram .62

Creating a concept diagram of a concept domain. .62
The components of a concept diagram .63
Activating the views window .63
Adding a concept diagram element .64
Using the object insert toolbar. .64
Overview of links between objects .65
Accessing link properties in a concept diagram .66

Defining the Components of a Concept Domain .68
The components of a concept domain .68
Defining the CRUD for the components of a concept domain .69

Concept. 71
Accessing the List of Concepts .71
Creating Concepts .71
Concepts and Terms .72

Connecting an existing concept to a term . 72
Creating terms in multiple languages from a concept . 72
Creating synonyms in multiple languages . 72

Renaming a Concept .73
Concept Properties .73

Characteristics. 73
Components . 74
Super types . 74
Realizations . 74
Regulations. 74
Data Quality . 74
Reporting . 75
Workflows. 75

Concept Components . 76
Accessing Concept Components .76
Creating a Concept Component from a Diagram .77
Describing Concept Power Components .78
Describing a Computed Concept Component .78

Concept Properties . 79
Creating a Concept Property .79

Creating a Concept Property .79
Connecting a Concept Property to a concept .80
Connecting two Concept Properties .80

Creating a Computed Concept Property .80
Concept Inheritances . 81

Accessing Concept Inheritances .81

6 HOPEX Common Features

Sommaire

Creating a Concept Inheritance from a Concept Diagram . 81
Defining Inheritance of a Concept Component . 82
Creating a Concept Component Substitution . 82

Concept structure diagram .83
Individuals .85

Accessing the List of Individuals . 85
Creating an Individual from a Business Dictionary . 85
Individual Properties . 86
Creating an Individual Classification . 86
Creating a Dictionary Entity Component . 87
Individual Structure Diagram . 87

 Concept or Individual States .89
Describing State Concepts . 89

Accessing the state concepts list . 90
Creating a state concept from a business dictionary . 90
State concept properties . 91

Describing Event Concepts . 92
Accessing the event concept list . 92
Creating an event concept from a business dictionary. 92
Event concept properties . 93
Connecting an event concept to its concept . 93

State Concept Structure Diagram . 94
Describing Individual States and Events . 95

Accessing the individual state and event list . 96
Creating an Individual state from a concept domain . 96
Individual state properties . 97
Creating an Individual event from a concept domain. 97
Connecting an individual event to an individual . 97

Concept life cycle structure diagram . 97
Creating a concept life cycle . 99
Creating a concept life cycle structure diagram . 99
Adding a concept life cycle event . 99
Creating a concept life cycle transition . 100

Using periods . 100
Concept Type. .101

Accessing the Concept Types List . 101
Creating a New Concept Type. 101
Concept Type Properties . 101
Describing Concept Type Components . 102

Accessing concept type components . 103
Creating a concept type component from a concept domain 103

Describing Concept Type Variations. 104
Accessing concept type variations. 104
Creating a concept type variation from a concept domain . 104

The Concept Type Structure Diagram . 104
Concept View. .106

Creating a Concept View . 106
Defining the Concept View Content . 107

Displaying objects in the view . 107
Adding a source object to the concept view . 107
Adding a component to the concept view. 108

The View Report . 108

Contents

7

Calculation Rule on Concepts . 111

Associating a Calculation Rule with a Business Object . 112
Calculation Rule on a Concept Property . 112

Example . 112
Creating the calculation rule . 113
Defining rule input and output objects . 113

Calculation Rule on a Concept . 114

Connecting the Business Concepts to the Logical and Physical architecture. 115

Realization of Concept . 116
Defining the Object that Realizes a Concept . 116
Defining the Concept Realized by a Class . 117

Using Realization Matrices . 118
Realization Levels . 118
Creating a Realization Matrix . 119

DATA AND DATABASE DESIGN

Modeling Data dictionaries . 123

Logical Data Modeling Options . 124
Formalisms . 124
Notations . 124

Overview of Logical Data . 125
Data Dictionary . 125
Data Domain Map . 125
Logical Data Domain . 125
Logical Data View . 125
Data Model . 126

Example . 126
Data Dictionary. 127

Elements of a Data Dictionary . 127
Accessing the elements of a data dictionary . 128
Importing logical data . 128

Data Domain Map . 129
Creating a Data Domain Map . 129
Components of a Data Domain Map . 129

Data Domains and Logical Data Domains. 130
Creating a Data Domain . 130
The Data Domain Diagram . 130

8 HOPEX Common Features

Sommaire

Example of diagram . 131
Creating a Logical Data Domain Diagram. 131
Adding an object to the diagram . 131

Adding a Component to a Data Domain . 132
Defining the access mode to the component (CRUD) . 132

Logical Data View .133
Creating a logical data view . 133

Creating a data view (from a list of views). 134
Creating a data view directly from an object . 134

Displaying source objects in the data view . 135
Defining the Data View Components . 136

Embedded component. 136
Referenced component . 136
Using a view in another view . 137

Class Diagram .138
Creating a Package . 138
Creating a Class Diagram . 139

Datatypes .140
Data type packages . 140
Creating a New Datatype Package . 141

Creating a datatype . 141
Referencing Datatype Packages . 142
Assigning Types to Attributes . 142

Data Model .143
Summary of Concepts . 143

Data model . 143
Data diagram. 143

Building a Data Model . 144
Prerequisites . 144
Creating a Data Model. 144
Creating a Data Diagram. 144

Entities . 145
Creating an entity. 146

Attributes. 146
Creating attributes . 147
Inherited attributes. 147

Associations . 148
Creating an Association . 149
Defining association roles (ends) . 150
Multiplicities. 151
Aggregation . 153
Composition. 153

Reflexive Associations . 154
“N-ary” Association . 155
Constraints . 156
Normalization Rules . 157

First Normal Form . 157
Second Normal Form . 157
Third Normal Form . 158

Generalizations. 159
What is a generalization?. 159
Multiple sub-entities . 161

Contents

9

Multiple inheritance . 162
Creating a generalization . 163
Discriminator . 163

Entity Identifier . 164
Identification by an attribute. 164

Data Model Mapping . 165
Functional Objectives . 165
Running the mapping editor . 166
Creating a mapping . 166
Deleting a mapping . 166
Mapping details . 166
Example of mapping between data models . 168

IDEF1X Notation . 169
About Data Modeling with IDEF1X . 169
Concept Synthesis . 169
Building a Data Model (IDEF1X) . 170

Prerequisites . 170
Creating the Data Model . 170
Data Diagram (IDEF1X) . 170

Entities (IDEF1X) . 171
Creating an entity . 171
Attributes . 171

Associations (IDEF1X) . 172
Mandatory identifying relationship . 174
Mandatory non-identifying relationship. 175
Mandatory Non-Identifying Relationship . 175
non-specific relationship . 176
Associative entity. 177
Defining Association Roles . 178
Multiplicities . 179

Categorization Relationships (Generalizations) - (IDEF1X). 180
What is a Categorization (Generalization)? . 180
Creating a Categorization . 180
Multiple Categories . 181
Multiple Category Clusters . 182
Complete Categorization. 182
Discriminator . 183

I.E. Notation . 184
About Data Modeling with I.E. 184
Concept Synthesis . 185
Creating a Data Model (I.E). 185

Prerequisites . 185
Creating the Data Model . 186
Data Diagram (I.E.) . 186

Entities (I.E.). 186
Creating an entity . 187
Attributes . 187

Associations (I.E) . 187
Overview . 188
Associations and their Multiplicities . 188

Sub-types (I.E) . 190
What is sub-type? . 190

10 HOPEX Common Features

Sommaire

Multiple Subtypes . 192
Advantages of sub-types . 192
Multiple inheritance . 193
Creating a sub-type . 193

The Merise Notation .195
About Data Modeling . 195
Concept Synthesis . 195
Building a Data Model (Merise) . 195

Prerequisites . 195
Creating the Data Model . 196
Data Diagram (Merise) . 196

The entities (Merise) . 196
Creating an entity. 197

The associations (Merise). 198
Examples of associations . 198
Reflexive relationships . 199
"n-ary" relationships . 199
Participations or cardinalities . 200
Creating an Association (Relationship) . 201

Attributes (Information) - Merise . 202
Properties . 202
Identifier . 203
Creating Attributes . 203

Normalization Rules (Merise) . 204
First Normal Form . 204
Second Normal Form . 205
Third Normal Form . 205

Refining Data Model Specification (Merise). 206
Ordering Attributes . 206
Attribute Description. 206
Participations or cardinalities . 207

Sub-typing (Merise) . 209
What is sub-type?. 209

Modeling Databases . 213

Logical Formalism and Synchronization . 214
Database .215

Creating Databases . 215
Database Properties . 215
Associating a Package with a Database . 216
Importing a DBMS Version . 216

Relational Schema Map and Relational Schemas .217
Relational Schema Map . 217

Creating a relational schema map. 217
Components of a relational schema map . 217

Relational Schema . 218
Creating a Relational Schema . 218
Relational Schema Diagram . 218

Contents

11

Relational Diagram . 220
Creating the Relational Diagram . 220

Creating objects in the diagram. 221
Configuring display of relational diagrams. 221

Database Components . 223
Database Tables . 223

Creating a table. 223
Deleting a table . 223

Table Columns . 224
Viewing columns . 224
Creating a column . 224
Deleting a column . 225

Modifying Keys and Indexes . 225
Creating a Key. 226

Primary key . 226
Foreign key. 226

Creating an Index . 227
Adding a Column to a Key or Index . 228

Primary and foreign keys . 229
Specifying Primary Keys . 229
Specifying Foreign Keys . 230
Column Primary Key of Two Tables . 231
Column Primary Key of Three Tables . 231

 Data Types and Column Datatypes . 232
Attribute Datatypes . 232
Determining Column Datatypes from Attribute Types . 232

Pivot Types . 232
Connecting a Datatype to a Pivot Type . 234
Connecting a Datatype to a Pivot Type in UML Notation . 234

Mappings Between Pivot Types and Datatypes. 237
Example of correspondence between pivot types and Oracle 8 datatypes 237

Creating New Datatypes . 239
Example for Oracle 10 . 239
Example for SQL Server 7. 243

Database Modeling Rules . 245

Synchronizing logical and physical models . 247

Synchronization Display Options . 248
"Logical to Physical" Synchronization Rules . 249

Logical to Physical Synchronization: the Entities (or Classes) . 249
General rule . 249
Sub-entity . 249
Abstract entity. 250
Realized entity . 250

Logical to Physical Synchronization: the Associations . 250
Constraint associations (multiplicities: 0,1 or 1,1) . 250
Constraint associations (multiplicities: 0,1 and 0,1) . 252
Deadlocks . 252

12 HOPEX Common Features

Sommaire

Non-constraint association. 254
Association class . 254

Logical to Physical Synchronization: the Parts (UML) . 254
Example 1: None / *. 255
Example 2: Aggregation / * . 256
Example 3: Composition / 0..1. 256

From the Logical Model to the Physical Model .257
Running Synchronization . 257

Step 1: Selecting the source objects to be synchronized . 257
Step 2: Synchronization options. 259
Step 3: Protecting objects . 259
Step 4: Validating results . 259

Using Options . 260
Take account of optimizations . 260
Take account of deletions . 260
Possible option combinations . 261

Protecting Objects. 262
Frozen mode . 262
Realized mode . 262

Synchronization Results: Correspondences . 263
Mapping characteristics . 263

Reduced Synchronization (Logical to physical mode) .265
Reduced Synchronization Source Objects . 265

Running from a data model . 265
Running from a data model entity . 265
Running on an entity outside context . 266

Reduced Synchronization Strategies . 266
Impact of synchronized object on other objects . 266
Impact of other objects on synchronized object . 267
All impacts. 269

Running Reduced Synchronization . 269
Reduced synchronization options . 270

Running Synchronization After Modifications. .271
Synchronization after Modification of the Data Diagram. 271

Newly created entities, associations, and attributes in the data diagram 271
Entities, associations, or attributes deleted from the data diagram 271
Modified attribute characteristics . 271
Modified name of an attribute, entity, or association. 272
Modified maximum multiplicity of an association . 272
Modified association links . 272

Synchronization after Modifications to the Physical Diagram. 272
Deleted table or column . 272
Created objects . 273
Modified characteristics of objects created by synchronization 273
Modified order . 273

From the Physical Model to the Logical Model .274
"Physical to Logical" Synchronization Rules . 274
Running Synchronization . 277

Step 1: Selecting objects to be synchronized . 277
Step 2: Synchronization options. 277
Step 3: Protecting objects . 278
Step 4: Validating results . 278

Contents

13

Reduced synchronization . 278
"Physical to Logical" Synchronization Results . 278

Owner data model . 278
Data diagrams. 278
Mappings . 279

Configuring Synchronization . 280
Preparing Synchronization. 280
Creation Options . 280

On a database. 280
On the DBMS . 281

Configuring Name Generation . 282
Naming rules. 282
Modifying a naming rule . 284
Entering the SQL mask. 284
Configuring PK column names (implicit identifier) . 286

Diagram Synchronization . 289
Case of Diagram Update at Synchronization . 289

After source diagram modification . 289
After target diagram modification . 289
After modification of both diagrams . 290
No modification detected . 290
Particular case: an entity mapping with two tables . 290

Model Mapping . 291

The Database Editor . 292
Run the editor on a database . 292

Creating a Logical/Physical Mapping Tree . 292
Creating a Mapping . 292
Deleting a mapping . 294

Mapping Details . 295
Mapping Properties . 295
Mapping Report . 296
Object status . 297

Saving display of editor indicators . 297
Mapping Source . 297
Mapping Drawing . 299

Denormalizing logical and physical models . 301

Denormalization Principles. 302
Denormalization: consistency of models . 302

Transferring mappings . 302
Deleting source objects . 302

Synchronization and Denormalization . 302
Combining denormalization and synchronization options . 303

14 HOPEX Common Features

Sommaire

Denormalization: Use Case . 303
Logical Denormalization .306

Running Logical Denormalization . 306
Logical denormalization example . 306

Logical Denormalization Wizards . 308
Transform association to entity . 308
Transform entity to association . 308
Transform generalization to association. 309
Transform association to generalization. 310
Vertical partition of an entity . 310
Horizontal partition of an entity . 311
Merging of entities . 312
Merging of ascending entities. 312
Merging of descending entities . 313
Copy/paste of attributes . 313

Physical Denormalization .314
Running Physical Denormalization . 314

Physical denormalization example . 314
List of Physical Denormalization Wizards . 315

Vertical partition of a table . 315
Horizontal partition of a table. 316
Merging of tables . 317
Transform foreign key to table . 318
Transform table to foreign key . 318
Copy/paste of columns . 319

Generating SQL scripts . 321

Running SQL Generation .322
SQL Generation Objects. 322
Start the generation wizard . 322

Incremental Generation .324
Incremental Generation Objects . 324
Running Incremental Generation . 324

Generation options . 324
Start the generation wizard . 324

Configuring SQL generation .327
Configuring the DBMS Version . 327

Supported DBMS versions . 327
Modifying DBMS version properties. 327

Configuring Database Generation . 328
Prefixing Object Names . 330

Inheritance . 330
DBMSs concerned. 330

Supported Syntax .331
CREATE TABLE Instruction . 331

Managing NOT NULL . 331
PRIMARY KEY clause . 332
FOREIGN KEY clause. 332

Contents

15

UNIQUE clause . 334
CREATE INDEX Instruction (Oracle, Sybase, SQL Server) . 334

Definition of an index . 334
Processing and generating SQL commands . 335
CREATE VIEW Clause . 335

Defining Database Views . 336
Creating Database Views . 336

Add a table or a column to a view . 337
SQL Definition . 337

View joints . 337
User mode . 337
Fields . 338

Defining a Data Group . 338
Defining Triggers for a Database . 339

Creating Triggers . 339
Trigger triggering. 339
References . 339
SQL Definition . 340

Repository Integrity . 340
Using Stored Procedures . 341
Adding Physical Properties to Database Objects . 343

Target DBMSs . 343
Creating Physical Properties . 343

Objects containing physical parameters . 344
Creating a new clause . 344
Connecting a clause . 345
Naming clauses . 345
Physical Model Customization Example . 346

Generating the SQL File . 349

Reverse engineer tables . 351

Running Reverse Engineering . 352
Recognizing Datatypes by ODBC . 353

Datatype Recognition Problems . 355
Physical Properties Reverse Engineering . 356

Default Values . 356
Eliminating Redundant and Transverse Values . 356
Specific Cases . 357

Physical properties of tablespaces . 357
Clusters Reverse Engineering . 357

Extracting Database Schema Description from Data Sources 358
Required Data Source Configuration . 358
Downloading HOPEX Data Source Extractor . 358
Starting Data Extraction . 358

Extraction Report File . 364
Extraction Results File . 364

Customizing ODBC Extraction . 365

16 HOPEX Common Features

Sommaire

Using the Odwdbex.ini file and customized queries . 365
Using ODBC standard APIs . 366

Select Clause Formats . 366
Primary Keys . 367
Foreign Keys . 367
Indexes. 368
Columns . 369

Pivot Types and Datatypes Correspondence Tables 371

Data Analysis Reports . 403

Accessing Reports . 403
Description Reports . 403

The View Report . 403
Glossary Report . 403
Data Domain Map. 405
Data Domain Dependencies . 406

Word Cloud Reports . 406
Amount of Information in Information Areas . 406
Extent of the Description of the Information . 407
Use of Information in Data Area . 407

Data Usage Reports . 407
Use of information held by a container . 407
Use of information in an domain. 408
Use of information of an information map . 408
Use of information . 408
Use of information of the domains of a container . 409

Policies Reports . 409
Regulatory Framework Report . 409
Rules Report . 410

Report DataSets . 410
Creating a Report DataSets . 410
Example of a Report Dataset . 410

Data Validation Workflow . 413

Validation workflow steps . 413
Generating a workflow report. 414

Data Import and Export . 415

Contents

17

Importing Business Data from an Excel File . 416
Downloading the Excel File Template . 416
Content of the Excel Template . 416

Term Sheet. 416
Concept Sheet. 417
Synonym Sheet . 418
Component sheet . 419
State Concept sheet . 419

Importing Logical Data from an Excel File . 420
Downloading the Excel File Template . 420
Content of the Excel Template . 420

Data Dictionary sheet. 420
Data Type sheet . 421
Data Type Component sheet . 421
Class sheet . 422
Attribute sheet . 423
Relationship sheet . 423
Generalization sheet . 424

Importing Data Assessments . 425
Import Example . 425
Content of the Excel Template . 426
Downloading the Excel Template . 426
Importing an Excel File of Data Assessments . 426

18 HOPEX Common Features

Sommaire

19

INTRODUCTION TO HOPEX DATA
ARCHITECTURE

HOPEX Data Architecture allows you to improve the quality of the data that circulates within your
enterprise. It is used to construct the global architecture of data and trace the use of information
through all the functions of your organization.

 The Scope Covered by HOPEX Data Architecture
 Connecting to HOPEX Data Architecture
 The HOPEX Information Architecture desktop

20

THE SCOPE COVERED BY HOPEX DATA ARCHITECTURE

Three Modeling Levels

The HOPEX Data Architecture solution covers the three levels of data modeling
for an organization:

• Business (conceptual) level: used to define the business architecture
concepts and generate glossaries. These concepts can be implemented
by objects at the logical level and be described by data models.
See Introduction to the Creation of a Business Ontology.

• Logical level: intended for clients seeking to develop general business-
oriented models. Here it consists of modeling data of a domain,
application or business process. It represents what we wish to do and
where we want to go, irrespective of technical questions related to
implementation. Data is represented in a data model or a class diagram.
See: Modeling Data dictionaries.

• Physical level: consists of defining models intended to persist in a DBMS.
It comprises detailed specifications for production of the physical
diagram of the repository. It is represented by the relational diagram.
The physical level also defines the way in which data is stored and how it
can be accessed. It enables use of data by DBMSs.
See Database and Physical Data.

Data Category

You can classify repository data by category. A dedicated tree lists the various
categories and associated data. Data thus classified can be used in the HOPEX
Privacy Management solution specific to sensitive data and compliance with the
GDPR.

See Data Categorization.

Design Workflow

As a data designer (information asset manager) or creator (which concerns all
HOPEX Data Architecture profiles), you can launch a workflow on certain objects
of the data architecture (such as a data lineage or a data domain) to track their
design, their update and their validation.

Workflow reports allow you to view the number of objects that are found at each
workflow step (number of objects undergoing design, analysis, etc).

See Data Validation Workflow.

21

Introduction to HOPEX Data Architecture
The Scope Covered by HOPEX Data Architecture

Definition of Responsibilities

When data is designed, managers are defined. They are notified of update or
validation requests in the workflow framework of design or evaluation concerning
the data in question.

See Data Responsibility.

Analysis reports

Analysis reports are dynamic reports that are used to analyze repository data: data
completeness, data use, responsibilities, etc. HOPEX Data Architecture supplies
standard reports by default that allow you to check the quality, the use and the
compliance of your data.

See Data Analysis Reports.

22

CONNECTING TO HOPEX DATA ARCHITECTURE

To connect to HOPEX Data Architecture, see HOPEX Common Features, "HOPEX
Web Front-End Desktop".

 For more details on using the Web platform for HOPEX solutions,
see the HOPEX Common Features guide.

The menus and commands available in HOPEX Data Architecture depend on the
profile with which you are connected.

HOPEX Data Architecture Profiles

In HOPEX Data Architecture, there are default user profiles with which specific
rights and accesses are associated.

Profile Description

Data Architect He/She is responsible for modeling the data
(business, logical and physical) as well as the data
domains used to exploit this information in process
or application maps.

Data Functional Administrator He/She is responsible for managing all the
product's administrative tasks. The Data
Functional Administrator has rights to all objects.

- He/She manages the users and their profile
assignments.

- He/She prepares the work environment and
creates elements required for information
management.

- He/She can intervene in:
• Dictionaries
• Information Domains
• Concepts, concept views
• etc.

23

Introduction to HOPEX Data Architecture
Connecting to HOPEX Data Architecture

Business Roles of HOPEX Data Architecture

In HOPEX Data Architecture, objects can be assigned to persons with the
following roles:

See also Data Responsibility.

Business roles Description

Chief Data Officer (DCO) The Chief Data Officer is a data manager, who is responsible
for the overall data strategy of the company. He is the one
who will optimize the collection of data, their storage, reliabil-
ity and quality and optimize their use.

Data Owner The Data Owner is the authority who decides on data access
and use. The data owner can be the data designer, one of its
users or a third party. The owner of the data may be the
designer of the data, one of its users or a third party.

Data Designer The Data Designer is responsible for defining, describing and
classifying information system data. He/She enriches and
maintains the dictionary and reference data models. He/She
accompanies the definition of the business needs concerning
the description and the use of the data. He/She also partici-
pates in the development of Data Lineage which is a contribu-
tion to the reliability of data processing.

Data Engineer The Data Engineer builds and maintains the tools and the
infrastructures necessary for the analysis of data by data sci-
entists. He/she creates solutions able to process large vol-
umes of data while guaranteeing its security. He/she is the
first link in the IT chain.

Data Scientist The Data Scientist is responsible for bringing together the data
designer (business and logical data) and the managers of the
processes who use this data.

Data Quality Manager The Data Quality Manager must ensure that the company’s
data is relevant and useful. To do so, he/she must implement
data control procedures.

Data Steward The Data Steward is the lead manager in a data governance
project. He/She plays a key role in its realization. He/She has
the knowledge of the data and their metadata. He/She makes
them his own and works with the business teams to define the
objectives of the data governance project.

24

 THE HOPEX INFORMATION ARCHITECTURE DESKTOP

HOPEX Data Architecture Home Page

The HOPEX Data Architecture solution home page consists of the following
sections.

• The header presents some information of general interest.
 These can be defined in the Administrator’s Administration >
Methodological Domains menu.

• Our Objectives: indicates the main strategic themes of interest to
solution users.

• Help: points to user documentation and the user community.
• The My Scope provides useful indicators of the repository content. See

Scope Indicators below.
• The Quick Access provides useful shortcuts:

• Recently viewed: last objects and diagrams accessed by the user
• Favorites: user favorites and shared favorites
• Actions: quick access to the creation of architecture elements.

• My favorite report: displays the user-defined or administrator-
predefined report, which can be used as an entry point into the
repository.

Scope Indicators

The My Scope section provides useful indicators on application assets. Clicking the
indicator takes you to all the corresponding objects. There are three groups of
indicators:

• Glossary
• Design
• Inventory

25

Introduction to HOPEX Data Architecture
The HOPEX Information Architecture desktop

Glossary

This tile lists the following objects:
• Business dictionaries without owner: displays business dictionaries

without holder container.
 The business dictionary container can be a library, an AE project,
an enterprise or a vendor catalog. It is visible in the Characteristics
page of its properties.

• Conceptual data without definition
 The concept definition is visible in the Characteristics page of its
properties.

• Conceptual data not linked to Concept domain

 A concept domain is a sub-set of elements of a business dictionary
that reduces the scope of a field. It is described in a concept diagram.

• Conceptual data not realized: displays business data not associated
with IS elements.

 To define which IS elements realize which concepts, see Connecting
the Business Concepts to the Logical and Physical architecture.

Design

This tile lists the following objects:
• Data dictionaries without owner
• Data entities without attributes

 For details of the elements in a data dictionary, see Modeling Data
dictionaries.

• Isolated data entities : lists classes that do not participate in an
association, oriented relationship (part) or inheritance (generalization)
with other classes.

• Databases without data models: displays databases that are not
associated with a logical model.

 You can connect a data model to a database. The data model
represents the structure of the database.
See also: Modeling Databases.

• Unmapped tables
 See Synchronizing logical and physical models.

Inventory

The Inventory tile displays the number of following objects:
• Business dictionaries
• Concepts
• Data Dictionaries
• Databases
• Tables

Displaying the working environment of an enterprise

A repository can be partitioned into Enterprises.

26

An enterprise is a business project, aiming at delivering goods and services, in
accordance with the enterprise mission in its changing environment. The enterprise
establishes the enterprise goals to be achieved as well as the strategic action plans
used to achieve these goals. It comprises transformation stages in which the
capacities or deliverables to be reached are defined.

When associated with a working environment, enterprises are entry points into
HOPEX Data Architecture; the environment provides privileged access to the
objects held and used by the enterprise in question.

Creating an enterprise and its working environment

The creation of an enterprise and its working environment is performed by data
functional administrator.

To create an enterprise in HOPEX Data Architecture:
1. Click the navigation menu, then Environment.
2. In the navigation pane click Standard Navigation.
3. In the edit area click the Enterprises tile.
4. Click New.
5. In the creation wizard that appears, enter the enterprise name.
6. To create the enterprise environment at the same time, select the

"Information Architecture” environment.
7. Click OK.

If no environment was created at the same time as the enterprise, you can create
it later.

To assign a working environment to an existing enterprise in HOPEX Data
Architecture:

1. Select the project or the enterprise concerned to display its properties.
 Click the Properties button of the edit area if properties are not
displayed.

2. Select the Working Environment Assignment page.
3. Click New.
4. Rename if needed the new environment and select the “Information

Architecture” type.
5. Click OK.

 You can also create the working environment if an enterprise during
the enterprise creation.

See also: Enterprises and libraries.

27

Business Glossary

28 HOPEX Information Architecture

29

INTRODUCTION TO THE CREATION OF A
BUSINESS ONTOLOGY

HOPEX Data Governance and HOPEX Data Architecture offer a solution for
managing and sharing the vocabulary specific to your enterprise. They enable
inventory, definition, classification and organization of business concepts to
establish a pertinent link with technical objects implemented at the information
system level.

At the business level, they offer business users a tool to describe the concepts they
handle and the links that manage their organization. To do this, MEGA is based on
widely used semantic Web principles, as well as ontological frameworks such as
IDEAS or standard ISO 15926 (high level, life cycle and event type).

At the IS architecture level, HOPEX Data Governance and HOPEX Data
Architecture offer features to establish correspondence between application data,
based on UML formalism, and informations described at the business level.

 For more details on the interface and functions of HOPEX in
general, seenHopex Desktop.

Vocabulary Management Process

The definition of business information requires the creation of a business dictionary
and the terms in this dictionary.

A term is the designation of a concept in a given language.
Example: the concept "Country" has the terms "Pays" in
French and "Country" in English.

The concept carries the definition of the term. A term can be associated with several
concepts, thus several definitions.

Example: the term "Order" can mean "Arrangement of elements
in a set" or "Authoritative indication to be obeyed".

30

So that business users and IS users share a common vocabulary, HOPEX Data
Architecture is based on two major functions:

• The analysis and organization of business concepts,
• The relationship setting of business concepts with information system

architecture elements.

Analysis and organization of business concepts

This is carried out by a business user. It consists of describing all business concepts,
using a simple semantic model based on notions of concept, event and state.

• A concept, representing a business object, is characterized by:
• its scope, ie. its relationships with other concepts

For example, a work is characterized by its author, its
title, its publication date, etc.

• its inheritance links with other concepts

For example, a subscription is a book or media subscription.

• its occurrences

For example, Alexandre Dumas is an occurrence of Author.

• A State Concept enables identification of an evolution in time of a
concept,

For example, a work is available or on loan.

• An Event represents a significant fact modifying the state of one or
several concepts.

For example, publication of a work.

HOPEX Data Architecture offers the standard "Business Data Architect" role to
ensure business concept analysis and organization work.

Concept realization

Business concepts are generally implemented in the IS using the UML method and
formalism.

The "Concept realization" work consists of connecting the data model elements with
business concepts to:

• define more precisely objects handled at IS architecture level,
• assure improved vocabulary sharing and improved global communication

between business users and IS users.

HOPEX Data Architecture offers the standard "Data Architect" profile to ensure
the "concept realization" work.

See Connecting the Business Concepts to the Logical and Physical architecture.

CONSULTING THE BUSINESS GLOSSARY

Hopex Data Governance and Hopex Data Architecture offer a tool for easy consultation and of
terms, from which you can generate a business glossary.

See:

 Searching for Terms in the Business Glossary
 Generating a Glossary

You can also initialize a business glossary from existing data. See Initializing a Business Dictionary
Using Logical or Physical Data.

The terms created can be classified in business dictionaries. The description of business dictionaries
and all the construction elements of the business ontology enriches the glossaries. For more
information, see The Elements of a Business Dictionary.

SEARCHING FOR TERMS IN THE BUSINESS GLOSSARY

You can search for terms in the business glossary of your repository.

A term is the name of a concept, concept property or other business information in
a given language. These concepts or concept properties carry the definition of the
term.

Example: the "Country" concept has the "Pays" in French and
"Country" in English.

See also: Concept and Term.

Prerequisite

To use the glossary, the repository must be indexed.

To index the repository, see “Enabling and customizing Repository Indexing” in the
administrator’s guide.

Scope of the Search

The search for a term in the glossary looks at all the definitions in the glossary that
contain the term in question, as well as the glossary items that are associated with
the term.

For example, if “Booking” is associated with “Customer”,
when searching on “Customer”, “Booking” will also appear in
the results.

Starting the Search

You can access the search function from your Hopex desktop toolbar.
 For more information on the search tool, see Search.

Consulting the Business Glossary
Searching for Terms in the Business Glossary

Search filters

The objects concerned by the search are concepts, state concepts, concept types,
event concepts, concept properties and concept views. You can search for all or
some of these objects.

To search for the definition of a term:
1. On the Home page, click within the search tool frame.
2. Click on the drop-down menu that appears. By default, it displays the

main objects.
 The last list selected then becomes the default list.

3. Select Business Glossary.
4. Enter the term or the first few letters of the search term to display a list

of matching terms.
 Used at the end of a word as in "Liberal*", the asterisk allows you
to find the different suffixes like "Liberalism" or "Liberalization".

The list of matching objects appears.
5. Click View all results to display in details the results and access

additional filters.

Result filters

You can refine the results using the filters in the left panel. The filters proposed
depend on the results obtained: for example, when the search term appears in

several business dictionaries, the filter allows you to restrict the search to one of the
business dictionaries found.

Consulting the Business Glossary
Searching for Terms in the Business Glossary

Displaying the Details of a Term

To display the details of a term:
 In the search results, click the term in question.

A window appears to the right of the search, with two tabs: Overview
and Advanced.

Standard characteristics

The Overview tab shows:
• the Data Owner and the Data Steward
• the type of object, for example, Concept, Concept type, etc.
• the status in the data approval workflow. See Data Validation Workflow.
• the definition
• synonyms, data category, business domain, etc.
• the related properties: for example, the concept “Customer” is

associated with the concept “Booking". This is why the concept “Booking”
appears in the result of the search for the term “Customer”.

• (In Hopex Data Governance) the related metadata, which realizes the
sought business data.
For each metadata are displayed:
• the data catalog
• the data source
• the object type: Meta Dataset or Meta Field
• the quality: the displayed value is the average of the different values

of the last assessment performed on the metadata.
• the related regulations

 For more information on Realizations, see Connecting the Business
Concepts to the Logical and Physical architecture.

Advanced characteristics

The Advanced tab displays:
• Data lineages that contain the data. See Data Lineages.
• Applications and processes that use the data. See Use of Data by the

Information System.
• Quality policies associated with the data See Defining a Data Quality

Policy.
• Regulations that deal with the data. See Rules and Regulations.

Consulting the Business Glossary
Generating a Glossary

GENERATING A GLOSSARY

Hopex Data Governance and Hopex Data Architecture provide a ready-to-use
glossary report to automatically build the business glossary with terms derived from
a set of Business dictionaries or, where appropriate, libraries. For each term, the
glossary displays a list of associated definitions with their text, synonyms and
components list.

Launching a Glossary Report

To launch a glossary report:
1. Click the Reports navigation menu.
2. In the edit area, click the + Create a report button.
3. Search for the “Glossary Report” report template.
4. Move the mouse over the "Glossary report" template and click Create a

report.

The report creation wizard opens.
5. Click Connect.
6. Select the source business dictionary.

 You can select more than one.
7. Click Preview then Continue.
8. Name the report and validate.

The created report opens.

For further details, see Glossary Report.

Using the Glossary in a Multilingual Context

For more details, see "Using HOPEX in a Multilanguage Context" in the Hopex
Common Features guide.

89

DEFINING BUSINESS INFORMATION

Hopex Data Governance et Hopex Data Architecture allow you to describe the architecture of
your company’s business information according to an approach whose various stages are described
in this chapter.

 Objects Used
 Presentation of Concept Modeling Diagrams
 Business Dictionary
 Concept Domain Map
 Concept Domain
 Concept
 Concept Components
 Concept Properties
 Concept Inheritances
 Concept structure diagram
 Individuals
 Concept or Individual States
 Concept Type
 Concept View

90

OBJECTS USED

With Hopex Data Governance and Hopex Data Architecture you can create a
business dictionary that describes and defines elements of your business
vocabulary.

The basic component of a business dictionary is the Concept.
 A concept expresses the essential nature of a being, an object, or a
word through its properties and characteristics or its specific qualities.

The word that is associated with a Concept and which depends on language is a
Term.

 A term is a word or word group, that is used for a specific meaning
in a specific context.

Concept and Term

A term is specific to a language and cannot be translated.

The same term in different languages can represent different concepts.
Example: the term "car" in English refers to a private car,
while the same term in French represents a collective
transport vehicle.

In the same language, the same term can represent several concepts and the
meaning that is given to this term depends on its context of use.

For example, the word "ring" in English refers to a bell as
well as a ring.

As a consequence, for the same language, the same Term can be connected to
several concepts. Each concept gives a specific definition of this term in its Business
dictionary.

As a consequence, with Hopex, a concept carries the name of its associated term
in the language chosen by the user. To modify the name of a concept in a given
language, you must change the name of the associated term.

For further details, see Renaming Concepts.

See also: Searching for Terms in the Business Glossary

Links Between Concepts

To define semantics of a concept, you can draw several types of link between
concepts: definition links or dependency links.

91

Defining Business Information
Objects Used

Definition links

Definition links enable characterization of a concept.
For example, a published work is defined by its work
category (literary or musical), its author and its theme.

A definition link is described by a Concept Component, which can, if appropriate,
be associated with a term.

 A concept component enables representation of a dependency
relationship between two concepts. This relationship is directional.
 For more details, see Concept Components.

92

Dependency links

Certain business concepts are versions of other concepts; they inherit the same
concept components.

For example, the "Library Book" concept is broken down into
"Hardback" and "E-Book". These two book types inherit the
links at the level of the "Library Book" concept.

This relationship is described by a Variation.
 A variation describes how a concept can be varied under another
form. The variant is an object similar to the varied object, but with
properties or relationships that may differ.
 For more details on variations, see the Hopex Common Features
guide, "Handling Repository Objects", "Object Variations".

A Variation can also be created between two Concept Components.
For example, the "Subscriber" is also a "Member".

 For more details, see Concept Inheritances.

93

Defining Business Information
Objects Used

Concept Properties

To describe the characteristics associated with a concept, you can link a concept to
concept properties.

For example, a person ("Member") is associated with a
mandatory and unique postal address, a first name, last
name, telephone number, etc.

The link between a concept and a concept property is described by a Sub-property
that can, if necessary, be associated with a term.

 For more details, see Concept Properties.

Concept Instances: Individuals

To validate the semantic model created from concepts, you can define concept
instances, ie. real objects.

94

In this way you can create your semantic model using two approaches: either from
real objects to deduce concepts, or from concepts to subsequently introduce real
objects.

For example, "Asimov" is an instance of "Person" and "The
Robots" is an instance of "Work".

A concept occurrence is an Individual.
 An individual represents the instance of a concept.

The relationship between a concept and its occurrences is described by an
Individual Classification.

 An individual classification is used to connect an individual to the
concept that characterizes it.

You can also connect two individuals with a Dictionary Entity Component
relationship type.

 An entity component is used to connect an individual to a dictionary
element.

It is then possible to specify that "Asimov" is the author
of the work "The Robots".

 It is not possible to describe variations between individuals or
between individuals' classifications.
 For more details, see Individuals.

95

Defining Business Information
Objects Used

The Life Cycle of a Concept or Individual

to take into account the evolution over time of business concepts, you have two
particular concepts:

• The State Concept, which enables identification of an evolution in time
of a concept,

 A state concept is a situation in a concept life cycle during which it
satisfies certain conditions, executes a certain activity or waits for a
concept event. A state concept represents a time interval of which limits
are two concept events. A state concept is a phase through which the
concept passes during its life cycle.

• The Event Concept, which represents a significant fact modifying the
state of one or of several concepts.

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.

State Concepts and Event Concepts can be described in the same way as any
other concept.

96

Concept life cycle

The same business concept can take several states.
For example, the same subscription holder can pass from
"Child" state to "Adolescent" state, then to "Adult" state
and finally "Senior".

Passage from one state to another can be connected to a
event, a "Birthday" for example.

The relationship between a concept and its State Concept is described by a
Dictionary State Of.

 A dictionary state enables connection of a concept to a concept
state, and specification of the state nature.

The relationship between a concept and its Event Concept is described by:
• a Start Event,
• an End Event,
• or an Intermediate Event.

 For more details, see Concept or Individual States.

Individual life cycle
 For more details, see Describing Individual States and Events.

97

Defining Business Information
Objects Used

If a concept is associated with states and events, occurrences of this concept can
also be associated with events and states.

For example, "John Smith" is a "Person" who can pass form
one state to another on his birthday.

To represent the individual state notion, Hopex Data Architecture proposes the
Individual State.

 An individual state is an instance of a concept state to which the
dictionary state is connected. It represents an individual state during its
life cycle.

The relationship between an individual and its Individual State is described by an
Individual State Component.

 An individual state component is used to connect an individual to
an individual state.

In addition, the switch from one individual state to another can be conditioned by
an Individual Event.

 An individual event represents an event occurring during the life of
the individual. It is an instance of an event concept of the concept to
which the individual is connected.

98

The relationship between an individual and its Individual Event is described by a
Entity Component.

 An entity component is used to connect an individual to a dictionary
element.

Periods

Periods are used to add time-related information to events.
For example, a free loan may be offered to subscribers on
each anniversary. This annual loan is valid for a period of
two weeks.

A Period type is connected to an Event concept.
 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.

The Period is connected to an Individual event.
 An individual event represents an event occurring during the life of
the individual. It is an instance of an event concept of the concept to
which the individual is connected.
 For more details, see Using periods.

99

Defining Business Information
Objects Used

Classifying Concepts and the Concept Type Notion

A concept type enables classification of concepts. Relationships between concept
types are represented by concept type components.

For example, "Subscriptions" can be classified by
"Subscription Type". A "Subscription Type" being
characterized by a "Loan Type".

Hopex Data Governance And Hopex Data Architecture offer features to create
the following relationships:

• the relationship between two Concept Types is described by a Concept
Type Component.

For example, a "Subscription Type" is characterized by an
"Available Loan Type".

 A concept type component enables specification of the relationship
between two concept types.

• The relationship between a Concept Type and a Concept Type is
described by a Concept Classification.

For example, all "Subscriptions" must correspond to a
"Subscription Type".

 A concept classification enables connection of a concept to the
concept that characterizes it.

• The relationship between a concept and a Concept Type is described by
a Concept Power Component.

For example, each member "Person" could be characterized by
a "Loan Type".

 A concept power component enables connection of a concept to
concept type to characterize a property of the concept.

100

The Concept View

A concept view enables representation of the semantic scope covered by a business
object. A concept view is based on the selection of several concepts specific to the
view.

From a start concept linked to the business object you wish to describe, you browse
the semantic links that define it. In this way you identify several concepts that
define the described object in a particular context.

 You can create different views for the same business object.

 For more details, see Concept View.

Dictionary Element Realization

Through Realizations, you can ensure consistency between the objects that make
up your organizational and technical repository, on the one hand, and the business
concepts that make up your dictionary, on the other.

 A realization of concept connects a technical or organizational
object of the repository to a dictionary element.

For more details on realizations, see the Connecting the Business Concepts to the
Logical and Physical architecture chapters.

For more details on generating the dictionary, see Glossary Report.

101

Defining Business Information
Presentation of Concept Modeling Diagrams

PRESENTATION OF CONCEPT MODELING DIAGRAMS

For business data definition, Hopex Data Governance and Hopex Data
Architecture provide different types of diagram.

The Concept Domain Diagram

A concept domain provides a partial view of ontological models for the business
information. It is described by a concept diagram presenting concepts, their
components, super-types and links.

Link direction provides a natural mechanism of reading and deducing the scope
defining the "business object".

The following concept domain shows a partial view of the
"Library" Business dictionary.

 For more details, see Building Concept Diagrams.

102

Concept Structure Diagram

The content of business objects can be represented in a “Concept Structure
Diagram”, which can be initialized from concept diagram elements.

 For more details, see Concept structure diagram.

Concept Type Structure Diagram

Concept types can be represented in a "Concept Type Structure Diagram", which
can be initialized from concept graph elements.

 For more details, see The Concept Type Structure Diagram.

State Concept State Structure Diagram

State concept states can be represented in a "State Concept Structure Diagram",
which can be initialized from concept graph elements.

 For more details, see State Concept Structure Diagram.

Individual Structure Diagram

The individual structure diagram describes the internal structure of the concept
instance and the links between all components. This diagram can be initialized from
concept graph elements.

 For more details, see Individual Structure Diagram.

The concept life cycle structure diagram

The concept life cycle structure diagram is used to describe the sequence of state
concepts operating during the concept life cycle. Each state concept, which can be
considered as point in time, is followed by other state concepts.

103

Defining Business Information
Presentation of Concept Modeling Diagrams

Passage from one state to another is modeled by a transition.
 For more details, see Concept life cycle structure diagram.

104

BUSINESS DICTIONARY

A business dictionary collects and structures a set of concepts that expresses the
knowledge of a particular area.

Example of dictionary: medical ontology

You can break down a business dictionary into concept domains.
Examples of business information area: psychology,
pediatrics.

See Concept Domain.

Business dictionaries can be created with the Data Asset Manager profile.

The Elements of a Business Dictionary

A business dictionary is used to describe all the elements defining your information
architecture:

• Concepts

 A concept expresses the essential nature of a being, an object, or a
word through its properties and characteristics or its specific qualities.
 For more details, see Concept.

• Terms

 A term is a word or word group, that is used for a specific meaning
in a specific context.
 For more details, see Searching for Terms in the Business Glossary.

• Concept variations

 A variation describes how a concept can be varied under another
form. The variant is an object similar to the varied object, but with
properties or relationships that may differ.
 For more details, see Concept Components.

• Concept types

 A concept type enables classification of concepts. Relationships
between concept types are represented by concept type components.
 For more details, see Concept Type.

• State concepts

 A state concept is a situation in a concept life cycle during which it
satisfies certain conditions, executes a certain activity or waits for a
concept event. A state concept represents a time interval of which limits
are two concept events. A state concept is a phase through which the
concept passes during its life cycle.
 For more details, see Concept or Individual States.

• Event concepts

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on

105

Defining Business Information
Business Dictionary

a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.
 For more details, see Describing Event Concepts.

• Individuals

 An individual represents the instance of a concept.

 For more details, see Individuals.

• Individual states

 An individual state is an instance of a concept state to which the
dictionary state is connected. It represents an individual state during its
life cycle.
 For more details, see Concept or Individual States.

A business dictionary can be completely or partially described by a concept diagram.
 For more details on environment components, see Presentation of
Concept Modeling Diagrams.

Accessing the elements of a business dictionary

To access the elements of a business dictionary in Hopex Data Governance:
1. Click the Glossary > Business Dictionaries navigation menu.
2. In the edit area, click the business dictionary that interests you.

The dictionary properties appear. The list of concepts and terms appears
in the dedicated folders.

 Each concept carries the name of its associated term in the data
language. For more details, see Using the Glossary in a Multilingual
Context.

In the same way, you can access concept properties.

In the properties of a concept, the terms and synonyms are accessible in all
languages available in your environment Hopex.

 The number of languages proposed from folders depends on your
Hopex environment. To configure the list of languages, see the Hopex
Power Supervisor guide, chapter "Managing Options", "Managing
Languages", "Installing Additional Languages".
 The list of elements of a business dictionary is also accessible in the
dictionary properties window, in the Characteristics page, Business
information section.

Importing business information

You can import existing business information into your repository using an Excel file.
See Importing Business Data from an Excel File.

Work Business Dictionary

When initializing business data, a business dictionary is created by default to store
the created data and define its owner.

See Initializing a Business Dictionary Using Logical or Physical Data.

106

Creating a Business Dictionary

To create a business dictionary:
1. Click the Glossary > Business Dictionaries navigation menu.
2. Move the mouse over the Business Dictionaries folder and click the

 New > Business Dictionary button.
3. Enter the name of the dictionary and click OK.

Initializing a Business Dictionary Using Logical or Physical Data

Initialize a business dictionary consists of creating, in a business dictionary, the
concepts that correspond to logical or physical data, and thus creating a realization
link between the business concepts and the logical or physical data in question.

A realization report allows you to view these realization links.

There are three ways to initialize a business dictionary:
• from a logical data dictionary (a data package)
• from a physical data dictionary (database)
• from a metadata inventory (data catalog)
• when creating logical or physical data: an automatic initialization option

allows you, when you create logical or physical data, to automatically
create the corresponding concepts in the working dictionary.

Initializing a Business Dictionary Using Logical Data

To initialize a dictionary using logical data:
1. Click the Tools > Initialize Business Dictionary navigation menu.
2. Click the Logical Data tile.

A wizard opens.
3. Under Options, specify whether the attributes become Information

Items or Information Item Components.
4. Under Source selection, select the source package.
5. Once the package is selected, click Next.

The wizard displays the name of the corresponding business dictionary.
6. Click OK.

The business dictionary is created. It appears in the list of working
business dictionaries in the repository.

107

Defining Business Information
Business Dictionary

Mappings between logical data and business objects

Initializing a Business Dictionary Using Physical Data

To initialize a dictionary using physical data:
1. Click the Tools > Initialize Business Dictionary navigation menu.
2. Click the Physical Data tile.
3. In the wizard that appears, under Source selection, select the source

database.
4. Once the database is selected, click Next.

The wizard displays the name of the corresponding business dictionary.
5. Click OK.

The business dictionary is created. It appears in the list of working
business dictionaries in the repository.

Mappings between physical data and business objects

Initializing a Business Dictionary from Meta Datasets

To initialize a dictionary from meta datasets:
1. Click the Tools > Initialize Business Dictionary navigation menu.
2. Click the Meta Data tile.
3. In the wizard that appears, under Source selection, select the source

Deployed Data Store.
4. Click Next.

The wizard displays the name of the corresponding business dictionary.
5. Click OK.

The business dictionary is created. It appears in the list of working
business dictionaries in the repository.

Logical data Business Objects

Class Concept

Part Concept component

Attribute Information item
Information item component

Physical data Business Objects

Table Concept

Column Information item

108

Mappings between meta datasets and business objects

Initializing a Business Dictionary when Creating Logical or Physical Data

By default, when you create logical or physical data, the corresponding business
concepts are automatically created and associated with that data.

These concepts appear in a working business dictionary that has the same name as
the data dictionary that holds the logical or physical data from which the concepts
are derived.

This automatic initialization is defined by an option. You can modify the option in
order to disable automatic creation of concepts or to create/reuse concepts in other
dictionaries.

Modifying the Initialization Option

To modify the initialization option:
1. Click the icon of the user profile and select Parameters > Options.

The options window appears.
2. In the left part of the window, click HOPEX Solutions > Data

Management > Data Governance.
3. In the right part, under Business Dictionary Initialization, select the

desired automatic initialization value:
• Never: disables automatic initialization of the business glossary.
• Work business dictionary: enables automatic initialization of the

business dictionary. The concepts are created automatically in the
work business dictionary.

• All business dictionaries: enables automatic initialization of the
business dictionary. The concepts can be created or reused on all the
business dictionaries.

Displaying the Realization Chart

You can use the realization graph to visualize by which architecture elements
dictionary elements are implemented.

To access the report:
1. Open the properties of the relevant object.
2. Click Reporting.
3. Select the Data Management > Realization Graph Report.

Meta Datasets Business Objects

Meta dataset Concept

Metadata Field Information item

109

Defining Business Information
Business Dictionary

Report parameters

This consists of defining report input data.

Report example

The example below shows the objects that implement the "Purchase" concept.

Parameter Parameter type Constraint

Object list Org-unit
Application
Library
Capability
Class
Concept
State concept
Event concept
Concept type
Content
Exchange contract
Concept life cycle
Exchange
Entity (DM)
Functionality
Business function
System process
Functional process
Business process
Organizational process
IT Service
Data view
Concept view

One object is mandatory

110

Note that realizations of structural components of concepts specified as parameters
are also displayed.

111

Defining Business Information
Concept Domain Map

CONCEPT DOMAIN MAP

A Concept Domain Map is a business information urbanization tool. It represents the
concept domains of a business dictionary and their dependency links.

 A concept domain is a sub-set of elements of a business dictionary
that reduces the scope of a field.

Dependency links between business domains are automatically deduced from the
objects used in each of the domains of the map, you don't have to create them.

For more details on links between business information, see Overview of links
between objects.

Concept Domain Maps can be created with the Data Asset Manager profile.

Creating a Concept Domain Map

To create the concept domain map for a business dictionary:
1. Right-click the business dictionary and select New > Data Domain

Map.
The map appears under the business dictionary.

To create the diagram of the concept domain map:
1. Click the icon of the concept domain map and select New > Diagram.
2. Select Concept Domain Map and click OK.

The diagram appears in the edit area.

The Components of a Concept Domain Map

You can add internal and external components to a concept domain map.

Internal components are concept domains that are part of the scope of the map
(whether or not they belong to the owner business dictionary).

The external components are those used in the map but that are not part of the
scope analyzed.

To add a component to a concept domain map:
1. Open the properties of the concept domain map in question.
2. Click the Data domain page.
3. Select the Internal Domains or External Domains tab depending on

the type of component to be added, and click New.
A wizard opens. You can create a concept domain or link an existing
concept domain.

112

Example of a Concept Domain Map

Below is the concept domain map of an airport. Links between the concept domains
indicate the dependencies that exist between concepts in these domains.

From this map you can access the details of a concept domain and see the diagram
that describes it, if applicable.

113

Defining Business Information
Concept Domain Map

You can access the details of a concept domain:
• using the pie menu in a diagram preview.

• or the pop-up menu of the domain when you are in the edit mode.

Reports Available on a Concept Domain Map

In the properties of a concept domain map, reports allow you to visualize:
• The hierarchy of business information areas in a map, and whether these

areas use sensitive or reference data. For further details, see Data
Domain Map.

• dependencies between business information areas of the map. See Data
Domain Dependencies.

• the architectural elements that implement the information on the map.
See Displaying the Realization Chart.

• the use of map information. See Use of information of an information
map.

114

CONCEPT DOMAIN

A concept domain is a sub-set of elements of a business dictionary that reduces the
scope of a field. A business information area is described in a concept diagram.

Concept Domains can be created with the Data Asset Manager profile.

Creating a Concept Domain

Concept domains are created from a concept domain map.

To create a concept domain:
1. Click the navigation menu Glossary > Concepts Domains.
2. In the edit area, move the mouse over the relevant concept domain map

and click New > Concept Domain.

Creating the Structure Diagram for a Concept Domain

A structure diagram defines the sub-domains of the concept domains and their
relationships.

To create the structure diagram of a concept domain:
1. In the edit area, move the mouse over the relevant concept domain and

click Create a Diagram.
2. Select the diagram type Concept Domain Structure Diagram.
3. Click OK.

The structure diagram associated with the concept domain opens in the
edit window.

Building Concept Diagrams

A concept diagram is a graphical representation of the concepts used in the context
of a concept domain, as well as the links that exist between these concepts.

A concept domain can be described by a number of concept diagrams.

A conceptual object belongs to a business dictionary from which it was created but
can be used/referenced by a concept domain of a different business dictionary.

See also Concept Domain.

115

Defining Business Information
Concept Domain

Creating a concept diagram of a concept domain

To create the concept diagram of a concept domain:
1. In the edit area, move the mouse over the relevant concept domain and

click Create a Diagram.
2. Select Concept Domain Diagram.
3. Click OK.

The concept diagram opens in the Edit window.

The components of a concept diagram

A concept diagram describes the information architecture. By default, you see in the
concept diagram concepts, variations and individuals only.

The following concept diagram partially describes the
“Media Library” business dictionary.

The diagram is initialized with objects that belong to the domain. It can also contain
objects that do not belong to the domain.

See: The components of a concept domain.

Activating the views window

The Views and Details window presents an extended list of views (object types to
be displayed).

116

To activate the Views and Details window:

1. In a diagram, click Views and Details.
The list of views (object types to be displayed) appears.

2. Select or clear the views you want to display or not.

The views available for a concept domain are:
• Concepts,
• Concept types,
• State concepts,
• Event concepts,
• Concept properties
• Individuals,
• Individual states,
• Individual events,
• Concept Views

 A concept view enables representation of the semantic scope
covered by a business object. A concept view is based on the selection
of several concepts specific to the view.
 For more details, see Concept View.

Adding a concept diagram element

For example, to add an existing concept to a concept domain:

1. In the concept diagram object toolbar, click Concept.
2. Click in the diagram.

The add concept dialog box opens and asks you to select a concept.
3. Select the concept that interests you.
4. Click Add.

The concept appears in the diagram.
 For more details on concept creation, see Concept.

Using the object insert toolbar

An insert toolbar available on each object simplifies object creation by proposing
object selection help. It only suggests the objects that can be connected to the
current object.

To create, for example, a concept from a diagram concept:
1. Click on the concept of the diagram that interests you.

A bar containing the objects you can insert appears.

117

Defining Business Information
Concept Domain

2. Select the desired object type.
For example: Concept component

3. Click in the graph at the point where you wish to place the object.
The object is created, with the link to the previous object.

Overview of links between objects

In each concept graph, relationships between concepts, concept types and concept
individuals are represented by links.

The link direction provides a natural mechanism for reading and deducing the scope
defining "the business object".

118

Link Details

Accessing link properties in a concept diagram

In a concept diagram, links are directional and access the properties of both the link
and the link target object.

 For more details on the list of links available in a concept domain,
see Overview of links between objects.

Link type Definition and Comment

Concept type component A concept type component enables specification of the relationship
between two concept types.

Concept component A concept component enables representation of a dependency rela-
tionship between two concepts. This relationship is directional.

Dictionary state of A dictionary state enables connection of a concept to a concept state,
and specification of the state nature.
With "State concept" view.

Concept Power Component A concept power component enables connection of a concept to con-
cept type to characterize a property of the concept.

Concept classification A concept classification enables connection of a concept to the concept
that characterizes it.

Individual classification An individual classification is used to connect an individual to the con-
cept that characterizes it.

Dictionary entity component An entity component is used to connect an individual to a dictionary
element.

Individual state classification An individual state classification enables connection of an individual
state to the state concept that characterizes it.
This link is available with "Individual State" view.

Individual state component An individual state component is used to connect an individual to an
individual state.
This link is available with "Individual State" view.

Individual event classification An individual event classification is used to connect an individual to the
event concept that characterizes it.
This link is available with "Individual State" view.

Concept intermediate event An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact
on a concept of a phenomenon internal or external to the concept.
Concept events can be distinguished as concept start events, end
events and intermediate events.
These links are available with "Event Concept" view.

Concept end event

Concept start event

119

Defining Business Information
Concept Domain

The pop-up menu of a Concept Component link type for example presents:
• commands specific to the object type used by the component (the

concept)
• commands relating to the component itself

for example Multiplicity

• commands relating to the graphics.

To access properties of a link of "component" type:
for example Concept Component

1. Right-click the link to open its pop-up menu.
2. Select the link and click Properties.

The link properties dialog box opens.

120

In the Characteristics page of the link property window, the last Component
section indicates:

• The Name of the link, which corresponds by default to the target
dictionary element or term associated with the link.

 For more details on association of a term with a link, see Concept
Components.

• The Composed Concept targeted by the link.
• The Owner who is the dictionary element at the origin of the link.
• The Minimum Multiplicity is the number of origin elements that can

access the same target elements.
For example, how many "Works" can belong to the same "Work
Category".

• The Maximum Multiplicity is the number of target elements that can
be connected to the same origin elements.

For example, a "Work" can only belong to only one "Work
Category".

• The Abstract Concept check box, which enables specification of the
concrete or abstract character of a concept,

• The concept aggregation Type which can be one of the following:
• "Referencing”: to indicate that the target concept is referenced by a

link,
• "Embedded": to indicate that the target concept exists in its own right,

but is included in the concept that is the source of the link,
• "Composite": to indicate that the target concept is a component of the

concept that is the source of the link; if the target concept is
destroyed, the composite is also destroyed.

• The Designation of the link and the Definition Text field enable
association of a term and a definition to the link.

 For more details on association of a term with a link, see Concept
Components.

For more details on defining concepts, see Concept.

Graphic appearance of diagram objects

To change the graphic appearance of diagram objects:
1. Select the object in question in the diagram (open in edit mode).
2. To the right of the diagram, click the Open the aspect page arrow.

The properties panel appears. Under the Aspect tab, commands allow
you to customize the text and shape of the selected object.

Defining the Components of a Concept Domain

You can update your business dictionaries using Concept Domains and dictionary
elements that already exist: Term, Concept, State Concept, Event Concept or
Concept View.

121

Defining Business Information
Concept Domain

The components of a concept domain

A concept domain includes or references a set of concepts or sub-domains.

You can display the elements that belong to the concept domain in the properties
window of the domain in question, in the Domain Entities page.

Adding a concept to a concept domain

To add a concept to a concept domain:
1. Open the properties window of the concept domain.
2. Select the Domain Entities page.
3. Click New.

The business information creation wizard appears.
4. Select the object type “Concept” and enter its name.
5. Click Add.

The concept is added to the list of concept domain components.
 You can also drag the concepts in question from the hierarchical
view of the business dictionary into the section.

Connecting or deleting a component from a concept diagram

To connect a dictionary element to a list of components for a concept domain:
1. Open the concept diagram associated with the concept domain.
2. Add the dictionary element that interests you in the diagram.
3. Right-click on this element to open its pop-up menu.
4. Select Add to current Domain.

The element is added to the list of concept domain elements, in the
Domain Entities page of the domain properties window.

To delete a dictionary element from a concept domain:
1. Right-click the dictionary element concerned to open its pop-up menu.
2. Select Remove from the current Domain.

The element is deleted from the list of concept domain elements.

122

Defining the access mode to the components (CRUD)

It is possible to specify the access rights to each component of a concept domain
through the CRUD of the component in question (Create, Read, Update Delete).

To define the CRUD for the component of a concept domain:
1. Open the properties window of the concept domain.
2. Click the Domain Entities page.
3. Select the line of the component in question.

Commands are added, including the CRUD button.
4. Click this button.
5. In the window that opens, select or clear the check boxes for each

action: Create, Read, Update, Delete.

The content of the Data access column is calculated automatically according to the
selected actions. This result appears in object form in the concept diagram
associated with the concept domain.

123

Defining Business Information
Concept

CONCEPT

The concept is the basic element of a business dictionary.

A concept expresses the essential nature of a being, an object, or a word through
its properties and characteristics or its specific qualities.

A concept is associated with one or more terms that designate the concept in a given
language. See Consulting the Business Glossary.

Accessing the List of Concepts

To access concepts in Hopex Data Governance:
 Click the Glossary > Concepts navigation menu.

The concept list appears.

The Browse button displays cards of each concept with its description and
contexts of use.

Creating Concepts

To create a concept:
1. Click the New button associated with the concept list.

124

2. Enter the Name of the concept and the Owner Business Dictionary.
The Existing Terms section lists terms with the same name as the new
concept. You can choose to use an already existing term, or create a new
term.

 A term is a word or word group, that is used for a specific meaning
in a specific context.
 If a term has already been created with the same name as the new
concept, this term is automatically connected and appears automatically
in the Term section.

3. In the Description field, enter the text of the concept definition.
4. Click Next to associate an image with the concept or OK to finish.

The name of the new concept appears in the tree. It also appears in the
tree structure of the holding business dictionary. A new term with the
same name as the concept is also created.

Concepts and Terms

Connecting an existing term to a concept

The same term can be connected to several objects. You can connect a term when
creating a concept or at a later date.

To connect a term to a concept:
1. Open the properties of the concept that interests you and select the

Characteristics page.
2. Expand the Identification section.
3. Click Designated Term then Connect.
4. Select the desired term.

You can also connect a concept to a term in the term properties:
1. Open the properties of the term.
2. Select the Characteristics page.

The list of objects connected to the term appears in the Identified
Dictionary Type field.

 Objects for which the term is declared as a synonym do not appear
in the properties dialog box.

3. Click the Connect button.
The query dialog box appears.

4. Select the “Concept” object type and click the Find button.
The list of the existing concepts appears.

5. Select the desired concept and click Connect.

Creating terms in multiple languages from a concept

You can associate terms with a concept for each of the data languages in your
environment.

To create a term from a concept:
1. Open the properties of the concept that interests you and select the

Characteristics page.

125

Defining Business Information
Concept

2. Expand the Identification section.
3. Click Designated Term then New.

A term creation dialog box opens.
4. Specify the Local Name of the term.
5. Select the Language and click OK.

The new term appears in the concept properties.

Creating synonyms in multiple languages
 A synonym is a term interchangeable with another term in the
context of a concept of this term that has the same or almost the same
meaning.

It is possible to add synonyms to a concept in several languages. This function
serves to indicate to the user that a concept defined and used in a certain context
corresponds to other synonyms in another language.

Renaming Concepts

The name of a concept is derived from the associated term. To rename a concept,
you need to modify the associated term.

To modify the term associated with a concept:
1. Open the concept properties.
2. Click the Characteristics page.
3. At the end of the Name field, click the right arrow then Rename

existing Term.
A window appears. It shows the objects affected by the name change.

4. Modify the term name.
5. Click OK.

Concept Properties

To access concept properties:

 Select the concept concerned and click the Properties button in

the edit area.
 Some pages are hidden by default. To display them, click the
Show/Hide button, then select the desired page.

Overview

The concept overview summarizes the concept's main information:
• The business dictionary to which it belongs
• The persons responsible
• Its workflow status
• the category of data (critical, private, public, etc.)

126

A dendrogram illustrates the concept's environment, with its structure, associated
terms and the domain in which it is used.

Characteristics

The Characteristics page of the concept properties window provides access to the
main characteristics of the concept.

 Some features are in hidden sections by default. To display them,
click Manage sections and select the desired section.

A concept is described by:
• the Abstract Concept check box, which enables specification of the

concrete or abstract character of a concept
• Its Definition
• its designation, which is represented by one or several terms

 To modify the name of a concept in the corresponding language,
you must access concept properties and modify the name of the term in
the specific language.

• Its synonyms, Hypernyms and Hyponyms
For example, in the Financial area, the term "Advance" is
recognized as a synonym of "Down payment".

 A synonym is a term interchangeable with another term in the
context of a concept of this term that has the same or almost the same
meaning.

Components

The Components page presents:
• the list of concept components held. See Concept Components.
• The list of concept power components. See Describing Concept Power

Components.
 State concepts connected to a concept are not present in the
properties dialog box, for more details see Concept or Individual States.

The type of link between concepts is defined by the Concept Aggregation Type,
which can take on the following values:

• "Referencing”: to indicate that the target concept is referenced by a link,
• "Embedded": to indicate that the target concept exists in its own right,

but is included in the concept that is the source of the link,
• "Composite": to indicate that the target concept is a component of the

concept that is the source of the link; if the target concept is destroyed,
the composite is also destroyed.

Relationships

Super types

The Relationships > Super types page presents the concepts whose properties
are inherited by the described concept.

 For more details on inheritances, see Concept Inheritances.

 See also Concept Type.

127

Defining Business Information
Concept

Realizations

The Relationships > Realizations allows to define the objects that the concept
implements. It can be two types of realization:

• A regulatory requirement: a regulatory framework, a business policy, a
quality dimension, etc.

• A realization of business information.
 For more details on realizations, see Connecting the Business
Concepts to the Logical and Physical architecture.

Data Usage

The Data usage page displays the applications, processes and business capabilities
that use the data in question.

 The page is hidden by default. To display it, click the Show/Hide
button, then select the desired page.

See Use of Data by the Information System.

Rules and Regulations

In the Regulations page you can define which internal or external regulations apply
to the concept in question.

When a concept belongs to a data category covered by a regulation, the name of
the regulation appears on this page.

To connect a regulation to the concept:
1. Click the Rules and Regulations page.
2. Click the Connect button.

A dialog box appears:
3. Indicate the type of regulation to be connected (regulatory framework,

business policy, etc.).
4. In the list that appears, select the regulation in question.

 For more details on regulations, see Rules and Regulations.

Data Quality

On the Data Quality page, you can indicate whether a quality policy applies to the
concept in question.

 For more details, see Data Quality.

128

Reports

Various report types are available on the concept:
• Data Dendrogram: illustrates the environment of the concept.
• Information Usage and Processing Graph Report
• Realization graph report: shows by which architecture elements the

concept is implemented or the information elements the concept
realizes.

• Use of information. This report displays:
• the domains that use this concept, with which access rights
• in which systems (applications, application systems or microservices)

these areas are used and with which components of these systems,
specifying the access mode (read-only or read/write).

For more information on data reports, see Data Reports and Analysis Tools.

Workflows

The Workflows page allows you to launch the data-specific design workflow on the
concept.

See also Data Validation Workflow.

129

Defining Business Information
Concept Components

CONCEPT COMPONENTS

A concept can be connected to another concept to characterize it.
For example, the "Work" concept is connected to the "Person"
concept to characterize the "Author" of a work.

This relationship is described by a Concept Component, which can be associated
with a term.

 A concept component enables representation of a dependency
relationship between two concepts. This relationship is directional.

Accessing Concept Components

To access concept components
1. Open the properties of a concept.
2. Click the Characteristics page.
3. Expand the Components section.

The list of components owned appears.
 You can also view the list of components of a concept in its concept
structure diagram. For more details, see Concept structure diagram.

Creating a Concept Component from a Diagram

The procedure for creating the "Author" concept component
between "Work" and "Person" concepts is described as an
example.

130

To create a concept component between two concepts of a concepts domain:
1. In the concept diagram associated with the concept domain, click the

concept that holds the link, for example "Work".
A bar containing the objects you can insert appears.

2. Click on the icon that represents the Concept component.

3. Slide the cursor to the target concept, for example "Person".
4. When the cursor becomes a double chain link, release the mouse button.

The Concept Component creation wizard opens.
5. Enter a Name, for example "Author".
6. Given that the term "Author" must be created, select the "Creation with

term" check box.
In the section Term appears in the creation creation dialog box.

 A term is a word or word group, that is used for a specific meaning
in a specific context.

7. In the Definition Text field, enter the text of the Concept Component
definition and click OK.
The concept component appears in the graph.

 A new term with the same name as the concept component is also
created.

You can also create a concept component in a concept structure diagram. In this
case, you must specify the target concept in the concept component creation
wizard.

 For more details, see Concept structure diagram.

Describing Concept Power Components

Just as a Concept can be characterized by a link to another concept, a concept can
also be characterized by a link to a Concept Type.

 A concept type enables classification of concepts. Relationships
between concept types are represented by concept type components.

For example, each member "Person" could be characterized by
a "Loan Type".

 For more details, see Concept Type.

The relationship between a Concept and a Concept Type is described by a
Concept Power Component.

 A concept power component enables connection of a concept to
concept type to characterize a property of the concept.

131

Defining Business Information
Concept Components

To create a Concept Power Component between a concept and a concept type
in a concept domain diagram:

1. In the insert toolbar, click the Link button.
2. Click the concept that owns the link.

For example, "Person"

3. Click the target concept type.
For example, "Loan Type".

The Concept Power Component creation wizard opens.
4. Specify the Local Name.
5. If no term is to be created, select the "Creation without term" check box.
6. Click OK.

The Concept Power Component appears in the diagram.

Describing a Computed Concept Component

See Calculation Rule on a Concept.

132

CONCEPT PROPERTIES

Concept Properties are used to define the characteristics associated with a
concept.

For example, a person is associated with a mandatory and
unique postal address, possibly an email address and one or
more telephone numbers.

A Concept Property may itself be connected to other Concept Properties.
For example, the postal address is defined using the name of
the street and the town.

133

Defining Business Information
Concept Properties

Creating a Concept Property

Creating a Concept Property

To create a concept property:
1. In the concept diagram associated with the concept domain, click the

Concept Property icon of the insert toolbar.
2. Click in the diagram.
3. Enter the name of the concept property and click Add.

Connecting a concept property to a concept

The link between a concept and a concept property is described by a Sub-property
that can, if necessary, be associated with a term.

 A sub-property is used to specify the relationship between a
concept and a concept property.

Connecting two concept properties

The link between concept properties is described by a Concept Property
Component that can, if necessary, be associated with a term.

 A concept component enables representation of a dependency
relationship between two concepts. This relationship is directional.

Creating a Computed Concept property

See Calculation Rule on Concepts.

134

CONCEPT INHERITANCES

Certain business concepts are versions of other concepts; they are characterized by
the same concepts.

For example, the "Subscription" concept is broken down into
"Book Subscription" and "Media Subscription". These two
subscription types inherit the links "Subscriber" and
"Member" at the level of the "Subscription" concept.

Accessing Concept Inheritances

Inheritances are represented by variations.

To access concept variations:
1. Open the properties of a concept.
2. Select the Relationships > Super types page.

The list of variations associated with the concept appears.

Creating a Concept Inheritance from a Concept Diagram

You can specify that a concept inherits characteristics defined for another concept.
For example, the "Book Subscription" concept inherits from
the "Subscription" concept.

To specify in a concept diagram that a concept inherits another concept:
1. In the insert toolbar, click the Link button.
2. Click the inheriting concept and drag the pointer to the root concept

before releasing the mouse button.
The variation is represented by a link, but it is in fact an Hopex object.

3. Specify the Name of the variation and click Add.
A directional link from the inheriting concept to the root concept appears.

135

Defining Business Information
Concept Inheritances

Defining Inheritance of a Concept Component

An inheritance can also be created between two Concept Components.
For example, the "Subscriber" is also a "Member".

To define an inheritance between two concept components, they should be
connected to the same concepts, either directly or via variations.

To create a variation between two concept components:
1. Open the properties of the concept component to be varied.
2. Select the Variation tab.
3. Click the New button.

The variation creation wizard opens.
4. Select the options:

• "Initialization of attributes"
• "Initialization of diagrams" so that the variation appears in diagrams.

5. Click OK.
The variation is created.

 A variation between Concept Components is represented
graphically in a concept structure diagram. For more details, see
Concept structure diagram.

Creating a Concept Component Substitution

If, unlike a variation, a link is another definition of another link, you must create a
substitution.

 A substitution determines which element can be used to replace
another, or is effectively replaced by an element existing in a given
context (for example in the context of a variation). Unlike a variation, a
substitution does not involve inheritance but a functional equivalence.
 For more details on variations and substitutions, see the Hopex
Common Features guide, "Handling Repository Objects", "Object
Variations".

To define a substitution between two concept components, they should be
connected to the same concepts, either directly or via variations.

To create a substitution between two concept components from a concept structure
diagram:

1. In the insert toolbar, click the Substitution button.
2. Click the component to be substituted and drag the pointer to the

substituting component before releasing the mouse button.
3. Specify the Name and click Add.

A dotted line directional link from the component to be substituted to the
substituting component appears.

 The substitution is represented by a link, but it is in fact a Hopex
object.

136

CONCEPT STRUCTURE DIAGRAM

In Hopex Data Governance and Hopex Data Architecture, a concept structure
diagram assembles all information relating to the concept. This diagram is initialized
from concept diagram elements.

For example, "Subscriptions" can be classified by
"Subscription Type".

A "Subscription Type" is characterized by a "Loan Type".

The diagram includes:
• variations between components

For example, "Subscriptions" can be classified by
"Subscription Type". A "Subscription Type" being
characterized by a "Loan Type".

 A variation describes how a concept can be varied under another
form. The variant is an object similar to the varied object, but with
properties or relationships that may differ.
 For more details, see Defining Inheritance of a Concept
Component.

• Substitutions between components

 A substitution determines which element can be used to replace
another, or is effectively replaced by an element existing in a given

137

Defining Business Information
Concept structure diagram

context (for example in the context of a variation). Unlike a variation, a
substitution does not involve inheritance but a functional equivalence.
 For more details, see Creating a Concept Component Substitution.

• Concept components describing the relationship between two Concepts
For example, a "Subscription Type" is characterized by an
"Available Loan Type".

 A concept component enables representation of a dependency
relationship between two concepts. This relationship is directional.
 For more details, see Concept Components.

• Concept power components enabling concept characterization from
Concept Types

For example, each member "Person" could be characterized by
a "Loan Type".

 A concept power component enables connection of a concept to
concept type to characterize a property of the concept.
 For more details, see Describing Concept Type Variations.

• start events, intermediate events and end events enabling definition of
events contributing to change of state of a concept,

For example, the change of state of a member can be caused
by a birthday.

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.
 For more details, see Describing State Concepts.

138

INDIVIDUALS

An individual represents the instance of a concept.

Accessing Concept Individuals

You can access a concept's individuals in the concept's properties:
1. Click the Glossary > Business Dictionaries navigation menu.
2. Click the Concepts tab .
3. Click the relevant concept to display its properties.
4. Click the Characteristics page.
5. At the top of the page, click Manage sections and select Individuals.

The corresponding section appears with the list of concept occurrences.

Creating an Individual

To create an individual from a concept:
1. Open the concept properties.
2. Click the Characteristics page.
3. In the Individuals section, click New.

The creation wizard opens.
4. Select the Create object option.
5. Enter the name of the individual and click Create.

Individual Properties

The properties window of an individual presents the following elements:
• Its main Characteristics with its Local Name and owner dictionary.
• Classifications, which indicate which concept characterizes the

individual.
 For more details, see Creating an Individual Classification.

• The Individual States, which present the different states of an
individual. For example, the individual “John Smith”, linked to the
concept “Person”, changes state from ‘child’ to ‘Teenager’, “Adult”, and so
on.

 For more details, see Describing Individual States and Events.

• The Components
 For more details, see Creating a Dictionary Entity Component.

139

Defining Business Information
Individuals

Creating an Individual Classification

An individual classification is used to connect an individual to the concept that
characterizes it.

For example, the individual "Asimov" is an instance of
"Person" and "The Robots" is an instance of "Work".

To create an individual classification:
1. Open the properties window of the individual carrying the relationship.

For example, the "Asimov" individual.

2. Select the Characteristics tab.
3. In the Classification section, click the New button.

The creation wizard opens.
4. At the left of the Characterizing Element field, click the Connect

button.
The query wizard opens.

5. Select the concept you want to connect.
For example, the "Person" concept.

6. Click OK.

Creating a Dictionary Entity Component

An entity component is used to connect an individual to a dictionary element.

140

You can also connect two individuals with a Dictionary Entity Component
relationship type.

For example, you can specify that "Asimov" is the author of
the work "The Robots".

To create a dictionary entity component between two individuals:
1. Open the properties window of the individual carrying the relationship.

For example, the "Asimov" individual.

2. Select the Components tab.
3. Click the New button.

The creation wizard opens.
4. At the left of the Characterizing Element field, click the Connect

button.
The query wizard opens.

5. Select the individual you want to connect.
For example, the "The Robots" individual.

6. Click OK.
The entity component is created. It appears in the individual structure
diagram of the described object.

 For more details, see Individual Structure Diagram.

Individual Structure Diagram

The individual structure diagram describes the internal structure of the concept
instance and the links between its components. This diagram is initialized from
concept graph elements.

This diagram is composed of dictionary entity components used to connect two
individuals.

It is then possible to specify that "Asimov" is the author
of the work "The Robots".

 An entity component is used to connect an individual to a dictionary
element.
 For more details, see Creating a Dictionary Entity Component.

141

Defining Business Information
Concept or Individual States

 CONCEPT OR INDIVIDUAL STATES

A business object can have a life cycle during which it takes different states
according to events. If a concept is connected to a business object, other concepts
can be connected to different states of the business object and to events at the
causing changes of state. With Hopex Data Governance and HOPEXHopex Data
Architecture, it is possible to associate a life cycle with a concept, as well as state
concepts and event concepts.

Individuals can also be connected to individual states and individual events that are
instances of state concepts and event concepts.

Describing State Concepts

The notion of state of a concept is represented by the State Concept.
 A state concept is a situation in a concept life cycle during which it
satisfies certain conditions, executes a certain activity or waits for a
concept event. A state concept represents a time interval of which limits
are two concept events. A state concept is a phase through which the
concept passes during its life cycle.

For example, the same subscription holder can pass from
"Child" state to "Adolescent" state, then to "Adult" state
and finally "Senior".

Passage from one state concept to another can be conditioned by an Event
Concept.

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept

142

events can be distinguished as concept start events, end events and
intermediate events.

For example, passage from one state to another can be
connected to a event, a "Birthday" for example.

 For more details, see Describing Event Concepts.

Accessing the state concepts list

To access state concepts of a business dictionary in Hopex Data Governance:
1. Click the Glossary > Business Dictionaries navigation menu.
2. Click the relevant business dictionary.

The dictionary properties appear.
3. Click the Business Information page.
4. In the drop-down list select State Concepts.

The list of state concepts of the business dictionary appears.

Creating a state concept from a business dictionary

At creation of a state concept, HOPEX also creates a Dictionary State of, which
represents the relationship between a state concept and its concept.

 A dictionary state enables connection of a concept to a concept
state, and specification of the state nature.

To create a state concept from a business dictionary:
1. Open the properties of the business dictionary.
2. Click the Business Information page.
3. In the drop-down list select State Concepts.
4. Click New.

143

Defining Business Information
Concept or Individual States

5. Indicate the Name.
In the Term section, the Existing Terms section lists terms with the
same name as the new state concept.

 A term is a word or word group, that is used for a specific meaning
in a specific context.
 If a term has already been created with the same name as the new
state concept, this term is automatically connected and appears
automatically in the Term section.

6. In the Phased Business Entity field, specify to which concept the state
concept you are creating is connected.

 A Dictionary State Of is automatically created between the
concept and the state concept.

7. In the Definition Text field, enter the text of the state concept
definition and click OK.
The name of the state concept appears in the tree under the business
dictionary.

 You can also create a state concept in a concept domain.

State concept properties

State concept characteristics

The Characteristics tab of state concept properties enables access to its main
characteristics.

A state concept is described by:
• its designation, which is represented by one or several terms

 To modify the name of a concept in the corresponding language,
you must access concept properties and modify the name of the term in
the specific language. For more details, see Concept and Term.

• A Definition
• Its Synonyms

 A synonym is a term interchangeable with another term in the
context of a concept of this term that has the same or almost the same
meaning.
 For more details, see Concept and Term.

144

Links between a state concept and other dictionary elements

In addition to terminology characteristics, a state concept is characterized by its
relationships with other dictionary elements.

• The Super-Type tab presents concepts whose properties are inherited
by the described concept, for more details see Concept Inheritances

• The Relationships > Realization tab enables association of an
application architecture element to the concept.

 For more details, see Connecting the Business Concepts to the
Logical and Physical architecture.

• The Components tab presents:
• the list of concept components owned, for more details see Concept

Components.
• the list of concept power components, for more details see Describing

Concept Power Components.
 Concepts connected to a state concept are not present in the
properties dialog box.

Describing Event Concepts

An event concept represents an event occurring during concept life, for example a
change of season. An event concept marks the impact on a concept of a
phenomenon internal or external to the concept. Concept events can be
distinguished as concept start events, end events and intermediate events.

Accessing the event concept list

To access event concepts of a business dictionary in Hopex Data Governance:
1. Click the Glossary > Business Dictionaries navigation menu.
2. Click the relevant business dictionary.

The dictionary properties appear.
3. Click the Business Information page.
4. In the drop-down list select Event Concept.

The list of event concepts of the business dictionary appears.

Creating an event concept from a business dictionary

To create an event concept from a business dictionary:
1. Open the properties of the business dictionary.
2. Click the Business Information page.
3. In the drop-down list select Event Concept.
4. Click New.

145

Defining Business Information
Concept or Individual States

5. Specify its name.
The Existing Terms section lists terms with the same name as the new
event concept.

 A term is a word or word group, that is used for a specific meaning
in a specific context.
 If a term has already been created with the same name as the new
event concept, this term is automatically connected and appears in the
Term section.

6. In the Definition field, enter the text of the event concept definition and
click OK.
The name of the event concept appears in the tree under the business
dictionary.

 You can also create an event concept in a concept domain.

Event concept properties

The Characteristics tab of event concept properties enables access to its main
characteristics.

The event concept is described by:
• A Definition
• Its designation, which is represented by one or several Terms

 To modify the name of a concept in the corresponding language,
you must access concept properties and modify the name of the term in
the specific language. For more details, see Concept and Term.

• Its Synonyms

 A synonym is a term interchangeable with another term in the
context of a concept of this term that has the same or almost the same
meaning.
 For more details, see Concept and Term.

The Realization section enables association of an application architecture element
to the concept.

 For more details, see Connecting the Business Concepts to the
Logical and Physical architecture.

Connecting an event concept to its concept

The relationship between a concept and its event concept is described by:
• a Start Event,
• an End Event,
• or an Intermediate Event.

To connect an event concept to its concept in a diagram associated with a concept
domain:

1. In the insert toolbar, click the Link button.
2. Click the concept to which the event concept is attached.

For example, "Person"

146

3. Click the event concept to be connected.
For example, "Birthday".

A wizard proposes selection of an event type:
• Concept Start Event
• Concept End Event
• Concept Intermediate Event

4. Select the event type and click OK.
The creation wizard of the selected concept event type opens.

5. Indicate its name.
6. If no term is to be created, select the "Creation without term" check box.
7. Click OK.

The link between the concept and the event concept appears in the
diagram with an icon representing its type.

State Concept Structure Diagram

A state concept structure diagram assembles all information relating to the state
concept diagram described. This diagram is initialized from concept diagram
elements.

For example,

The diagram includes:
• variations between components

For example, "Subscriptions" can be classified by
"Subscription Type". A "Subscription Type" being
characterized by a "Loan Type".

 A variation describes how a concept can be varied under another
form. The variant is an object similar to the varied object, but with
properties or relationships that may differ.
 For more details, see Defining Inheritance of a Concept
Component.

• Substitutions between components

 A substitution determines which element can be used to replace
another, or is effectively replaced by an element existing in a given

147

Defining Business Information
Concept or Individual States

context (for example in the context of a variation). Unlike a variation, a
substitution does not involve inheritance but a functional equivalence.
 For more details, see Creating a Concept Component Substitution.

• Concept Information Items,

 A sub-property is used to specify the relationship between a
concept and a concept property.
 For more details, see Concept Properties.

• Concept components describing the relationship between two Concepts
For example, a "Subscription Type" is characterized by an
"Available Loan Type".

 A concept component enables representation of a dependency
relationship between two concepts. This relationship is directional.
 For more details, see Concept Components.

• start events, intermediate events and end events enabling definition of
events contributing to change of state of a concept,

For example, the change of state of a member can be caused
by a birthday.

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.
 For more details, see Describing State Concepts.

Describing Individual States and Events

If a concept is associated with states, occurrences of this concept can also be
associated with states. Hopex Data Governance and Hopex Data Architecture
therefore proposes the Individual State.

 An individual state is an instance of a concept state to which the
dictionary state is connected. It represents an individual state during its
life cycle.

148

In addition, the switch from one individual state to another can be conditioned by
an Individual Event.

 An individual event represents an event occurring during the life of
the individual. It is an instance of an event concept of the concept to
which the individual is connected.

For example, "John Smith" is a "Person" who can pass form
one state to another on his birthday.

The relationship between an individual and its Individual State is described by an
Individual State Component.

 An individual state component is used to connect an individual to
an individual state.

The relationship between an individual and its Individual Event is described by a
Dictionary Entity Component.

 An entity component is used to connect an individual to a dictionary
element.

With Hopex Data Architecture:
• an individual state is an instance of a state concept

 A state concept is a situation in a concept life cycle during which it
satisfies certain conditions, executes a certain activity or waits for a

149

Defining Business Information
Concept or Individual States

concept event. A state concept represents a time interval of which limits
are two concept events. A state concept is a phase through which the
concept passes during its life cycle.

• an individual event is an instance of an event concept

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.

Accessing the individual state and event list

To access the individual states and events of a business dictionary in Hopex Data
Governance:

1. Click the Glossary > Business Dictionaries navigation menu.
2. Display the hierarchy view.
3. From the business dictionary that interests you, expand the Individual

States folder.
 The folder is visible only if individual states exist.

The list of individual states of the business dictionary appears.
4. In the same way, expand the Value Domain Events folder.

The list of individual events appears.

Creating an Individual state from a concept domain

The relationship between an individual and its Individual State is described by an
Individual State Component.

 An individual state component is used to connect an individual to
an individual state.

If you create an individual state in a diagram, you can automatically create the
individual state component of the associated individual.

To create an individual state from a concept diagram:
1. In the diagram, roll the mouse over the individual who owns the

individual state.
2. Select Individual state.
3. Click in the diagram.

The creation wizard opens.
4. Specify the Local Name and click Add.

The new individual state appears in the diagram.
 You can also create an individual state from its business dictionary.

150

Individual state properties

The individual state properties dialog box presents the following elements in the
Characteristics tab:

• Its Local Name
• The individual classifications, which appear in the Classification section.

 An individual state component is used to connect an individual to
an individual state.
 For more details, see Creating an Individual Classification.

• The Component tab, presenting the individuals who define the
described individual.

 For more details, see Creating a Dictionary Entity Component.

Creating an Individual event from a concept domain

To create an individual event from a concept domain:
1. In the insert toolbar, click Individual Event and click in the diagram.

The individual event creation wizard opens.
2. Enter the Name and click Add.

The individual event appears in the diagram.

Connecting an individual event to an individual

The relationship between an individual and its Individual Event is described by a
Dictionary Entity Component.

 An entity component is used to connect an individual to a dictionary
element.

To connect an event concept to its concept in the diagram:
1. In the insert toolbar, click the Link button.
2. Click the individual event.
3. Click the event.

The link appears in the diagram.

Concept life cycle structure diagram

The concept life cycle structure diagram is used to describe a concept life cycle.
For example, a "Person" becomes visible in a media library
after "Registration". It can be registered with state
"Child", "Adolescent", "Adult" or "Senior". Passage from

151

Defining Business Information
Concept or Individual States

one state to another can be connected to a event, a
"Birthday" for example.

A concept life cycle structure diagram includes the following elements:
• Concept Life Cycle Phases, which are connected to state concepts of

the"Person" concept
 A state concept is a situation in a concept life cycle during which it
satisfies certain conditions, executes a certain activity or waits for a
concept event. A state concept represents a time interval of which limits
are two concept events. A state concept is a phase through which the
concept passes during its life cycle.
 For more details on state concepts, see Describing State Concepts

• Concept Life Cycle Events, which are connected to event concepts of
the"Person" concept

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.
 For more details on event concepts, see Describing Event Concepts

• Concept Life Cycle Transitions, which represent sequence flows
between concept states and events.

Creating a concept life cycle

To create a concept life cycle structure diagram and to describe sequence flows of
states defining the concept life cycle, you must first create the Concept Life Cycle.

152

To create a concept life cycle from a business dictionary:
1. Right-click the business dictionary that interests you and click New >

Business Information Building Block.
2. In the wizard select the Concept Life Cycle object type.
3. Specify the Local Name and click OK.
4. In the Life Cycle of, specify the concept to which the life cycle relates.

For example, "Person"

5. The Existing Terms section lists terms with the same name as the
created object.

 If a term has already been created with the same name as the now
concept, this term is automatically connected to the concept and
appears automatically in the Term section.

6. In the Definition Text field, enter the text of the state concept
definition and click OK.
The name of the new concept life cycle appears in the tree under the
business dictionary.

Creating a concept life cycle structure diagram

To create a concept life cycle structure diagram from a concept life cycle:
 Right-click the concept life cycle that interests you and select New >

Concept Life Cycle Structure Diagram.
The diagram opens in the edit area. State concepts associated with the
described concept are positioned in the diagram via objects of Concept
Life Cycle Phases type.

Adding a concept life cycle event

To add a concept life cycle event in the concept life cycle structure diagram:
For example, the concept life cycle event representing
"Registration".

1. In the diagram insert toolbar, click the Concept Life Cycle Event
button.

2. Click in the frame of the concept life cycle frame.
A concept life cycle event creation dialog box opens

3. In the Composite Type field, specify the name of the event concept to
which the new object relates.

For example, "Registration".

 If a selection dialog box opens, select the object that interests you.
4. Specify the Local Name.
5. If no term is to be created, select the "Creation without term" check box.
6. Click OK.

The concept life cycle event event appears in the diagram.

Creating a concept life cycle transition

To represent sequence flow from a phase to a concept life cycle event, you must
create a concept life cycle transition.

153

Defining Business Information
Concept or Individual States

To create a concept life cycle transition:
1. In the diagram insert toolbar, click the Concept Life Cycle Transition

button.
2. Click the triggering concept life cycle phase (or event), and, holding the

mouse button down, drag the cursor to the triggered phase (or event).
3. Release the mouse button.

The link appears in the diagram.

Using periods

A Period adds time-related information to an individual event.
 An individual event represents an event occurring during the life of
the individual. It is an instance of an event concept of the concept to
which the individual is connected.

For example, a free loan may be offered to subscribers on
each anniversary. This loan is valid for a period of two
weeks after the anniversary date.

A period type is used to specify an event concept.
 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.

For example, a free anniversary loan is offered every year.

The relationship between a Period type and an Individual event is described by
an Event type periodization.

The relationship between a Period and an Event concept is described by an Event
periodization.

154

CONCEPT TYPE

A concept type enables classification of concepts. Relationships between concept
types are represented by concept type components.

Accessing the Concept Types List

To access concept types in Hopex Data Governance:
1. Click the Glossary > Business Dictionaries navigation menu.
2. Click the relevant business dictionary.

The dictionary properties appear.
3. Click the Business Information page.
4. From the drop-down list, select Concept type.

The list of concept types of the business dictionary appears.

Creating a New Concept Type

To create a concept type from a business dictionary:
1. Open the properties of the business dictionary.
2. Click the Business Information page.
3. From the drop-down list, select Concept type.
4. Click New.
5. Specify its name.

In the Term section, the Existing Terms section lists terms with the
same name as the new concept type.

 An event concept represents an event occurring during concept life,
for example a change of season. An event concept marks the impact on
a concept of a phenomenon internal or external to the concept. Concept
events can be distinguished as concept start events, end events and
intermediate events.
 If a term has already been created with the same name as the new
concept, this term is automatically connected and appears automatically
in the Term section.

6. In the Definition field, enter the text of the concept type definition and
click OK.

 A new term with the same name as the concept type is also
created.

Concept Type Properties

Concept type characteristics

The Characteristics tab of concept type properties enables access to its main
characteristics.

155

Defining Business Information
Concept Type

A concept type is described by:
• A Definition
• A Designation, which is represented by one or several terms

 To modify the name of a concept in the corresponding language,
you must access concept properties and modify the name of the term in
the specific language. For more details, see Concept and Term.

• Its Synonyms

 A synonym is a term interchangeable with another term in the
context of a concept of this term that has the same or almost the same
meaning.
 For more details, see Concept and Term.

Links between a concept type and other dictionary or architecture
elements

In addition to terminology characteristics, a concept is characterized by its
relationships with other dictionary elements.

• The Component tab presents the list of owned concept type
components , for more details see Concept Components.

• The Relationships > Realization tab enables association of an
application architecture element to the concept.

 For more details, see Connecting the Business Concepts to the
Logical and Physical architecture.

• The Relationships > Super-Type tab presents concept types whose
properties are inherited by the described concept type, for more details
see Describing Concept Type Variations

Describing Concept Type Components

A concept type can be connected to another concept type to characterize it.
For example, a "Subscription Type" is characterized by a
"Loan Type".

156

This relationship is described by a Concept Type Component, which can be
associated with a term.

 A concept type component enables specification of the relationship
between two concept types.

Accessing concept type components

To access concept type components of a concept type:
1. Open the concept type properties dialog box.
2. Select the Components tab.

The list of concept type components associated with the concept appears.
 You can also view the list of components of a concept in its
structure diagram. For more details, see The Concept Type Structure
Diagram.

Creating a concept type component from a concept domain

To create a concept type component between two concept types in a concept
domain diagram:

1. In the insert toolbar, click the Link button.
2. Click the concept type that owns the link.

For example, "Subscription Type".

3. Click the target concept type.
For example, "Loan Type".

The concept type component creation wizard appears.
4. Specify its name.
5. If no term is to be created, select the "Creation without term" check box.
6. Click OK.

The Concept Type component appears in the diagram.

157

Defining Business Information
Concept Type

You can also create a concept type component in a concept type structure diagram.
In this case, you must specify the target concept type in the concept type
component creation wizard.

 For more details, see The Concept Type Structure Diagram.

Describing Concept Type Variations

Certain concept types are versions of other concept types; they are characterized
by the same concept type components.

This relationship is described by a Variation.
 A variation describes how a concept can be varied under another
form. The variant is an object similar to the varied object, but with
properties or relationships that may differ.
 For more details on variations and substitutions, see the Hopex
Common Features guide, "Handling Repository Objects", "Object
Variations".

Accessing concept type variations

To access concept type variations
1. Open the concept type properties dialog box.
2. Select the Relationships > Super-Type tab.

The list of variations associated with the concept appears.

Creating a concept type variation from a concept domain

To specify, from a concept domain diagram, that a concept type inherits
characteristics defined for another concept type:

1. In the insert toolbar, click the Link button.
2. Click the concept type to be varied and drag the cursor to the new

concept before releasing the mouse button.
3. Indicate its Name and click Add.

A directional link from the concept type to be varied to the root concept
type appears.

 The variation is represented by a link, but it is in fact an Hopex
object.

The Concept Type Structure Diagram

A concept type structure diagram describes the internal structure of the concept
type instance using relationships defined for other concept types it characterizes.

158

This diagram includes concept type components enabling characterization of the
concept type by connecting it to other concept types.

For example, a "Subscription Type" is characterized by a
"Loan Type".

 A concept type component enables specification of the relationship
between two concept types.
 For more details, see Describing Concept Type Components.

159

Defining Business Information
Concept View

CONCEPT VIEW

A concept view enables representation of the semantic scope covered by a business
object. A concept view is based on the selection of several concepts specific to the
view.

An editor allows you to create and visualize business views and their components.
 On the same principle, the Data View can be used to navigate from
Classes or Entities. For more details, see Logical Data View.

Creating a Concept View

To create a concept view:
1. Right-click the name of the concept and select New > Concept view.

The concept view creation wizard appears.
2. Enter its Name.
3. The Existing Terms field lists terms with the same name as the view.

 A term is a word or word group, that is used for a specific meaning
in a specific context.

4. In the Definition field, enter the text of the definition of the view and
click Next.

5. To specify the source concept of the concept view, click New.
6. In the dialog box that appears, enter:

• the MetaClass concerned by the view (concept, state concept or
event concept)

• The reference concept of the data view
7. Click Add.
8. Click OK to close the concept view creation wizard.

The new concept view appears in the Concept View folder of the relevant
business dictionary.

160

Defining the Concept View Content

Displaying objects in the view

The view editor is made up of a number of parts:
• the left part presents all the source concept components held by the

view, as defined in the data dictionary
• the right part presents the concept components that will be kept for the

concept view created
• the buttons in the Action column are used to add the components to the

concept view.

Adding a source object to the concept view

To add a source object to a concept view:
1. Open the concept view.
2. On the source object side, under the Action column, click the button.

3. In the window that appears, specify:
• the MetaClass concerned by the view (concept, state concept or

event concept)
• The reference concept of the data view

4. Click Add.

Once the source concept is defined, you can select the components of this concept
- or the concept itself - to be added to the concept view.

161

Defining Business Information
Concept View

Adding a component to the concept view

Using the source objects in the view, you can define embedded components and
referenced components.

An embedded component is used to bring all the information making up the object
into the view. A reference component references only the object in the view.

To add a component to the concept view:
1. In the tree on the left, select the component that you want to add to the

view.
2. Click Add a View Inclusion Component .

The component added appears in the tree to the right.
 You can Add a referenced component in the same way.

A check mark appears in front of the objects embedded in the view, as opposed to
referenced objects.

The views are then accessible in a report. For further details, see Report DataSets.

The View Report

The view report provides a report on a concept view and its components.

To generate a view report:
1. Click the Reports navigation menu.
2. In the edit area, click Create a Report.
3. Search for the “View report” report type.
4. Under the report template, click Create a Report.
5. Select the view in question and refresh the report.

Report parameters

This consists of defining report input data.

Settings Parameter type Constraints

View View Mandatory.

Sub-view yes or no Yes by default

Justification yes or no Yes by default

Depth level Integer

162

Report example
The following example show the elements in the view based on
the "Person" concept.

CALCULATION RULE ON CONCEPTS

Hopex Data Governance and Hopex Data Architecture allow you to define calculated data
elements, the value of which is calculated from the values of one or more other data elements.

ASSOCIATING A CALCULATION RULE WITH A BUSINESS

OBJECT

You can create calculation rules on concept and concept properties.

Calculation Rule on a Concept Property

The calculation rule takes concepts or concept properties as input and the calculated
concept property as output.

The next step is to define the expression of the calculation rule.

Example

The “Book” concept is described by the following concept properties:
• “Book price”
• “Number of copies sold”
• "Sales amount”
• "Royalties amount”

The “Sales amount” is a calculated according to:
• the “Book price”
• the “Number of copies sold”

Calculation Rule on Concepts
Associating a Calculation Rule with a Business Object

The definition of the sales amount calculation rule is as follows:

Sales amount = Number of copies sold x Book price

The royalties amount is calculated according to the number of copies sold. The
calculation rule is as follows:

• 8% of the sales amount if the number of copies sold is less than 10,000.
• 10% of the sales amount if the number of copies sold is less than 20,000

and greater than 10,000.
• 12% of the sales amount if the number of copies sold is less than

20,000.

Creating the calculation rule

To create a calculation rule in a concept diagram (for example, the "Sales amount
calculation rule"):

1. Open the relevant concept domain diagram.
2. In the object insertion bar, click the Concept property rule button and

click in the diagram.
The rule creation window appears.

3. Enter the name of the rule and click Create.

Defining rule input and output objects

Here you define the rule's source objects, from which the target object's value is
calculated.

To define the rule's input concept property:
 In the object insertion bar, click the Link button and draw a link from the

source concept property to the calculation rule.
In our example, draw a link from "Book price" to "Sales
amount calculation rule" and a link from "Number of copies
sold" to the calculation rule.

A dotted arrow appears between the rule and the source concept
property.

To define the target concept property:
 Click the Link button and draw a link from the rule to the calculated

concept property.
An arrow line appears between the two objects.

To access the definition of the calculation rule:
1. Move the cursor over the slide rule and click on the Properties button.

The ruler properties window appears on the right of the diagram.
2. In the Characteristics > Calculation rule page, enter the input and

output parameters of the rule, as well as the description of the rule.
In our example: "Sales amount = Number of copies sold x Book
price".

 In the Parameters section, you can see the objects you've linked
in and out of the rule.

Calculation Rule on a Concept

In the same way as for a concept property, you can indicate that a concept is
calculated, by associating it with a calculation rule that defines the input and output
parameters, as well as the rule expression.

For a calculated concept, the rule's input objects can be concepts or concept
properties. The output object is the calculated concept.

115

CONNECTING THE BUSINESS CONCEPTS TO
THE LOGICAL AND PHYSICAL ARCHITECTURE

You can indicate how the business concepts defined in HOPEX Data Architecture are implemented
in the IS by connecting them to the objects in the logical or physical layer.

The "Concept realization" work consists of connecting the data model or database elements with
business concepts to:

• precisely define objects handled at IS architecture level,
• assure improved vocabulary sharing and improved global communication

between business users and IS users.

The following points are covered here:

 Realization of Concept
 Using Realization Matrices

116

REALIZATION OF CONCEPT

Using the “Realization" concept, you can connect logical or physical view elements
with dictionary elements.

The realization can be defined on the realized object (concept) or the realizing object
(logical or physical data), and extended to the components of the realized and
realizing objects.

Note that it is also possible to connect business information with other business
information.

Defining the Object that Realizes a Concept

To define the object that realizes a concept:
1. In the Information Architecture desktop, click the navigation menu, then

Business Information.
2. In the edit area, click Business Information Hierarchy.
3. Select the concept concerned and display its properties.
4. In the property page, from the drop-down list, click the Characteristics

> Realizations page.
5. In the Realizer Objects tab, click New.

The business realization creation wizard appears.
6. Specify:

• the object type that realizes (logical or physical data)
• the name of the object concerned

7. Click Add.
The realizer object appears in the concept properties. When you select
this object, a matrix appears in the next section. It displays the
components of the object that realizes (the class) in rows and the
components of the realized object (the concept) in columns.
From this matrix you can define which components of the class (eg.
Attributes) realize which concept components.

117

Connecting the Business Concepts to the Logical and Physical architecture
Realization of Concept

Defining the Concept Realized by a Class

To specify the concept realized by a class:
1. In the Information Architecture desktop, click on the navigation menu,

then Logical data.
2. In the edit area, click Package Hierarchy.

The list of packages in the repository appears in the edit window.
3. Expand the package folder that interests you.
4. Select the class that you want to connect to a concept and open its

properties.
5. Select the Characteristics >Realization page.
6. In the Realized Objects tab, click New.

The Add an Owned Realization dialog box appears.
7. In the Object type field, select "Business information realization" and

click Next.
8. In the MetaClass field, select "Concept".
9. In the Business information realized field, select the concept you are

interested in.
10. Click Add.

The concept appears in the properties of the class. When you select this
concept, a matrix appears in the next section. It displays the components
of the object that realizes (the class) in rows and the components of the
realized object (the concept) in columns.
From this matrix you can define which components of the class (eg.
Attributes) realize which concept components.

118

USING REALIZATION MATRICES

Realization matrices allow you to define and view the realization links between
objects in the repository.

Example
Realization of business data by logical data

This matrix is used to specify that logical data (classes,
data views, etc.) realize business information (concepts,
concept types, etc.).

Realization Levels

Business function level

Realization of business data by other business data

This matrix is used to specify that business data (concepts, concept types, etc.)
realize other business information.

Logical level

Realization of logical data by other logical data

Realization of business data by logical data

Realization of business information maps by logical data maps

Realization of business information areas by logical data areas

Realization of logical data areas by application data areas

Physical level

Realization of business data by physical data

Realization of business information areas by physical data areas

Realization of business information maps by logical data maps

Realization of logical and application data areas by physical data areas

Realization of logical data maps by physical data maps
 The realization of logical data (classes, data views, etc.) by physical
data (tables, table views, etc.) takes place via the synchronization tool.
See Synchronizing logical and physical models.

119

Connecting the Business Concepts to the Logical and Physical architecture
Using Realization Matrices

Creating a Realization Matrix

To create a realization matrix:
1. In the Information Architecture desktop, click on the navigation menu,

then on the data level concerned:
• Business information for the realization of business data
• Logical data for the realization of logical data
• Physical data for the realization of physical data

2. In the navigation pane click Data realization.
3. In the edit area, select the type of matrix to be created (if there are

several) then select New.
The matrix appears in the edit area.

4. Add the data that realizes it in a row and the data realized in a column.
5. To specify that one object realizes another object, click on the cell of the

matrix that connects the two objects in question.

See also: Initializing a Business Dictionary Using Logical or Physical Data

120

121

Data and Database Design

122 HOPEX Information Architecture

175

MODELING DATA DICTIONARIES

Company organizers and architects can describe operations using Hopex Data Governance and
Hopex Data Architecture by modeling data used when implementing business processes and
applications. To this end, Hopex Data Governance and Hopex Data Architecture make
available a number of tools and notations.

Using logical data models, you can build corresponding physical models, that is, create database
tables, with its columns, indexes and keys as well as the relational diagram drawings. See
Synchronizing logical and physical models.

You can also inventory applications that use the modeled logical data. See Use of Data by the
Information System.

 Logical Data Modeling Options
 Overview of Logical Data
 Data Dictionary
 Data Domain Map
 Data Domains and Logical Data Domains
 Logical Data View
 Datatypes
 Class Diagram
 Data Model
 IDEF1X Notation
 I.E. Notation
 Merise Notation

176

LOGICAL DATA MODELING OPTIONS

Formalisms

You can model logical data using two formalisms:
• the data package, to build class diagrams (UML notation)
• the data model, for data diagrams (standard notations, IDEF1X, I.E,

Merise)

To display one of the formalisms:
1. On the desktop, click Main Menu > Settings > Options.
2. In the options navigation tree, expand the HOPEX Solutions > Data-

related Common Features folders.
3. Click Data Formalism.
4. In the right part of the window pane select the formalism(s) that you

want to display.
5. Click OK.

The folders corresponding to the packages and data models appear in the
Architecture navigation pane.

See also: Logical Formalism and Synchronization.

Notations

You have access to a standard data model notation, selected by default. To display
another notation (DEF1X, I.E ou Merise):

1. On the desktop, click Main Menu > Settings > Options.
2. In the options navigation tree, expand the HOPEX Solutions > Data-

related Common Features folder.
3. Click Data Notation.
4. In the right part of the window, select the notations that you want to

display.
5. Click OK.

177

Modeling Data dictionaries
Overview of Logical Data

OVERVIEW OF LOGICAL DATA

The Hopex Data Governance and Hopex Data Architecture solutions each offer a
profile dedicated to the definition of logical data: the Data Designer and the Data
Architect.

Data Dictionary

A data dictionary collects and holds a set of logical data, and provides them with a
namespace.

The data dictionary therefore participates in the organization of data in the Hopex
repository.

See Data Dictionary.

Data Domain Map

A data domain map represents the data domains of a data dictionary and their
dependency links.

See Data Domain Map.

Logical Data Domain

A logical data domain represents a restricted data structure dedicated to the
description of a software Data Store. It is made of classes and/or data views and
can be described in a Data Area Diagram.

For more details, see Data Domains and Logical Data Domains.

To address these specific use cases, you can create Data Views in which you can see
and modify the scope covered by the classes.

Logical Data View

From the perimeter of an object in a data dictionary or a data domain, a logical data
view allows you to define a set of information for a specific use. See Logical Data
View.

178

Data Model

When you choose to work with the “Data Model” formalism, business dictionaries
are represented by data models (not data dictionaries).

See Logical Formalism and Synchronization.

For more details on creating and updating a data model, see Data Model.

Example

The data model of the "Purchase Request Automation" project is presented below.

The application manages purchase requests, orders and
product stock levels in each of the representation offices.

A centralized catalog of products and suppliers is
installed.

Contracts with referenced suppliers are also accessible
from the application.

179

Modeling Data dictionaries
Data Dictionary

DATA DICTIONARY

A data dictionary collects and holds a set of logical data.

It can be broken down into logical data domains. See Logical Data Domain.

Elements of a Data Dictionary

A data dictionary is used to describe all the elements defining your logical data
architecture:

• Data domains
• Classes
• Attributes
• Parts
• etc.

A data dictionary is implemented by a Package that collects data. You can create
sub-packages.

Urgent purchase requests are provided to process purchase
of spare parts and boat rental requests. In both of these
cases, users are actors of the purchasing domain.

 For more details on the use of packages, see the Hopex IT
Architecture guide.

180

Accessing the elements of a data dictionary

To access the elements of a data dictionary in Hopex Data Governance :
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, expand the folder of the data dictionary that interests
you.
Elements that make up the dictionary appear.

Importing logical data

You can import existing logical data into your repository using an Excel file. See
Importing Logical Data from an Excel File.

181

Modeling Data dictionaries
Data Domain Map

DATA DOMAIN MAP

A data dictionary can be split into a set of logical data domains. A data domain map
is used to visualize the dependencies between logical data domains.

Dependency links between domains are automatically deduced from the objects
previously described in each domain of the map.

 For more information on data dictionaries, see Data Dictionary.

Creating a Data Domain Map

You can create a data domain map from the data dictionary it describes.

To create a (logical) data domain map in Hopex Data Governance:
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, under the hierarchy view, expand the Data
Dictionaries folder.

3. Right-click on the data domain and select New > Data Domain Map.
The map appears in the tree.

To create the diagram of the data domain map:
1. Right-click the map and select New Diagram.
2. Select the diagram type Data Domain Map.
3. Click OK.

The diagram appears in the edit area.

Components of a Data Domain Map

You can add internal and external components to a data domain map.

The internal components are data domains that are part of the map scope (whether
they belong to the owner package or not).

The external components are those used in the map but that are not part of the
scope analyzed.

182

DATA DOMAINS AND LOGICAL DATA DOMAINS

Data domains and logical data domains are used to define a logical data structure
made up of classes and class views.

• The data domain is used to describe the data stores of software
(Application system, Application, Application service or Micro Service).

• The logical data domain is used to describe data stores (internal or
external) of logical application systems.

 For more details on how to use data domains in an application
architecture, see the documentation of Hopex IT Architecture >
"Modeling technical and functional architectures".

Both are owned by a package and can reference objects held in other packages.

You can define the access mode (CRUD) to the objects referenced by a data domain
by integrating them as components of the data domain.

 A corresponding physical structure can be defined via a physical
data domain. It is made up of tables and table views. See Modeling
Databases.

Creating a Data Domain

You can create a data domain or logical data domain from the data dictionary it
describes.

To create a logical data domain in Hopex Data Governance:
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, expand the Data Dictionaries folder.
3. Right-click the data dictionary and click New > Data Domain or

Logical Data Domain.
The data domain appears in the tree.

The Data Domain Diagram

Data domains and logical data domains can be described by a diagram.

A data domain diagram is a structure diagram which defines classes and their
relationships in a Whole/Part formalism in connection with the subject of the data
domain described.

You can connect one or more diagrams to a data domain, according to what you
want to describe.

183

Modeling Data dictionaries
Data Domains and Logical Data Domains

Example of diagram

The following data domain diagram represents a data structure relating to Orders;
it describes classes and their relationships in a Whole/Part formalism.

Creating the diagram of a data domain

To create a diagram from a data domain:
1. Right-click the data domain and select New > Diagram.
2. Select the diagram type Data Domain Entity Diagram.
3. Click OK.

Adding an object to the diagram

In the data domain diagram, you can add a new object or connect an existing object.

The objects visible in a data diagram are not automatically linked to the data
domain. A command allows you to define the objects as components of the area.
See Adding a Component to the Data Domain.

Adding a class

To add a new class to a diagram:
1. In the diagram insert toolbar, click Class, then click in the diagram.

The Add A Class dialog box appears.

184

2. Enter the name of the class and click Add.

Add a data view

To add a new data view to a diagram:
1. In the diagram insert toolbar, click Data View, then click in the diagram.

The Add Data View dialog box appears.
2. Enter the name of the data view and click Add.
3. The editor view appears. It is used to define the components of the view.

See Logical Data View.

Adding a Component to the Data Domain

You can connect objects to a data domain through components. A component
references an object (class or class view) and defines the type of access to the
object in question (read-only, modification, deletion, etc.).

The data domain is attached to the package; objects directly created from
components are automatically connected to the package of the data domain.

You can create a component from an object in the diagram or using the properties
of the data domain.

To create a component from an object of the data domain diagram:
 In the diagram, right-click the object in question and select Add to

(name of the data domain).
The name of the component created appears in the properties of the data
domain. By default it has the name of the object that it references.

Defining the access mode to the components (CRUD)

You can specify the access rights to each component of a data domain by defining
the CRUD of the component in question (Create, Read, Update Delete).

To define the CRUD for the component of a data domain:
1. Open the properties window of the data domain.
2. Click the Components page.
3. Select the line of the component in question.

Commands are added, including the CRUD button.
4. Click this button.
5. In the window that opens, select or clear the check boxes for each

action: Create, Read, Update, Delete.

The content of the Data access column is calculated automatically according to the
selected actions. This result appears in object form in the diagram associated with
the data domain.

185

Modeling Data dictionaries
Logical Data View

LOGICAL DATA VIEW

A data view is a selection of classes connected in the specific context of the view,
for a specific use. It is built from the scope covered by a data dictionary element or
data domain element.

 According to the same principle, the design view is used to view the
semantic scope of a business object. For more details, see Concept
View.

Creating a Logical Data View

Creating a logical data view consists of:
• defining source objects concerning the view (a class or a data view)
• defining more precisely the properties of source objects to be taken into

account in the view (attributes, parts)
For example, for order management, you must retrieve the
delivery address available for each client. To take into
account this information only, you will create a view on the
Client class that takes the "Address" attribute only,
without taking into account other attributes that can
contain the Client class.

Using the source objects (left tree), you can define embedded components and
referenced components in the view.

An embedded component specifies that all the information that comprises the
source object is to be taken into account when using the view (for example, the

186

parts and the attributes associated with a class). A referenced component
references only the object in the view.

Creating a data view (from a list of views)

To create a data view in Hopex Data Governance:
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, expand the Data Dictionaries folder.
3. Right-click the data dictionary and click New > Data View.

The data view creation window opens.
4. To specify the source object in the data view, click New.
5. In the dialog box that appears, enter:

• the Type of object concerned by the view.
• The Source object for the data view.

6. Click Add.
7. Repeat the procedure to add other source object if necessary.
8. Click OK.

The new view appears in the list of data views.

Creating a data view directly from an object

You can define the source object of a view by creating the view directly on the object
in question.

 You can subsequently add another object to the view.

To create a data view on an object:
1. Right-click the object concerned and select New > Data view.

The data view creation wizard opens.
2. Enter the name of the view.
3. If appropriate, enter the name of the owner.
4. Click OK.

The editor view appears.

187

Modeling Data dictionaries
Logical Data View

Displaying Source Objects in the Data View

Example

Class

Attribute

Part

Part (composing
class)

Part (composed
class)

Logical model Logical data view

188

Defining the Data View Components

Embedded component

An embedded component brings all the information that makes up the object into
the view (for example, the parts and the attributes associated with a class).

To add an embedded component to the view:
1. Open the data view.
2. On the source object side, select the element to add to the data view.

3. Under the Action column, click Add a View Inclusion
Component.
The object appears to the right of the view editor.

Referenced component

By referencing a component in the view, you can display the object in the view,
without embedding all its properties.

You can reference the objects that contain a certain amount of information, such as
classes, in the view. For attributes, only the inclusion button is available.

To reference an object in the view:
1. Open the data view.
2. On the source object side, select the element to add to the data view.

3. Under the Action column, click Add a View Referencing
Component.
The object appears to the right of the view editor.

189

Modeling Data dictionaries
Logical Data View

Using a view in another view

When you embed a class in a data view, all the attributes of the class are added by
default to the view. You can limit the list of attributes to those already defined in a
view.

Below, only the attributes defined in the "Customer" view
(Account Id and Address) are added to the "Order" view.

To add a data view (source) to a data view (target) :
1. Open the target data.
2. On the left part, expand the class concerned by the source view to be

added.
 The source view has been previously embedded in the target view.

3. Select the source view and under the Action column, click Add a
View.
The view associated with the class appears in the right part of the view
editor, under the name of the class in question.

190

CLASS DIAGRAM

Hopex Data Governance and Hopex Data Architecture provides two formalisms
to describe logical data:

• the data package (represented by a data dictionary), to build class
diagrams (UML notation)

• the data model, for data diagrams (standard notations, IDEF1X, I.E,
Merise) See Data Model.

Data description in UML notation is carried out in a class diagram.

Creating a Package

A package (or data dictionary) partitions the domain and the associated work. It is
designed to contain the modeled elements. Graphical representation of all or of
certain of these elements is in a class diagram.

A database can be connected to a data model from the time of its creation. It is on
this database that the different data processing tools can then be run (generation,
synchronization etc.). The database package is the default owner of the classes and
associations represented in the class diagram.

See also: Data Dictionary.

Creating a package (data dictionary)

To create a package with Hopex Data Governance:
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, right-click the Data Dictionaries folder and click New
> Package.

3. Enter the name of the package.
4. Click OK.

Connecting a Package to a Database

To create a package from a database:
1. Click the Architecture > Databases navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, under the Databases folder, select the desired
database.

3. Click the associated Properties button.
4. In the database properties, click the Characteristics page.
5. Expand the Data Package section.
6. Click New.
7. Enter the name of the package and click OK.

191

Modeling Data dictionaries
Class Diagram

To connect an existing package to a database:
1. In the database properties, click the Characteristics page.
2. Expand the Data Package section.
3. Click Connect.

The query dialog box appears.
4. Click the Search button.
5. Select the package and click OK.

Creating a Class Diagram

A class diagram is used to represent the static structure of a system, in particular
the types of objects manipulated in the system, their internal structure, and the
relationships between them.

A class diagram includes:
• Classes, which represent the basic concepts (client, account, product,

etc.).
• Parts, which define the relationships between the different classes.
• Attributes which define the characteristics of classes.
• Operations, which can be executed on objects of the class.

 Operations are not taken into account by Hopex Data
Architecture tools (synchronization, generation etc.).

To create the class diagram of a package in Hopex Data Governance:
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, expand the Data Dictionaries folder.

3. Move the mouse over the dictionary and click the Create a Diagram
button on the right.

4. Select the Class Diagram diagram type.
5. Click OK.

The new class diagram opens.

Note that when you create a package from a database, a class diagram is
automatically created at the same time.

For more details on building a class diagram, see The Class Diagram.

192

DATATYPES

A datatype is used to group characteristics shared by several attributes. Datatypes
are implemented in the form of classes.

A data type package is a reference package containing data types used by the
enterprise. Other packages are declared as clients of one of the data type packages.

Data Type Packages

A datatype defines the type of values that a data can have. This can be simple
(whole, character, text, Boolean, date, for example) or more elaborate and
composite.

To type attributes of an entity, only datatypes defined for the data model that
contains this entity are proposed.

When you create a data model, the “Datatype Reference” datatype package is
automatically associated with it by default.

This "Datatype Reference" package owns datatypes "Address", "Code", "Date", etc.

193

Modeling Data dictionaries
Datatypes

Opening the explorer on this datatype package, you can see that is is referenced by
several data models.

The attributes of entities of these models can therefore be typed using the datatypes
“Address”, “Code”, “Date”, etc.

Creating a New Datatype Package

You can define a new reference datatype package owning the datatypes used by the
enterprise.

To create your own datatype package in Hopex Data Governance:
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Dictionaries > Hierarchy
navigation menu.

2. In the edit area, right-click the Data Dictionaries folder and click New.
3. Enter the package name and click OK.
4. Open the properties of the package.
5. Click the Characteristics page.
6. Select the “Datatype Package” stereotype.

You can then add types to this package.

194

Creating a datatype

To create a datatype:
1. Open the Properties of the package.
2. Click the Data Types page.
3. Click New.

The datatype creation dialog box opens.
4. Enter the name of the datatype and click OK.

Compound datatype

You can create compound datatypes by adding to them a list of attributes, for
example an "Address" type comprising number, street postal code, city and country.

Literal value

You can allocate to a datatype literal values that define the values it can take.
Attributes based on such a datatype can take only those values defined by the
datatype.

When the new datatype package has been created, it should be referenced on the
client data model.

Referencing Datatype Packages

To connect a datatype package to a data dictionary or data model:
1. Open the properties of the data dictionary or data model.
2. Click the Characteristics page.
3. Under the Reference section, use the first arrow to select Datatype

Package.
4. With the second arrow, click Connect Datatype Package.

The query dialog box appears.
5. Click the Find button.
6. Select the desired package and click OK.

Assigning Types to Attributes

When the datatype package has been referenced for a data dictionary or a data
model, the list of types it contains is available on each attribute of the dictionary
classes or model entities. All that is required is to select the one that is suitable.

To define the type of an attribute:
1. Open the properties of the class or the entity concerned.
2. Click the Attributes page.
3. In the Datatype (DM) column corresponding to the attribute, select the

desired type in the list.

See also Data Types and Column Datatypes.

195

Modeling Data dictionaries
Data Model

DATA MODEL

Data modeling consists of identifying the entities representing the activity of the
company, and defining the associations existing between them. The entities and
associations in the data diagram associated with a sector of the company must be
sufficient to provide a complete semantic description. In other words, one should be
able to describe the activity of a company by using only these entities and
associations.

This does not mean that each word or verb used in this explanation corresponds
directly to an object in the data diagram. It means that one must be able to state
what is to be expressed using these entities and associations.

Data model specification is often considered the most important element in
modeling of an information system.

To help you describe logical data, Hopex Data Governance and Hopex Data
Architecture offers a simple notation, based on the data model.

Summary of Concepts

Data Model

A data model is used to represent the static structure of a system, particularly the
types of objects manipulated in the system, their internal structure, and the
relationships between them.

A data model is a set of entities with their attributes, the associations existing
between these entities, the constraints bearing on these entities and associations,
etc.

Data diagram

A data diagram is a graphical representation of a model or of part of a model.

A data diagram is represented by:
• Entities, which represent the basic concepts (customer, account, product,

etc.).
• Associations, which define the relationships between the different

entities.
• Attributes, which describe the characteristics of entities and, in certain

cases, of associations.

The attribute or set of attributes that enables unique identification of an entity is
called an identifier.

The data diagram also contains multiplicity definitions.

196

Building a Data Model

Data Models are available with the following profiles:
• Hopex Data Governance: Data Designer and Data Governance

Functional Administrator
• Hopex Data Architecture: Data Architect and Data Functional

Administrator

Prerequisite

To use the Merise notation, you must select the corresponding option:
1. On the desktop, click Main Menu > Settings > Options.
2. In the options navigation tree, expand the HOPEX Solutions > Data-

related Common Features folder.
3. Click Data Formalism.
4. In the right-hand side of the window, select the Data models notation.
5. Click OK.

Creating a Data Model

To create a data model in Hopex Data Governance:
1. Click the Architecture > Data Models navigation menu.

 In Hopex Data Architecture, click the Data Models navigation
menu.

2. In the edit area, click the Hierarchy View.
3. Click the New button.
4. In the dialog box that appears, enter the name of the data model, and an

owner if necessary.
5. Click OK.

The data model created appears in the list of data models.

Creating a Data Diagram

A data diagram is a graphical representation of a model or of part of a model.

A data diagram is represented by:
• Entities, which represent the basic concepts (customer, account, product,

etc.).
• Associations, which define the relationships between the different

entities.
• Attributes, which describe the characteristics of entities and, in certain

cases, of associations.

The attribute or set of attributes that enables unique identification of an entity is
called an identifier.

The data diagram also contains multiplicity definitions.

197

Modeling Data dictionaries
Data Model

To create a data diagram:
1. Move the mouse over the data model and click the Create a Diagram

 button on the right.
2. Select the Data Structure type.

The diagram appears.

Datatypes

A type is used to group characteristics shared by several attributes.

When you create a data model, the "Datatype Reference" datatype package is
automatically connected with it by default. The list of datatypes it contains is
available on each attribute of entities of the model. You can however assign to it
another datatype package.

The reference datatype package of a data model is displayed in the properties dialog
box of the model, in the Characteristics tab.

For more information, see Data Type Packages.

Entities

 An entity groups objects that share the same characteristics and
have similar behavior. Entities are management elements considered
useful for representing enterprise activity, and are therefore reserved
for this purpose. They may, for example, have corresponding tables in a
database.

An entity is described by a list of attributes.

An entity is linked to other entities via associations. The set of entities and
associations forms the core of a data model.

We can illustrate the entity concept by comparing entities to index cards filed in
drawers.

198

Entities can represent management objects.
Examples: Customer, Order, Product, Person, Company, etc.

Entities can represent technical objects used in industry.
Examples: Alarm, Sensor, Zone

Creating an entity

To create an entity:

1. In the data diagram insert toolbar, click the Entity button
2. Click in the diagram.

The Add Entity (DM) dialog box opens.
3. Enter the entity Name.

 When the OK or Create buttons are grayed, this is because the
requirements for the dialog box in which they appear have not been
completed.

4. Click Add.
The entity appears in the diagram.

 You can create several entities successively without having to click
the toolbar each time. To do this, double-click the Entity button. To
return to normal mode, press <Esc>, or click on another button in the
toolbar such as the arrow.

Attributes

Entities and associations can be characterized by attributes.

199

Modeling Data dictionaries
Data Model

These attributes can be found by studying the content of messages circulating
within the enterprise.

 An attribute is a named property of a class.

Examples:
• "Client Name" (property of the client entity).
• “Client No.” (identifier of the client entity).
• “Account Balance” (property of the account entity).

An attribute characterizes an association when the attribute depends on all the
entities participating in the association.

In the diagram below, the role that a “Consultant” plays in a “Contract” depends on
the consultant and on the contract, and therefore on the “Intervene” association.

Creating attributes

To create an attribute on an entity:
1. Right-click the entity and select Properties.

The entity properties dialog box opens.
2. Click the drop-down list then Attributes.

The Attributes page appears.
3. Click the New button.

A default name is automatically proposed for the new attribute. You can
modify this name.

4. Click OK.

You can specify its Data type.
Example: Numeric value.

 See Data Types and Column Datatypes for more details on data
types that can be assigned to an attribute.

Inherited attributes

When a generalization exists between a general entity and a more specialized entity,
the specialized entity inherits the attributes of the general entity.

See Generalizations.

Associations

 An association is a relationship existing between two classes.

200

Associations can be compared to links between index cards.

The following drawing provides a three-dimensional view of the situations a data
diagram can store.

Peter and Mary are clients. Peter has made reservations numbers 312 and 329.

A data diagram should be able to store all situations in the context of the company,
but these situations only.

 The diagram should not allow representing unrealistic or aberrant
situations.

201

Modeling Data dictionaries
Data Model

Examples of associations:
• A client issues an order.
• An order includes several products.

• A person works for a company.

• An alarm is triggered by a sensor.
• A sensor covers a zone.
• A window displays a string of characters.

Creating an Association

To create an association:

1. In the data diagram objects toolbar, click the Association button.
2. Click one of the entities concerned, and holding the mouse button down,

drag the mouse to the other entity, before releasing the button.
A line appears in the diagram to indicate the association.

3. To specify the association name, right-click the association and select
Properties.

 Make sure you click on the line indicating the association and not
one of the roles located at the ends of the association.

4. In the Characteristics page, in the Local Name field, enter the
association name.

5. Click OK.

202

Example

You can also delete an element or link you created in error by right-clicking it and
selecting Delete.

Defining association roles (ends)
 A role enables indication of one of the entities concerned by the
association. Indication of roles is particularly important in the case of an
association between an entity and itself.

Each end of an association specifies the role played by the entity in the association.

The role name is distinguished from the association name in the drawing by its
position at the link end. In addition, the role name appears in a normal font, while
the association name is italicized.

 The status bar (located at the bottom of the window) also allows
identification of the different zones: when you move your mouse along
the association, it indicates if you are on an association or on a role.

When two entities are linked by only one association, the names of the entities are
often sufficient to describe the role. Role names are useful when several
associations link the same two entities.

203

Modeling Data dictionaries
Data Model

Multiplicities

Each role in an association has an indicated multiplicity to specify how many objects
in the entity can be linked to an object in the other entity. Multiplicity is information
related to the role and is specified as a completely bounded expression. This is
indicated in particular for each role that entities play in an association.

Multiplicity specifies the minimum and maximum number of instances of an entity
that can be linked by the association to each instance of the other entity.

The usual multiplicities are "1", "0..1", "*" or "0..*", "1..*", and "M..N" where "M"
and "N" are integers:

• The “1” multiplicity indicates that each object of the entity is linked by
this association once and once only.

• The “0..1” multiplicity indicates that at most one instance of the entity
can be linked by this association.

• The "*" or "0..*" multiplicity indicates that any number of instances of
the entity can be linked by the association.

• The "1..*" multiplicity multiplicity indicates that at least one instance of
the entity is linked by the association.

• The “M..N” multiplicity indicates that at least M instances and at most N
instances of the entity are linked by the association.

Example:

1 One and one only

0..1 Zero or one

M..N From M to N (natural integer)

* From zero to several

0..* From zero to several

1..* From one to several

0..1 An order corresponds to zero or at most one invoice.

* No restriction is placed on the number of invoices corresponding to an order.

1 Each order has one and only one corresponding invoice.

1..* Each order has one or more corresponding invoices.

204

Other examples of multiplicity:

To specify role multiplicity:
1. In the data diagram, right-click the line between the association and the

entity, to open the pop-up menu for the role.
2. Click Properties.

The Properties window of the role opens.
3. Click the drop-down list then Characteristics.
4. In the Multiplicity field, select the required multiplicity.

The representation of the association changes according to its new multiplicities.

1..* A client can issue one or more orders.

1 An order is issued by one and only one client.

1..* An order contains one or more products.

* A product can be contained in any number of orders, including no orders.

0..1 A person works for a company.

1..* An alarm is triggered by one or more sensors.

1 A sensor covers one and only one zone.

1..* A window displays one or more strings.

205

Modeling Data dictionaries
Data Model

Aggregation

Aggregation is a special form of association, indicating that one of the entities
contains the other.

Example of aggregation:
A car includes a chassis, an engine, and wheels.

To define the aggregation between the "Car" and "Motor" entities:
1. Right-click the role played by the "Car" entity in its association with the

"Motor" entity and select Properties.
Role properties appear.

2. Click Characteristics.
3. In the Whole/Part field, select "Aggregate".

A diamond now appears on the role, representing the aggregation.

Composition

A composition is a strong aggregation where the lifetime of the components
coincides with that of the composite. A composition is a fixed aggregation with a
multiplicity of 1.

Example of composition:
An order consists of several order lines that will no longer
exist if the order is deleted.

206

Composition is indicated by a black diamond.

To specify composition of a role:
1. Right-click the role and select Properties.

Role properties appear.
2. Click the drop-down list then Characteristics.
3. In the Whole/Part field, select "Composite".

Reflexive Associations

Certain associations use the same entity several times.

A classroom, a building, and a school are all locations.

A classroom is contained in a building, which is contained in a school.

A reflexive association concerns the same entity at each end.

207

Modeling Data dictionaries
Data Model

To create a reflexive association:

1. In the data diagram objects toolbar, click the Association button.
2. Select the entity concerned and drag the mouse outside the entity, then

return inside it and release the mouse button.
The reflexive association appears in the form of a half-circle in a broken
line.

 If there is association of an entity with itself, the roles need to be
named in order to distinguish between the corresponding links in the
drawing.

Below, “Parent” and “Child” are the two roles played by the “Person” entity in the
association.

 A role enables indication of one of the entities concerned by the
association. Indication of roles is particularly important in the case of an
association between an entity and itself.

You can segment a line by adding joints to modify its path. You can in particular
segment a role to avoid an obstacle for example. You can also change the line to a
curve.

“N-ary” Association

Certain associations associate more than two entities. These associations are
generally rare.

208

Example: When taking inventory, a certain quantity of product was counted in each
warehouse.

To create a ternary association:
1. In the data diagram, create the association between two entities.

2. Click the Association Role button and connect the third entity to
the association.

Constraints

 A constraint is a declaration that establishes a restriction or
business rule that must be applied on execution of processing.

Most constraints involve associations between entities.

Examples of constraints:
The person in charge of a department must belong to the
department.

Any invoiced order must already have been delivered.

The delivery date must be later than the order date.

A sensor covering a zone can trigger an alarm for that zone
only.

To create a constraint:

1. In the diagram insert toolbar, click the Constraint button.
2. Then click one of the associations concerned by the constraint, and drag

the mouse to the second association before releasing the mouse button.
The Add constraint dialog box opens.

209

Modeling Data dictionaries
Data Model

3. Enter the name of the constraint, then click Add.
The constraint then appears in the drawing.

 Save your work regularly using the Save button

Normalization Rules

Normal forms are rules that are designed to avoid modeling errors. Currently, there
are six or seven normal forms. We will discuss the first three.

First Normal Form

If the number of vehicles is an attribute of the “Reservation” entity, you can only
indicate the total number of vehicles for a reservation. You must therefore make one
reservation per category of rental vehicle (multiplicity of 1).

Rule: The value of an attribute is uniquely set when the object(s) concerned are known.

210

If the number of vehicles is an attribute of the association, you can specify the
number of vehicles reserved for each category in the association. You can therefore
make a single reservation for several categories of vehicles (multiplicity of 1..N).

Second Normal Form

If the car category is an attribute of the “Car Contract” association, this assumes
that the car category may change from one contract to the next, which would not
be very honest.

If the car category is to be independent of the contract, it must be an attribute of
the “Car” entity.

Third Normal Form

Rule: The value of an association attribute is set only when all the entities concerned are
known.

Rule: An attribute depends directly and uniquely on the entity it describes.

211

Modeling Data dictionaries
Data Model

If the “Category Price List” is an attribute of the “Car” entity, this indicates that two
cars in the same category can have a different “Category Price List”.

To avoid this, we need to create a “Category” entity that contains the price list.
 This rule is used to reveal concepts that were not found during the
first draft of the data diagram.

Generalizations

What is a generalization?
 A generalization represents an inheritance relationship between a
general entity and a more specific entity. The specific entity is fully
consistent with the general entity and inherits its characteristics and
behavior. It can however include additional attributes or associations.
Any object of the specific entity is also a component of the general
entity.

212

Entity A is a generalization of entity B. This implies that all objects in entity B are
also objects in entity A. In other words, B is a subset of A. B is then the sub-entity,
and A the super-entity.

Example:

A: Person, B: Bostonian.

B being a subset of A, the instances of entity B "inherit" the characteristics of those
in entity A.

It is therefore unnecessary to redescribe for entity B:
• Its attributes
• Its associations

Example:

The “Large Client” entity, representing clients with a 12-
month revenue exceeding $1 million, can be a specialization
of the Client entity (origin).

213

Modeling Data dictionaries
Data Model

In the above example, the associations and attributes specified for “Client” are also
valid for “Large client”.

Other examples of generalizations:

"prospect" and "client" are two sub-entities of "person".

"export order" is a sub-entity of the "order" entity.

"Individual person" and "corporate person" are two sub-
entities of the "person" entity.

"polygon", "ellipse" and "circle" are sub-entities of the
"shape" entity.

"oak", "elm" and "birch" are sub-entities of the "tree"
entity.

"motor vehicle", "off-road vehicle" and "amphibious
vehicle" are sub-entities of the "vehicle" entity.

"truck" is a sub-entity of the "motor vehicle" entity.

Multiple sub-entities

Several sub-entities of the same entity:
• are not necessarily exclusive.
• do not necessarily partition the set.

214

Advantages of sub-entities

A sub-entity inherits all the attributes and associations of its super-entity, but can
have attributes or associations that the super-entity does not have.

A sub-entity can also have specific attributes. These only have meaning for that
particular sub-entity. In the above example:

• "Registry number" and "number of employees" only have meaning for a
"company".

• "Date of birth" is a characteristic of a "person", not a "company".

A sub-entity can also have specific associations.

• A "person" falls into a "socio-professional group": “manager”,
“employee”, “shopkeeper”, “grower”, etc. This classification makes no
sense for a “company”. There is also a classification for companies, but
this differs from the one for persons.

Multiple inheritance

It is sometimes useful to specify that an entity has several super-entities. The sub-
entity inherits all the characteristics of both super-entities. This possibility should be
used carefully.

215

Modeling Data dictionaries
Data Model

Creating a generalization

To create a generalization:

1. In the data diagram insert toolbar, click the Generalization button.
2. Click the sub-entity, in this example "Entity 5", and drag the mouse to

the general entity, in this example "Entity 3", then release the button.
The generalization is now indicated in the diagram by an arrow.

Discriminator

The discriminator is the general entity attribute whose value partitions the objects
into the sub-entities associated with the generalization.

For example, the gender code attribute divides the objects in the person entity into
the man and woman sub-entities.

To create a discriminator on a generalization:
1. Open properties of the generalization.
2. Click the drop-down list then Characteristics.
3. In the Discriminator field, click the arrow and select Connect

Attribute (DM).

216

4. Find ans select the discriminator among the super-entity attributes.
Once selected, the discriminator is displayed on the generalization.

 You can also indicate if the generalization is Complete: in this case
all instances of the generic entity belong to at least one of the category
entities of the generalization.

Entity Identifier

Each object has an identity that characterizes its existence. The identifier provides
an unambiguous way to distinguish any object in an entity. It is one way to
distinguish between two objects with identical attribute values.

 An identifier consists of one or several mandatory attributes or
roles that enable unique identification of an entity.

Customer number 2718 executes Reservation number 314159.

Each entity has a unique identifier whose value can be used to find each of its
instances.

By default, the identifier is implicit. In this case a primary key will be automatically
generated from the entity name.

Identification by an attribute

It is also possible to select one of the attributes of the entity as its identifier. To do
this:

1. Open properties of the entity.

217

Modeling Data dictionaries
Data Model

2. Click the Attributes page.
The list of attributes appears.

3. For the chosen attribute, select "Yes" in the Identifier column.

Data Model Mapping

Data modeling reflects the activity of an enterprise and is based on business
function history. Differences observed between models are generally cultural or
linked to conventions that vary from one person to another and over time. In
addition, in expressing a business function requirement, the modeler must take
account of what already exists and reconcile different views of the same reality.

Mapping of data models simplifies alignment of this heterogeneous inheritance on a
common semantic base.

Functional Objectives

Distinguishing enterprise definitions and business function data

To ensure consistency of business function data, modelers can refer to enterprise
definitions serving as the reference framework.

Data model mapping establishes a distinction between enterprise level definitions
and business data, while assuring traceability. The Dictionary tool supplements this
approach, enabling compilation of business function vocabulary structured as a
dictionary.

Integrating existing models

Existing models describing applications assets must be taken into account when
creating new models or at the time of a revision project. Requirements vary
according to use cases:

• "As-is to-be" type approach: development of a data model is progressive
and is based on a stable reference state, which generally corresponds to
data of the system in production.

• Software package installation: each software package (PGI, CRM, etc.)
imposes its data model, encouraging a trend towards fragmentation and
compartmentalization of the IS. Hence the need to have an independent
model, linked to the different imposed models.

Mapping of data models is a means of bringing together the data models from
different sources.

Use case

A typical case of data mapping occurs in the context of exchanges between
applications, each with their own data models. When the number of applications
becomes too high, you can install a reference pivot model that will serve as
intermediary between the applications and thus avoid multiplication of mappings.

218

Running the mapping editor

The mapping editor tool is used to align two data models or to map the logical and
physical view of a database. It comprises a mapping tree that juxtaposes the views
of two models.

You can run the mapping editor from:
• Hopex navigation menu
• A data model
• A data package
• A database

To run the mapping editor from the navigation:
1. Click the Tools > Mapping Editor navigation menu.

A dialog box appears.
2. Leave the Create Mapping Tree default option selected and click Next.
3. Indicate the name of the new mapping tree.
4. In the Nature list box, select the nature of the tree.
5. In the Left Object and Right Object frames, from the object types

concerned, select the models you wish to align.
6. Click OK.

The editor displays the mapping tree juxtaposing the two models.

When the mapping tree has been created, you can subsequently find it in the
mapping editor.

Creating a mapping

To create a mapping between two objects:
1. In the mapping editor, successively select the two objects concerned.
2. Click the Create mapping item button.

The mapping is created from the last object selected.

Deleting a mapping

To delete a mapping on an object:
 Select the object in question and click the Delete mapping item

button.

Mapping details

Objects with mappings are ticked green. When you select one of these objects in
the mapping tree, its mapping appears in the details window, which by default is at

219

Modeling Data dictionaries
Data Model

the bottom of the mapping editor. It groups the names of connected objects, the
object types and comments where applicable.

Mapping properties

To view mapping properties:
 In the editor details window, select the mapping item and click the

Properties button.

Object status

Indicators enable indication of status of synchronized objects.

Object status can be characterized as:

 Valid

 Invalid (when an object has kept a mapping to an object that no longer exists)

 No mapping

Mapping source

When you select an object in the tree of one of the models in the editor, you can
find its mapping in the other model .

220

To display an object mapping:
1. Select the object in question.

If there is a mapping item for the object, it is displayed at the bottom of
the mapping editor.

2. Select the mapping item and click the Locate button
The mapped objects appear in bold in the editor.

Example of mapping between data models

Different modeling levels can cover distinct requirements. Take the example of two
data models. A business function data model "Order Management (DM)" is at
conceptual level. It describes at business function level how orders should be
managed.

At logical level, the "Order Management (Agency)" data model presents an
operational view of IS system data specific to each agency.

We find identical concepts in each of the models. These are however distinct objects.

You can map the two data models to favor cohesion between the business function
requirements and the systems that support them.

To do this:
1. Open the Mapping Editor.
2. Create a mapping tree.
3. Select the two models to be aligned.
4. Click OK.

The editor displays the mapping tree juxtaposing the two models.
5. Create mappings between similar objects and then save.

When models have been mapped, you will know which logical objects is attached to
business function objects. You can also analyze the impact of changes carried out
at business function level on operational level and vice versa.

221

Modeling Data dictionaries
IDEF1X Notation

IDEF1X NOTATION

About Data Modeling with IDEF1X

Modeling data consists of identifying management objects (entities) and the
associations or relationships between these objects, considered significant for
representation of company activity.

IDEF1X is used to produce a graphical information model which represents the
structure and semantics of information within an environment or system or an
enterprise. Use of this standard permits the construction of semantic data models
which may serve to support the management of data as a resource, the integration
of information systems, and the building of computer databases.

A principal objective of IDEF1X is to support integration. The IDEF1X approach to
integration focuses on the capture, management, and use of a single semantic
definition of the data resource referred to as a “Conceptual Schema.” The
“conceptual schema” provides a single integrated definition of the data within an
enterprise which is unbiased toward any single application of data and is
independent of how the data is physically stored or accessed. The primary objective
of this conceptual schema is to provide a consistent definition of the meanings and
interrelationship of data which can be used to integrate, share, and manage the
integrity of data. A conceptual schema must have three important characteristics:

• It must be consistent with the infrastructure of the business and be true
across all application areas.

• It must be extendable, such that, new data can be defined without
altering previously defined data.

• It must be transformable to both the required user views and to a variety
of data storage and access structures.

The basic constructs of an IDEF1X model are:
• Things about which data is kept, eg., people, places, ideas, events, etc.,

represented by a box;
• Relationships between those things, represented by lines connecting the

boxes; and
• Characteristics of those things represented by attribute names within the

box.

Summary of Concepts

In Hopex Data Governance and Hopex Data Architecture, a data model
(IDEF1X) is represented by:

• Entities, which represent the basic concepts (client, account, product,
etc.).

• Associations, which define relationships between the different entities.
• Attributes which define the characteristics of entities.

222

The attribute that enables unique identification of an entity is called an identifier.

The data model is completed by definition of multiplicities (or cardinalities).

Creating a Data Model (IDEF1X)

Data Models are available with the following profiles:
• Hopex Data Governance: Data Designer and Data Governance

Functional Administrator
• Hopex Data Architecture: Data Architect and Data Functional

Administrator

Prerequisite

To use the IDEF1X notation, you must select the corresponding option:
1. On the desktop, click Main Menu > Settings > Options.
2. In the options navigation tree, expand the HOPEX Solutions > Data-

related Common Features folders.
3. Click Data Notation.
4. In the right-hand side of the window, select the IDEF1X notation:
5. Click OK.

Creating a Data Model

To create a data model in Hopex Data Governance:
1. Click the Architecture > Data Models navigation menu.
2. In the edit window, click the Hierarchy View.

 In Hopex Data Architecture, click the Data Models navigation
menu.

3. To the right of the Data Model Hierarchy folder, click the + New
button.
The data model mapping creation dialog box opens.

4. Enter the name of the model.
5. Click OK.

The data model appears in the list of data models.

Data Diagram (IDEF1X)

A data diagram is a graphical representation of a model or of part of a model.

To create a data diagram:
1. Move the mouse over the data model and click the Create a Diagram

 button on the right.
2. Select the Data Diagram (IDEF1X) diagram type.

The diagram appears.

223

Modeling Data dictionaries
IDEF1X Notation

Entities (IDEF1X)

 An entity groups objects that share the same characteristics and
have similar behavior. Entities are management elements considered
useful for representing enterprise activity, and are therefore reserved
for this purpose. They may, for example, have corresponding tables in a
database.

You can compare the entity concept to sheets in files for example.

An entity represents a particular object class, of which all instances can be described
in the same way.

An entity is “independent” if each instance of the entity can be uniquely identified
without determining its relationship to another entity. An entity is “dependent” if the
unique identification of an instance of the entity depends upon its relationship to
another entity.

An entity is represented as a box. If the entity is identifier-dependent, then the
corners of the box are rounded.

Creating an entity

To create an entity:

1. Click the Entity button in the diagram objects toolbar.
2. Click in the diagram.

The Add Entity (DM) dialog box opens.
3. Enter the entity name.
4. Click Create (Windows Front-End) or Add(Web Front-End).

The entity appears in the diagram.

Attributes
 An attribute represents a type of characteristic or property
associated with a set of real or abstract things. An instance of an entity
will usually have a single specific value for each associated attribute. An
attribute or a combination of attributes can be an identifier when
selected as a means of identification of each instance of an entity.

224

Examples of attributes:
• "Client Name" (property of the client entity).
• “Client No.” (identifier of the client entity).
• “Account Balance” (property of the account entity).

Defining attributes

To create an attribute:
1. Right-click the entity and select Properties.

The entity properties dialog box opens.
2. Select the Attributes tab.

3. To add a new attribute to the entity, click button .
A default name is automatically proposed for the new attribute. You can
modify this name.

You can specify its Data type.
Example: Numeric value.

 A datatype is used to group characteristics shared by several
attributes. Datatypes are implemented in the form of classes.
 See Data Types and Column Datatypes for more details on data
types that can be assigned to an attribute.

Inherited attributes

When a categorization relationship (generalization) exists between a general entity
and a more specialized entity, the specialized entity inherits the attributes of the
general entity.

See Generalizations.

Specifying the entity identifier

To specify the entity identifier:
1. Open the properties window of the entity.
2. Select the Attributes tab.
3. For the chosen attribute, select "Yes" in the Identifier column.

 For more details, see Entity Identifier.

Associations (IDEF1X)

 An association is a relationship existing between two classes.

225

Modeling Data dictionaries
IDEF1X Notation

Associations can be compared to links between index cards.

The following drawing provides a three-dimensional view of the situations a data
diagram can store.

Peter and Mary are clients. Peter has made reservations numbers 312 and 329.

A data diagram should be able to store all situations in the context of the company,
but these situations only.

 The diagram should not allow representing unrealistic or aberrant
situations.

226

Examples of associations:
• A client issues an order.
• An order includes several products.

• A person works for a company.

• An alarm is triggered by a sensor.
• A sensor covers a zone.
• A window displays a string of characters.

Mandatory identifying relationship
 A mandatory identifying relationship is an association between
entities in which each instance of one entity is associated with zero, one
or more instances of the second entity and each instance of the second
entity is associated with one instance of the first entity and identified by
this association. The second entity is always an identifier-dependant
entity represented by a rounded corner box. The identifying relationship
is represented by a solid line with a dot at the dependant entity end of
the line.

If an instance of the entity is identified by its association with another entity, then
the relationship is referred to as an “identifying relationship”, and each instance of
this entity must be associated with exactly one instance of the other entity. For
example, if one or more tasks are associated with each project and tasks are only
uniquely identified within a project, then an identifying relationship would exist
between the entities "Project" and "Task". That is, the associated project must be
known in order to uniquely identify one task from all other tasks (For more details,
see Composite identifier). The child in an identifying relationship is always
existence-dependent on the parent, ie., an instance of the child entity can exist only
if it is related to an instance of the parent entity.

To create an identifying relationship:
1. In the diagram objects toolbar, click the Mandatory identifying

relationship button
2. Click the parent entity, and holding the mouse button down, drag the

mouse to the child entity before releasing the button.

227

Modeling Data dictionaries
IDEF1X Notation

The association appears in the diagram. It is represented by a solid line with a dot
at the dependent entity end of the line. The shape of the dependent entity is
automatically changed to a rounded corner box.

Mandatory Identifying Relationship

In the above example, an order is composed of order lines, and each order line is
identified through its association with the order. The order line is a dependent entity
represented by a rounded corner box.

Mandatory non-identifying relationship
 A mandatory non-identifying relationship is an association between
entities in which each instance of one entity is associated with zero, one
or more instances of the second entity and each instance of the second
entity is associated with one instance of the first entity but not identified
by this association. It is represented by a dashed line with a dot at the
dependant entity end of the line.

If every instance of an entity can be uniquely identified without knowing the
associated instance of the other entity, then the relationship is referred to as a “non-
identifying relationship.” For example, although an existence-dependency
relationship may exist between the entities "Buyer" and "Purchase Order", purchase
orders may be uniquely identified by a purchase order number without identifying
the associated buyer.

To create a non-identifying relationship:
1. In the diagram objects toolbar, click the Mandatory non-identifying

relationship button
2. Click the parent entity, and holding the mouse button down, drag the

mouse to the child entity before releasing the button.
The association appears in the diagram.

Mandatory Non-Identifying Relationship

In the above example, an order include one article, but is not identified through its
association with the article.

228

Mandatory Non-Identifying Relationship
 An optional relationship is an association between entities in which
each instance of one entity is associated with zero, one or more
instances of the second entity and each instance of the second entity is
associated with zero or one instance of the first entity. It is represented
by a dashed line with a dot at the second entity end of the line and a
small diamond at the other end.

In an optional non-identifying relationship, each instance of the child entity is
related to zero or one instances of the parent entity.

An optional non-identifying relationship represents a conditional existence
dependency. A dashed line with a small diamond at the parent end depicts an
optional non-identifying relationship between the parent and child entities.

An instance of the child in which each foreign key attribute for the relationship has
a value must have an associated parent instance in which the primary key attributes
of the parent are equal in value to the foreign key attributes of the child.

To create an optional non-identifying relationship:
1. In the diagram insert toolbar, click the Optional relationship button

.
2. Click the parent entity, and holding the mouse button down, drag the

mouse to the child entity before releasing the button.
The association appears in the diagram.

Optional relationship

In the above example, an order should be invoiced to a client, but it is not
mandatory (delivery problems, etc.).

non-specific relationship
 A non-specific relationship is an association between entities in
which each instance of the first entity is associated with zero, one or
many instances of the second entity and each instance of the second
entity is associated with zero, one or many instance of the first entity. It
is depicted as a line drawn between the two associated entities with a
dot at each end of the line.

Non-specific relationships are used in high-level Entity-Relationship views to
represent many-to-many associations between entities.

In the initial development of a model, it is often helpful to identify “non-specific
relationships” between entities. These non-specific relationships are refined in later
development phases of the model.

229

Modeling Data dictionaries
IDEF1X Notation

A non-specific relationship, also referred to as a “many-to-many relationship,” is an
association between two entities in which each instance of the first entity is
associated with zero, one, or many instances of the second entity and each instance
of the second entity is associated with zero, one, or many instances of the first
entity. For example, if an employee can be assigned to many projects and a project
can have many employees assigned, then the connection between the entities
"Employee" and "Project" can be expressed as a non-specific relationship. This non-
specific relationship can be replaced with specific relationships later in the model
development by introducing a third entity, such as "Project Assignment", which is a
common child entity in specific connection relationships with the "Employee" and
"Project" entities. The new relationships would specify that an employee has zero,
one, or more project assignments. Each project assignment is for exactly one
employee and exactly one project. Entities introduced to resolve non-specific
relationships are sometimes called “intersection” or “associative” entities.

A non-specific relationship may be further defined by specifying the cardinality from
both directions of the relationship.

To create a non-specific relationship:
1. In the diagram insert toolbar, click the non-specific relationship

button .
2. Click the first entity, and holding the mouse button down, drag the

mouse to the second entity before releasing the button.
The association appears in the diagram.

non-specific relationship

In the above example, an article can appear in zero, one or several catalogs and a
catalog can contain zero, one or several articles.

Associative entity
 An associative entity is an entity that is introduced to resolve a
non-specific relationship or to display attributes as properties of an
association.

Non-specific relationships are used in high-level Entity-Relationship views to
represent many-to-many associations between entities. In a keybased or fully-
attributed view, all associations between entities must be expressed as specific
relationships. However, in the initial development of a model, it is often helpful to
identify “non-specific relationships” between entities. These non-specific
relationships are refined in later development phases of the model.

Entities introduced to resolve non-specific relationships are sometimes called
“intersection” or “associative” entities.

230

To create an associative entity:

1. In the diagram objects toolbar, click the Entity button
2. Click in the diagram.

The Add Entity (DM) dialog box opens.
3. Enter the associative entity name.
4. Click Create (Windows Front-End) or Add(Web Front-End).

The entity appears in the diagram.

5. Click the Mandatory identifying relationship button.
6. Click the first entity, and holding the mouse button down, drag the

mouse to the associative entity before releasing the button.
The association appears in the diagram. The shape of the associative
entity changes for the a rounded corner box indicating that it is a
dependent entity.

7. Create in the same way the second association by clicking the second
entity, and holding the mouse button down, dragging the mouse to the
associative entity before releasing the button.

 You can add attributes to the associative entity.

Associative entity

In the above example, an article can be discounted for zero, one or several clients
and a client can have discounts for zero, one or several articles. In each case, the
discount rate is indicated on the associative class.

Defining Association Roles
 A role enables indication of one of the entities concerned by the
association. Indication of roles is particularly important in the case of an
association between an entity and itself.

Each end of an association specifies the role played by the entity in the association.

The role name is distinguished from the association name in the drawing by its
position at the link end. In addition, the role name appears in a normal font, while
the association name is italicized.

 The status bar (located at the bottom of the window) also allows
identification of the different zones: when you move your mouse along
the association, it indicates if you are on an association or on a role.

231

Modeling Data dictionaries
IDEF1X Notation

When two entities are linked by only one association, the names of the entities are
often sufficient to describe the role. Role names are useful when several
associations link the same two entities.

Certain associations may associate more than two entities. These associations are
generally rare.

To add a role to an association:

1. Click on the Association Role button and connect the association
to the entity.

Multiplicities

Each role in an association has an indicated multiplicity to specify how many objects
in the entity can be linked to an object in the other entity. Multiplicity is information
related to the role and is specified as a completely bounded expression. This is
indicated in particular for each role that entities play in an association.

Multiplicity specifies the minimum and maximum number of instances of an entity
that can be linked by the association to each instance of the other entity.

The usual multiplicities are "1", "0..1", "*" or "0..*", "1..*", and "M..N" where "M"
and "N" are integers:

• The “1” multiplicity indicates that each object of the entity is linked by
this association once and once only.
It is represented as a mandatory relationship with a dot on the role and
no dot on the opposite role.

• The “0..1” multiplicity indicates that at most one instance of the entity
can be linked by this association.
It is pictured by a "Z" (for zero) on the role.

• The "*" or "0..*" multiplicity indicates that any number of instances of
the entity can be linked by the association.
This is the default visibility.

• The "1..*" multiplicity multiplicity indicates that at least one instance of
the entity is linked by the association.
It is pictured by a "P" (for positive) on the role.

• The “M..N” multiplicity indicates that at least M instances and at most N
instances of the entity are linked by the association.

1 One and one only

0..1 Zero or one (Z)

M..N From M to N (natural integer)

* From zero to several

0..* From zero to several

1..* From one to several (P)

232

To specify role multiplicity:
1. Right-click the line between the association and the entity, to open the

pop-up menu for the role.
2. Click Properties.

The properties page of the role opens.
3. Click the Characteristics tab.
4. In the Multiplicity field, select the required multiplicity.

The representation of the association changes according to its new multiplicities.

Categorization Relationships (Generalizations) - (IDEF1X)

 A generalization represents an inheritance relationship between a
general entity and a more specific entity. The specific entity is fully
consistent with the general entity and inherits its characteristics and
behavior. It can however include additional attributes or associations.
Any object of the specific entity is also a component of the general
entity.

What is a Categorization (Generalization)?

Categorization relationships are used to represent structures in which an entity is a
“type” (category) of another entity.

Entities are used to represent the notion of “things about which we need
information.” Since some real world things are categories of other real world things,
some entities must, in some sense, be categories of other entities. For example,
suppose employees are something about which information is needed.

Although there is some information needed about all employees, additional
information may be needed about salaried employees which differs, from the
additional information needed about hourly employees. Therefore, the entities
"Salaried employee" and "Hourly employee" are categories of the entity
"Employee". In the IDEF1X notation, they are related to one another through
categorization relationships (generalization).

In another case, a category entity may be needed to express a relationship which
is valid for only a specific category, or to document the relationship differences
among the various categories of the entity. For example, a "Full-time employee"
may qualify for a "Benefit", while a "Part-time employee" may not.

A “categorization relationship” or "generalization" is a relationship between one
entity, referred to as the “generic entity”, and another entity, referred to as a
“category entity” or "specialized entity". Cardinality is not specified for the category
entity since it is always zero or one.

Category entities are also always identifier-dependent.

Creating a Categorization

To create a categorization relationship:

1. Click the Generalization button in the objects toolbar.

233

Modeling Data dictionaries
IDEF1X Notation

2. Click the category entity, drag the mouse to the generic entity, then
release the button.
The generalization is pictured in the diagram by an underlined circle.
connected by a line to the generic entity and by another line to the
category entity.

Categorization relationship

In the above example, attributes are interesting on persons that are of no avail for
other categories of clients. Person is a dependent entity represented by a rounded
corner box.

Multiple Categories

A “category cluster” is a set of one or more categorization relationships. An instance
of the generic entity can be associated with an instance of only one of the category
entities in the cluster, and each instance of a category entity is associated with
exactly one instance of the generic entity. Each instance of the category entity
represents the same real-world thing as its associated instance in the generic entity.
From the example above, EMPLOYEE is the generic entity and SALARIED-EMPLOYEE
and HOURLY-EMPLOYEE are the category entities. There are two categorization

234

relationships in this cluster, one between "Employee" and "Salaried employee" and
one between "Employee" and "Hourly employee".

Multiple Categories

In the above example, companies and persons are two categories of clients.

Multiple Category Clusters

Since an instance of the generic entity cannot be associated with an instance of
more than one of the category entities in the cluster, the category entities are
mutually exclusive. In the example, this implies that an employee cannot be both
salaried and hourly. However, an entity can be the generic entity in more than one
category cluster, and the category entities in one cluster are not mutually exclusive
with those in others. For example, "Employee" could be the generic entity in a
second category cluster with "Female employee" and "Male employee" as the
category entities. An instance of "Employee" could be associated with an instance
of either "Salaried employee" or "Hourly employee" and with an instance of either
"Female employee" or "Male employee".

Complete Categorization

In a “complete category cluster”, every instance of the generic entity is associated
with an instance of a category entity, ie., all the possible categories are present. For
example, each employee is either male or female, so the second cluster is complete.
In an “incomplete category cluster”, an instance of the generic entity can exist
without being associated with an instance of any of the category entities, ie., some
categories are omitted. For example, if some employees are paid commissions
rather than an hourly wage or salary, the first category cluster would be incomplete.

It is possible to specify whether a categorization relationship is complete or not in
the Characteristics tab of the generalization properties dialog box. If the value of
the characteristic Complete is set to "Yes", then all instances of the generic entity
belong to at least one of the category entities of the generalization.

235

Modeling Data dictionaries
IDEF1X Notation

Discriminator

An attribute in the generic entity, or in one of its ancestors, may be designated as
the discriminator for a specific category cluster of that entity. The value of the
discriminator determines the category of an instance of the generic. In the previous
example, the discriminator for the cluster including the salaried and hourly
categories might be named "Employee type". If a cluster has a discriminator, it must
be distinct from all other discriminators.

To create a discriminator on a generalization:
1. Open properties of the generalization.
2. Click Characteristics.
3. In the Discriminator field, choose the discriminator among the super-

entity attributes.
Once selected, the discriminator is displayed on the generalization.

236

I.E. NOTATION

About Data Modeling with I.E.

"Information Engineering" was originally developed by Clive Finkelstein in Australia
the late 1970's. He collaborated with James Martin to publicize it in the United States
and Europe.

Information Engineering is an integrated and evolving set of tasks and techniques
for business planning, data modeling, process modeling, systems design, and
systems implementation. It enables an enterprise to maximize its resources -
including capital, people and information systems - to support the achievement of
its business vision.

Business-driven Information Engineering is one of the dominant systems
development methodologies used world-wide, as organizations position themselves
to compete in the turbulent 1990s and beyond.

Its focus is on data before process, which ensures that organizations identify "what"
is required by the business before analysis of "how" it will be provided. IE provides
a rich set of techniques for strategic business analysis not reflected in "process first"
methodologies.

Information Engineering guides the organization through a series of defined steps
that allow it to identify all information important to the enterprise and establish the
relationships between those pieces of information. As a result, information needs
are defined clearly based on management input, and can be translated directly into
systems that support strategic plans.

Most information systems development during the past 25 years has been done
from a "stovepipe" or application-specific perspective. The result is that many
organizations have separate systems that are incapable of sharing data. In this
situation, systems cannot begin to meet their potential and can actually become a
burden on the business. IE clearly identifies data sharing requirements throughout
the organization so that systems can be integrated accordingly.

Using IE, organizations have a stable yet flexible framework on which subsequent
development activities can be based. This eliminates redundancy and leads to the
reuse of program modules and the sharing of data required throughout the
business, which helps alleviate the maintenance burden.

Modeling data consists of identifying management objects (entities) and the
associations or relationships between these objects, considered significant for
representation of company activity.

I.E. is used to produce a graphical information model which represents the structure
and semantics of information within an environment or system or a company. Use
of this standard permits the construction of semantic data models which may serve
to support the management of data as a resource, the integration of information
systems, and the building of computer databases.

237

Modeling Data dictionaries
I.E. Notation

The basic constructs of an Information Engineering data model are:
• Things about which data is kept, eg., people, places, ideas, events, etc.,

represented by a box;
• Relationships between those things, represented by lines connecting the

boxes; and
• Characteristics of those things represented by attribute names within the

box.

Summary of Concepts

In Hopex Logical Data a data model (I.E) is represented by:
• Entities, which represent the basic concepts (client, account, product,

etc.).
• Associations, which define relationships between the different entities.
• Attributes which define the characteristics of entities.

The attribute that enables unique identification of an entity is called an identifier.

The data model is completed by definition of multiplicities (or cardinalities).

Creating a Data Model (I.E)

An I.E data model shows entity-types as square cornered boxes (an entity is any
person or thing about which data is stored.) The entity types are associated with
one another; for example, a "Product" entity is purchased by a "Customer" entity.
Lines linking the boxes show these associations. The lines have cardinality
(multiplicity) indicators.

Data Models are available with the following profiles:
• Hopex Data Governance: Data Designer and Data Governance

Functional Administrator
• Hopex Data Architecture: Data Architect and Data Functional

Administrator

Prerequisite

To use the I.E. notation, you must select the corresponding option:
1. On the desktop, click Main Menu > Settings > Options.
2. In the options navigation tree, expand the HOPEX Solutions > Data-

related Common Features folders.
3. Click Data Notation.
4. In the right-hand side of the window, select the I.E. notation:
5. Click OK.

See also Logical Data Modeling Options.

238

Creating a Data Model

To create a data model in Hopex Data Governance:
1. Click the Architecture > Data Models navigation menu.
2. In the edit window, click the Hierarchy View.

 In Hopex Data Architecture, click the Data Models navigation
menu.

3. To the right of the Data Model Hierarchy folder, click the + New
button.
The data model mapping creation dialog box opens.

4. Enter the name of the model.
5. Click OK.

The data model appears in the list of data models.

Data Diagram (I.E.)

A data diagram is a graphical representation of a model or of part of a model.

To create a data diagram:
1. Move the mouse over the data model and click the Create a Diagram

 button on the right.
2. Select the Data Diagram (IE) diagram type.

The data diagram opens.

Entities (I.E.)

 An entity groups objects that share the same characteristics and
have similar behavior. Entities are management elements considered
useful for representing enterprise activity, and are therefore reserved
for this purpose. They may, for example, have corresponding tables in a
database.

You can compare the entity concept to sheets in files for example.

An entity represents a particular object class, of which all instances can be described
in the same way. An entity is represented as a square cornered box.

239

Modeling Data dictionaries
I.E. Notation

Creating an entity

To create an entity:

1. Select the Entity button in the objects toolbar by clicking it with the
left mouse button.

2. Click in the diagram.
The Add Entity (DM) dialog box opens.

3. Enter the entity name.
4. Click Create (Windows Front-End) or Add(Web Front-End).

The entity appears in the diagram.

Attributes

Examples of attributes:
• "Client Name" (property of the client entity).
• “Client No.” (identifier of the client entity).
• “Account Balance” (property of the account entity).

 An attribute represents a type of characteristic or property
associated with a set of real or abstract things. An instance of an entity
will usually have a single specific value for each associated attribute. An
attribute or a combination of attributes can be an identifier when
selected as a means of identification of each instance of an entity.

Defining attributes

To create an attribute:
1. Right-click the entity and select Properties.

The entity properties dialog box opens.
2. Select the Attributes tab.

3. To add a new attribute to the entity, click button .
A default name is automatically proposed for the new attribute. You can
modify this name.

You can specify its Data type.
Example: Numeric value.

 A datatype is used to group characteristics shared by several
attributes. Datatypes are implemented in the form of classes.
 See Assigning Types to Attributes for more details on data types
that can be assigned to an attribute.

Associations (I.E)

 An association is a meaningful link between two objects.
Associations are used to capture data about the relationship between
two objects.

240

Overview

Associations can be compared to links between index cards.

The following drawing provides a three-dimensional view of the situations a data
diagram can store.

Peter and Mary are clients. Peter has made reservations numbers 312 and 329.

Associations and their Multiplicities

Each role in an association has an indicated multiplicity to specify how many objects
in the entity can be linked to an object in the other entity. Multiplicity is information
related to the role and is specified as a completely bounded expression. This is
indicated in particular for each role that entities play in an association.

To indicate that a role is optional, a circle "O" is placed at the other end of the line,
signifying a minimum multiplicity of 0.

To indicate that a role is mandatory, a stroke "|" is placed at the other end of the
line, signifying a minimum multiplicity of 1.

A crows-foot is used for a multiplicity of "many".

In conjunction with a multiplicity of 0 or 1, a stroke "|" is often used to indicate a
maximum multiplicity of 1.

With this arrangement, the combination "O|" indicates "at most one" and the
combination "| |" or just a single "|" indicates "exactly one".

241

Modeling Data dictionaries
I.E. Notation

Mandatory relationship

 A mandatory relationship means that each instance of the first entity is
associated with exactly one instance of the second entity and that the second entity
can be associated with zero, one or many instances of the first entity.

In the above example, a client can issue zero, one or many orders, but an order is
always issued by one and only one client.

Optional relationship

 An optional relationship means that each instance of the first entity is
associated with zero or one instance of the second entity and that the second entity
can be associated with zero, one or many instances of the first entity.

In the above example, a client can be invoiced for zero, one or many orders, and an
order should be invoiced to a client, but it is not mandatory (delivery problems,
etc.).

non-specific relationship

 A non-specific relationship means that each instance of the first entity is
associated with zero, one or many instances of the second entity and that the
second entity can be associated with zero, one or many instances of the first entity.

In the above example, an article can appear in zero, one or several catalogs and a
catalog can contain zero, one or several articles.

242

Creating an Association

To create an association:

1. Select the type of association by clicking the corresponding button ,

 or in the objects toolbar.
2. Click one of the entities concerned, and holding the mouse button down,

drag the mouse to the other entity, before releasing the button.
The Add Association dialog box opens.

3. Enter the name of the association, then click Create.

The association appears in the diagram.

To modify role multiplicity:
1. Right-click the line between the association and the entity, to open the

pop-up menu for the role.
2. Click Properties.

The properties page of the role opens.
3. Click the Characteristics tab.
4. In the Multiplicity field, select the required multiplicity.

The representation of the association changes according to its new multiplicities.
 In Hopex Windows Front-End, multiplicity is also displayed in the
role's pop-up menu. If the menu you see does not propose multiplicity,
check that you clicked on that part of the line indicating the role and not
the association.

Sub-types (I.E)

 A generalization represents an inheritance relationship between a
general entity and a more specific entity. The specific entity is fully
consistent with the general entity and inherits its characteristics and
behavior. It can however include additional attributes or associations.
Any object of the specific entity is also a component of the general
entity.

What is sub-type?

243

Modeling Data dictionaries
I.E. Notation

An entity B is a subtype of entity A. This assumes that all instances of entity B are
also instances of entity A. In other words, B is a subset of A. B is then the subtype,
and A the supertype.

Example:

A: Person, B: Bostonian.

B being a subset of A, the instances of entity B "inherit" the characteristics of those
in entity A.

It is therefore unnecessary to redescribe for entity B:
• Its attributes
• Its associations

Example:

The "Large Client" entity, representing clients with a 12-
month revenue exceeding $1 million, can be a subtype of the
Client entity.

A subtype inherits all attributes, associations, roles and constraints of its supertype,
but it can also have attributes, associations, roles or constraints that its supertype
does not have.

In the above example, the attributes, associations, roles and constraints specified
for "Client" are also valid for "Large Client".

244

Multiple Subtypes

Several subtypes of the same entity:
• are not necessarily exclusive.
• do not necessarily partition the type.

Advantages of sub-types

A subtype entity inherits all the attributes and associations of its supertype entity,
but can have attributes or associations that the supertype entity does not have.

A subtype entity can also have specific attributes. These only have meaning for that
particular sub-entity. In the above example:

• "Registry number" and "number of employees" only have meaning for a
"company".

• "Date of birth" is a characteristic of a "person", not a "company".

245

Modeling Data dictionaries
I.E. Notation

A subtype entity can also have specific associations.

• A "person" falls into a "socio-professional group": "manager",
"employee", "shopkeeper", "grower", etc. This classification makes no
sense for a "company". There is also a classification for companies, but it
differs from that for persons.

Multiple inheritance

It is sometimes useful to specify that an entity has several supertypes. The subtype
inherits all the characteristics of both supertypes. This possibility should be used
carefully.

Creating a sub-type

To create a subtype:

1. Click the Generalization button in the objects toolbar.
2. Click the subtype entity, drag the mouse to the supertype entity, then

release the button.
The generalization is now pictured in the diagram by an underlined
semicircle connected by a line to the supertype entity and by another line
to the subtype entity.

246

In the above example, attributes are interesting on persons that are of no avail for
other categories of clients. The subtype entity is represented by a rounded corner
box.

247

Modeling Data dictionaries
Merise Notation

MERISE NOTATION

About Data Modeling

Modeling data consists of identifying management objects (entities) and the
associations or relationships between these objects, considered significant for
representation of company activity.

The entities, associations and properties that constitute the data model associated
with a sector of the company must be sufficient to provide a complete semantic
description.

In other words, one should be able to describe the activity of a company by using
only the entities, associations and properties that have been selected.

This does not mean that there will be a direct equivalent in the data model for each
word or verb in the explanation. It means one must be able to state what is to be
expressed, using these entities, associations and properties.

Summary of Concepts

In Hopex Data Architecture, a data model (Merise) is represented by:
• Entities, which represent the basic concepts (client, account, product,

etc.).
• Associations, which define relationships between the different entities.
• Attributes (information or properties), which define the characteristics of

entities and in certain cases, associations.

The attribute that enables unique identification of an entity is called an identifier.

The data model is completed by definition of cardinalities.

Creating a Data Model (Merise)

Data modelling with Merise is available with the following profiles:
• Hopex Data Governance: Data Designer and Data Governance

Functional Administrator
• Hopex Data Architecture: Data Architect and Data Functional

Administrator

Prerequisite

To use the Merise notation, you must select the corresponding option:
1. On the desktop, click Main Menu > Settings > Options.

248

2. In the options navigation tree, expand the HOPEX Solutions > Data-
related Common Features folder.

3. Click Data Notation.
4. In the right-hand side of the window, select the Merise notation:
5. Click OK.

See also Logical Data Modeling Options.

Creating a Data Model

To create a data model in Hopex Data Governance:
1. Click the Architecture > Data Models navigation menu.
2. In the edit window, click the Hierarchy View.

 In Hopex Data Architecture, click the Data Models navigation
menu.

3. To the right of the Data Model Hierarchy folder, click the + New
button.
The data model mapping creation dialog box opens.

4. Enter the name of the model.
5. Click OK.

The data model appears in the list of data models.

Data Diagram (Merise)

A data diagram is a graphical representation of a model or of part of a model. The
creation of a diagram varies slightly depending on whether you are in Windows
Front-End or Web Front-End.

To create a data diagram:
1. Move the mouse over the data model and click the Create a Diagram

 button on the right.
2. Select the Data Diagram (Merise) diagram type.

The diagram appears.

The entities (Merise)

 An entity groups objects that share the same characteristics and
have similar behavior. Entities are management elements considered
useful for representing enterprise activity, and are therefore reserved
for this purpose. They may, for example, have corresponding tables in a
database.

249

Modeling Data dictionaries
Merise Notation

You can compare the entity concept to sheets in files for example.

An entity represents a particular object class, of which all instances can be described
in the same way.

Creating an entity

To create an entity:

1. Click the Entity button in the diagram objects toolbar.
2. Click in the diagram.

The Add Entity (DM) dialog box opens.
3. Enter the entity name.
4. Click Create (Windows Front-End) or Add(Web Front-End).

The entity appears in the diagram.

 To continue creating org-units without having to keep clicking on

the toolbar, double-click button To return to normal mode, press
the Esc key or click on a different button in the toolbar, such as the
arrow

 The objects you have created, and their characteristics and links,
are saved automatically each time the pointer changes to the

250

shape . The diagram drawing is not saved until you explicitly

request this by clicking the Save button

Specifying the entity identifier

To specify the entity identifier:
1. Open the properties window of the entity.
2. Select the Attributes tab.
3. For the chosen attribute, select "Yes" in the Identifier column.

 For more details, see Entity Identifier.

The associations (Merise)

An association is a meaningful link between two objects. Associations are used to
capture data about the relationship between two objects.

Examples of associations

To model that an "employee" is responsible for a "service" and to specify the "start
date" of his or her functions, the following data model is created, where start date
is a property of the association.

Other comparison: links between sheets.

251

Modeling Data dictionaries
Merise Notation

The following drawing provides a three-dimensional view of the situations a data
model can store.

Peter and Mary are clients. Peter has made reservations numbers 312 and 329.

A data model should be able to store all situations in the context of the company,
but only these situations.

 The model should not allow representation of unrealistic or aberrant
situations.

Reflexive relationships

Certain associations use the same entity.

Example

A classroom, a building, and a school are all locations.

A classroom is contained in a building, which is contained in a school.

"n-ary" relationships

Certain associations associate more than two entities.

These associations are generally rare.

252

Example

When taking inventory, a certain quantity of product was counted in each
warehouse.

Participations or cardinalities

Minimum and maximum cardinalities express the minimum and maximum number
of participations of an instance of the entity in an association.

The most common participations or cardinalities are 0,1 1,1 0,N 1,N.
• Optional cardinality: minimum cardinality 0 indicates that the association

is not necessarily specified.
• Mandatory participation Minimum cardinality 1 indicates that the

association is necessarily specified.
• Unique participation : Maximum cardinality 1 indicates that the entity

can be linked by the association once only at most.
• Not unique participation : Maximum cardinality N indicates that the

entity can be linked by the association several times.

253

Modeling Data dictionaries
Merise Notation

Example

The following example illustrates the significance of the different cardinalities or
participations:

Creating an Association (Relationship)

To create an association:

1. Click the Association button in the objects toolbar.
2. Click one of the entities concerned and drag the mouse to the other

entity before releasing the button.
The Add Association dialog box appears.
The arrow at the right of the Name box opens a menu that allows you to:
• Query of existing associations, via the Query dialog box.
• List associations in the repository.
• Create an association.

3. Enter the name of the association, then click Create (Windows Front-
End) or Add(Web Front-End)
The association appears in the diagram.

 In case of error, you can delete an object by right-clicking it and
selecting the Delete command in its pop-up menu.

Reflexive relationships

If the creation request is made on an entity without moving the ponter, a reflexive
association (also called "reflexive link") is automatically created on the entity.

If there is association of an entity with itself, the roles need to be named in order to
distinguish between the corresponding links in the drawing.

0.1 An order corresponds to zero or at most one invoice.

0,N No restriction is placed on the number of invoices corresponding to an order. This is the
default visibility.

1.1 Each order has one and only one corresponding invoice.

1,N Each order has one or more corresponding invoices.

254

Example:

“Father” and “Son” are the two roles played by the “Person” entity in the “Parent”
association.

Specifying participations

In the Characteristics tab of the property window of roles, you can indicate the
minimum and maximum number of participations of each entity to the relationship
(cardinalities).

Attributes (Information) - Merise

Properties

Entities and associations can be characterized by attributes:

These attributes can be found by studying the content of messages circulating
within the company.

 An attribute is the most basic data saved in the enterprise
information system. An attribute is a property when it describes an
entity or association, and an identifier when selected as a means of
identification of each instance of an entity.

A property characterizes an association when the property depends on all the
classes participating in the association.

255

Modeling Data dictionaries
Merise Notation

In the diagram below, the “Role” that a “Consultant” plays in a “Contract” depends
on the consultant and on the contract, and therefore on the “Intervene” association.

Examples of attributes:

"Client Name" (property of the client entity).

“Client No.” (identifier of the client entity).

“Account Balance” (property of the account entity).

Identifier

Customer number 2718 executes Reservation number 314159.

Each entity has a unique identifier whose value can be used to find each of its
instances.

 The metamodel defines language structure used in models.

By default, associations do not have their own identifiers: an association is identified
by the identifiers of the linked entities.

Creating Attributes

Attributes are created in the properties dialog boxes of associations and entities.

The Attributes tab of this dialog box shows attributes already linked to the entity
or association.

To create an attribute:

 Click the New button and enter the name of the attribute.

256

You can specify its characteristics (see Attribute Description for further details).
 You can specify its Length, if necessary complemented by the
number of Decimals; it should be noted that the number of decimals is
not added to the length; an information of length 5 with two decimals
being presented in the form " 999.99 ".

When you have completed this, close the properties dialog box.

Normalization Rules (Merise)

Normal forms are rules that are designed to avoid modeling errors.

Currently, there are six or seven normal forms. We will discuss the first three.

First Normal Form

The value of an entity (or association) Property is fixed uniquely as soon as
the entity concerned is known (concerned entities).

If the number of vehicles is an attribute of the “Reservation” entity, you can only
indicate the total number of vehicles for a reservation. You must therefore make one
reservation per category of rental vehicle (cardinalities1,1).

If the number of vehicles is an attribute of the association, you can specify the
number of vehicles reserved for each category in the association. You can therefore
make a single reservation for several categories of vehicle (cardinalities 1,N).

257

Modeling Data dictionaries
Merise Notation

Second Normal Form

The value of an association Property is set only when all the entities
concerned are known.

The fact that the car category is an attribute of the “Car Contract” association
assumes that the car category may change from one contract to the next, which
would not be very honest.

If the car category is to be independent of the contract, it must be an attribute of
the “Car” entity.

Third Normal Form

A Property must directly and uniquely depend on the entity it describes.

If the “Category Price List” is an attribute of the “Car” entity, this indicates that two
cars in the same category can have a different “Category Price List”. To avoid this,
we need to create a “Category” entity that contains the price list.

 This rule is used to reveal concepts that were not found during the
first draft of the data model.

258

Refining Data Model Specification (Merise)

During specification, it is often necessary to complement the data model.

Complements to the specification consist of:
• Specifying Length and Decimal characteristics and documenting

attributes.

In the data model, it is also possible to specify:
• Sub-type entities.
• Constraints that must be respected by data in documentary terms. These

constraints are imposed by checks carried out during data update
processing.

Ordering Attributes

The initial order of attributes is their order of creation (or of creation of the link with
the entity or association).

To modify this order:
1. In the Attributes of the properties dialog box of the object, click the

 Reorder.
The Order Modification dialog box appears.

To reorder attributes:
1. Select the attribute to be moved by clicking its name with the left mouse

button.
2. Move the cursor to the desired position; it takes the following shape:

The attribute is placed in the desired position, and the order of the link
with the entity is modified.

This order will be used to generate the order of columns and tables. It will also be
used in the document associated with the data model.

Attribute Description

Attributes can be described in two ways:
• By entering this description in the various fields of the list presented in

the Attributes tab.
• In the properties dialog box of each attribute. This dialog box is opened

by selecting Properties in the attribute pop-up menu.

259

Modeling Data dictionaries
Merise Notation

You can enter the attribute characteristics values in the corresponding fields.
• The Data Type which is the class used to specify the attribute type.
• The Identifier field indicates if the attribute forms part of the entity

identifier.
• The Mandatory field enables indication of whether or not entry of a

value for this attribute is mandatory.
• The Uniqueness field enables indication of whether or not two instances

of this entity can have the same value for this attribute.
• The Updatable field enables indication of whether or not the value of

this attribute can be modified after it has been entered.

Participations or cardinalities

To modify the participations or cardinalities of an association:
1. Open the properties window of the association.
2. Click the Characteristics tab.
3. Enter participation (cardinality) values.

 A cardinality is the minimum (or maximum) number of times an
entity "participates" in an association (see also multiplicity).

260

Cardinalities or participations most commonly used are:
• 0 or 1 for minimum cardinality (optional or mandatory minimum

participation).
• 1 or N for maximum cardinality (unique or not unique maximum

participation).
Different values are permitted.
When several roles, ie. several links, exist between an entity and an
association, the cardinalities are defined for each role.
Cardinality of an entity in an association can also be defined as follows:

• For a binary association, it is the minimum (or maximum) number of
instances of the other entity in the association that can be linked to the
initial entity.

• For a ternary association, it is the number of pairs of other entities in the
association that can be linked to the initial entity.

• For a quaternary association, it is the number of triplets, etc.
 If expression of cardinalities is not sufficient to describe the link
that exists between an entity and an association, for example when a
cardinality depends on an organizational context, it is possible to use
cardinality constraints, which enable more precise description.

Examples

0,N : The client can issue no order, can issue a maximum of N orders (N
indeterminate).

1.1: The order must be issued by one and only one client.

261

Modeling Data dictionaries
Merise Notation

1,N : A product must be manufactured at minimum in 1 workshop over a period of
1 month. It can be manufactured in several workshops and/or over a period of
several months (several workshop-month pairs).

Sub-typing (Merise)

What is sub-type?

An entity B is a sub-type of entity A. This assumes that all instances of entity B are
also instances of entity A. In other words, B is a subset of A.

Example A: Person, B: Bostonian.

B being a subset of A, the instances of entity B "inherit" the characteristics of those
in entity A.

It is therefore unnecessary to redescribe for entity B:
• its properties
• Its associations

262

Example

The "Large Client" entity, representing clients with a 12-month revenue exceeding
$1 million, can be a subtype of the Client entity (origin).

A sub-type inherits all properties, associations, roles and constraints of its super-
type, but it can also have properties, associations, roles or constraints that its
super-type does not have.

In the above example, the properties, associations, roles and constraints specified
for "Client" are also valid for "Large Client".

Multiple Subtypes

Several sub-types of the same entity
• are not necessarily exclusive.
• do not necessarily partition the type.

263

Modeling Data dictionaries
Merise Notation

Advantages of sub-types

A sub-type entity can have specific properties. These only have meaning for that
particular sub-type. In the above example:

• "Registry number" and "number of employees" only have meaning for a
"company".

• "Date of birth" is a characteristic of a "person", not a "company".

 An entity B is a sub-type of an entity A, if B represents a subset of
A and the instances of entity B inherit the descriptions of those of entity
A and if they have specific descriptive elements.
The Sub-Type link is represented graphically by a double arrow.

A subtype entity can also have specific associations.

A "person" falls into a "socio-professional group": “manager”, “employee”,
“shopkeeper”, “grower”, etc. This classification makes no sense for a “company”.
There is also a classification for companies, but this differs from the one for persons.

264

MODELING DATABASES

A database is the physical object that enables storage and organization of logical data for use by
programs corresponding to distinct applications, to facilitate the independent evolution of the data
and the application programs.

Hopex Data Governance and Hopex Data Architecture integrate the logical and physical
modeling levels and allow to switch from one model to another. You can therefore:

• Build a data diagram or a class diagram, See Modeling Data dictionaries.
• From this diagram, create database tables and their columns, indexes,

and keys, as well as the drawings for the corresponding relational
diagrams. See Synchronizing logical and physical models.

• Optimize the resulting relational model and generate SQL commands to
define the tables. Hopex Data Governance and Hopex Data
Architecture in particular take account of changes in the conceptual
model without losing optimizations made to the relational model. See
Denormalizing logical and physical models.

• Reverse generate a database definition using the ODBC protocol to
create the corresponding tables and columns in Hopex Data

Architecture, and obtain the corresponding data diagram or class
diagram. See Reverse engineer tables.

Logical Formalism and Synchronization

The logical formalism applied by default in the synchronization is the UML notation.
It integrates handling of parts, not associations. When you synchronize a data
model into a physical model, associations of the model are not taken into account
in the synchronization.

It is possible to take into account the UML notation and the data models with the
treatment of associations and not of parts. You can change the formalism in the
HOPEX Administration application.

The option set in HOPEX Administration applies by default to all databases in the
repository, but you can change the formalism only on one database in its
synchronization options.

To access the option in HOPEX Administration :
1. Open the Administration tool.
2. Open the options of the environment concerned.
3. In the Options window, in the tree on the left, unfold the Data Modeling

folder.
4. Click Database synchronization.
5. In the right pane of the window, in Default correspondence type,

select the desired value.
• UML - Physical: default option (with the processing of parts)
• Datamodel - Physical: old option (with the processing of associations)

See also: Logical Data Modeling Options.

Modeling Databases
Database

DATABASE

On a database, and depending on the target DBMS, control parameters of the
various data processing tools (synchronization, generation, reverse generation etc.)
will be defined.

Creating Databases

A database enables specification of data physical storage structure.

To create a database in Hopex Data Governance:
1. Click the Architecture > Databases navigation menu.

 In Hopex Data Architecture, click the Databases navigation
menu.

2. Right-click the databases folder and click New > Database.
3. Enter the name of the database.
4. Click OK.

The database created appears in the list of databases.
 When a database is created, the ANSI/ISO 9075:1992 SQL DBMS is
associated with it by default.

Database Properties

To access the properties of a database:

1. Select the database and click the Properties button.
The properties window of the database appears.

2. Click on the drop-down list to access the different properties pages.

Properties pages are used to:
• Access the Components of the database (tables, physical views, data

groups, etc.).
• Modify the Characteristics of the database (name, target DBMS, etc.).
• Define Responsibilities.
• Define the Risks associated, the Standards used, the Objectives and

Requirements.
• To define the Options linked to:

• the generation of tables. See Configuring Database Generation.
• synchronization. See Configuring Synchronization.

Associating a Package with a Database

You can create a data package from the database or connect an existing package to
it. The package enables representation of the structure of the database, the classes
it contains and their parts.

The database package is the default owner of the objects represented in the class
diagram. However it is possible to use objects held in other packages.

 In the same way, you can connect a data model to a database, if
the corresponding formalism has been selected. See Formalisms.

To create a package from a database:
1. Right-click the database and click New > Package.
2. Enter the name of th package.
3. Click OK.

To connect an package to a database:
1. Right-click the database and click Connect > Package.

The query dialog box appears.
2. Click Find.
3. Select the desired package and click Connect.

You can see the name of the packages associated with a database in the database
properties, in the Characteristics page.

Importing a DBMS Version

When you create a new repository, you are provided with different DBMS and
versions by default, except for the latest versions, such as "Oracle 18c" and "Oracle
19c. You can download these versions and their datatypes from the HOPEX Store.

When a database is created, the default SQL DBMS is ANSI/ISO 9075:1992. You can
choose another target DBMS in its properties pages.

DBMS datatypes are not supplied by default. To view the datatypes of a DBMS in
the HOPEX repository, you need to import the corresponding module, whose name
takes the form "Database Design XXX" with the DBMS name. Modules are available
in the HOPEX Store.

 For more information on importing a module, see Importing a
Module into HOPEX.

See also Configuring Synchronization.

Modeling Databases
Relational Schema Map and Relational Schemas

RELATIONAL SCHEMA MAP AND RELATIONAL SCHEMAS

A database can be split into a set of relational schemas.

A relational schema is used to define a physical data structure.

A relational schema map is used to visualize the dependencies between relational
schemas.

Relational Schema Map

A relational schema map is an urbanization tool for physical information. It
represents a set of relational schemas in a particular context.

Creating a relational schema map

To create a relational schema map in Hopex Data Governance:
1. Click the Architecture > Databases navigation menu.

 In Hopex Data Architecture, click the Databases navigation
menu.

2. In the edit area, right-click the database and click New > Relational
Schema Map.
The map created appears.

To create the diagram of the relational schema map:
1. Move the mouse over the map and click the Create a Diagram button.
2. Select Relational Map Diagram.
3. Click OK.

The diagram appears in the edit area.

Components of a relational schema map

You can add internal and external components to a relational schema map.

The internal components are relational schemas that are part of the map scope
(whether they belong to the same owner element or not).

The external components are those used in the map but that are not part of the
scope analyzed.

To add a relational schema to the map:
1. In the diagram insert toolbar, click the Relational Schema button then

click in the map.
2. Indicate the name of the relational schema and click OK.

Relational Schema

A relational schema represents a restricted relational data structure.

Creating a Relational Schema

To create a relational schema from a database:
1. Click the Architecture > Databases navigation menu.
2. In the edit area, unfold the Database folder.
3. Click the database concerned to open its properties.
4. Click the Characteristics tab.
5. Under the Physical Group section, click the Relational Schemas tab.
6. Click New.

The new relational schema is created. You can open its properties to
modify or complete its characteristics.

Relational Schema Diagram

A relational schema is made up of tables and/or physical views and can be described
in two types of diagram:

• the table diagram which is used to display a set of tables and their
relationships (FK).

• the structure diagram that is used to break down a relation a schema
into sub-domains.

You can connect one or more diagrams to a relational schema according to what you
want to describe.

To create a diagram from a relational schema:
 Move the mouse over the relational schema and click the Create a

diagram button, followed by the type of diagram (tables or structure).

Adding a component to a relational schema

You can connect objects to a relational schema through components.

A relational schema can include:
• Sub-domains, visible in the structure diagram
• Tables or physical views, to which the type of access (read only,

modification, deletion, etc.) is defined and which are visible in the
relational schema’s table diagram.

To add a component to the relational schema:
1. Open the properties of the relational schema in question.
2. Click the Components page.

The first section allows you to add domains.
The second section allows you to add objects of type table or physical
view.

3. Click New to add a component.

Modeling Databases
Relational Schema Map and Relational Schemas

Defining the access mode to the referenced object

On components of type table or physical view you can define the access mode to
the referenced object (creation, read-only, deletion, etc.).

To define the access mode to the object in the relational schema:
1. Open the properties window of the relational schema.
2. Select the Components page.
3. Select the line of the component in question.

Commands are added, including the CRUD button.
4. Click this button.
5. In the window that appears, select or deselect the check boxes

associated with the actions: Create, Read, Update, Delete.

RELATIONAL DIAGRAM

The Relational Diagram (RD) describes a database: it represents the physical data
structures used by application programs.

Description in Hopex Data Architecture of relational diagrams makes it possible
to interface with the selected DBMS, guaranteeing semantic consistency between
design data and production data.

Creating the Relational Diagram

The relational diagram is generally built in two phases:
1. Automated synchronization of the data diagram or diagrams produces

the “raw“ diagram.
See Synchronizing logical and physical models.

Modeling Databases
Relational Diagram

2. Optimizing the diagram, or denormalization, to take into account the
data access requirements of the application and to fine-tune the
database performance.
See Denormalizing logical and physical models.

The key concept in a relational diagram is the table, which is derived from an entity
or association.

 A table is a logical structure of data, used as the reference for the
switch to production, the table is the central element of the database. A
table is accessible by means of a primary key, and if necessary foreign
keys; it is described by an ordered sequence of columns. A table is
generally derived from an entity or association.

A table is accessible by one or several keys, whose type indicates whether they are
primary or foreign keys. It is possible to define indexes for a table, specifying their
sort order (ascending or descending) and whether they are unique. Keys and
indexes are connected to the columns that they contain.

Creating objects in the diagram

To create a key or an index in the relational diagram:
1. Click the table concerned.

The list of commands associated with the table appears.

2. Click Key or Index

 Check that the columns used by the key or index already exist in
the table.

You can also use the Components page in the properties dialog box of the database
to create these objects. See Creating a Key and Creating an Index.

To create a foreign key:

1. Select the Key button, click the first table, and then hold the button
down while dragging the mouse to the second table.
The creation dialog box opens.

2. Specify the name of the key and click Add.
A second window asks you if you want to automatically create the
columns of the foreign key from those of the primary key.

3. Click Yes to validate or No to create.

Configuring display of relational diagrams

As for data diagrams, you can specify which elements are to appear in the diagram:
• Either by using the Views and Details button to indicate globally the

types of objects to be displayed in the diagram.
• Or by using display options that enable definition of which object

characteristics should be presented.

To configure the display for a selected object:
 Right-click the object and select Shapes and Details.

 When configuring the display of an object, the Display dialog box
first shows the shapes that can be used to represent the object.
Selecting an element in the tree causes its content to appear.

Modeling Databases
Database Components

DATABASE COMPONENTS

A database is a set of data organized for use by distinct applications, to facilitate the
independent evolution of the data and the application programs.

A database consists of tables, columns, keys and indexes:
• A table is the logical entity where columns are stored.
• A column is contained in a table.
• Just as an identifier uniquely identifies a class, the primary key for the

table uniquely identifies a row in the table.
• A foreign key accesses another table, and imposes consistency between

the corresponding columns in the tables concerned.
• An index accelerates access to data. It can be unique or not, and may

be ascending or descending.

Database Tables

Database tables can be viewed or updated in two ways:
• In its relational diagram, that is the diagram of the tables in the

database.
• In its properties, in the Tables page.

Creating a table

See previously: Database Properties.

To create a table from the properties of the database:
1. Open the database properties dialog box.
2. Click the Tables page.
3. Click New.
4. Enter the table name and click OK.

Deleting a table

To delete a table and its columns, keys and indexes:

1. Select the table and click Remove .
A message asks if you want to remove the table from the database or
delete it from the repository.

2. Select Delete and click Remove.
 The deleted table will not be automatically recreated at a new
synchronization. To recreate a table, at the synchronization results
validation step validate the creation action proposed for this table
(select the corresponding check box). See Step 4: Validating results.

Table Columns

Viewing columns

See previously: Database Properties.

To view the columns of a table:
1. Open the table properties window.
2. Click the Columns page.

Presented for each column are:
• Its Local Name
• Its Datatype

 The administrator can add to the list of datatypes (see Creating
New Datatypes).

• Its length Ln and its number of decimals Dcml where appropriate.
• The value of its NotNull attribute.
• Its default value: on generation of the table, the default value taken

is that of the attribute from which it originated. If no initial value is
specified for the attribute, or if you want to modify the value of a
column, enter a value in this field.

• The fact that the column is connected or not connected to a primary
key (PK) or foreign key (FK). This is indicated by Y ("Yes") or N
("No").

You can modify the Local Name for a column by clicking its name and then entering
the new name. This local name will be used in the script generated for the table.

An SQL Name can be specified directly in the SQL page of the properties of an
attribute in the data diagram. Then all columns created from this attribute will have
the same local name. In addition, the name will be reused during successive
synchronizations, including total or partial reinitializations.

It is also possible to modify the value of other column characteristics.
 These modifications will be retained in subsequent
synchronizations.

It is possible to create columns not derived from attributes in the data diagram
whether in a table generated or created by the user.

Creating a column

See previously: Database Properties.

To create a column:
1. Open the properties of the table concerned.
2. In the Columns page, click New.

 When creation of a column is not carried out from the Properties
of a table, but for example from the explorer, it is necessary to
previously select the table that will contain it, otherwise a message will
indicate that creation is impossible.

Modeling Databases
Database Components

Deleting a column

To delete a column:
1. Right-click the column and select Remove.

A message requests confirmation of the final deletion.
2. Click Delete.

 The deleted column will not be automatically recreated at a new
synchronization. To recreate a column, at the synchronization results
validation step validate the creation action proposed for this column
(select the corresponding check box). See Step 4: Validating results.

The Reorder button accesses the Modify Order dialog box.

Modifying Keys and Indexes

The automatic creation of primary and foreign keys, and of indexes on these keys,
is indicated in the synchronization configuration.

When these creations are requested:
• The primary keys use the columns corresponding to the identifiers.
• The foreign keys use the columns that are included in the tables because

of a constraint association.

An index is created for each key.

It is possible to add to, modify, or delete the keys and indexes proposed during
generation. To do this:

1. Open the table Properties.
2. Click the Characteristics page.
3. Display the Keys and Indexes sections which can be hidden by default.

The page presents the Keys and Index of the table.

The following is specified in the Keys section:
• The type of key (Key-Type): Foreign or Primary.
• In the case of a foreign key:

• The table referenced.
• Management of repository integrity on update (On Update) and on

deletion (On Delete);consult the target DBMS documentation for the
order types managed.

 When a “migratory” column is created in a table to reflect a
constraint association, you can instruct the DBMS to verify the updated
value in this column. The DBMS then verifies that this value still exists
in the original table (database integrity).

When an update (On Update) or delete (On Delete) command is applied to the
original table, the DBMS may:

• Update the values in the tables concerned, with the Cascade option.
• Do nothing, with the NoAction option.
• Prohibit updates or deletes, with the Restrict option.
• Reset to the default value in the tables concerned, with the Set Default

option.
• Set the value to Null in the tables concerned, with the Set Null option.

The following is specified in the Index section:
• Its Type: Bitmap, Standard, Unique, Unique where not null.
• Its Sort Order (Ascending or Descending).
• If a grouped index Clustered.

 Creation of a column from a key or index is not possible. A column
must first be created in the table, then connected to the key or index.

Creating a Key

See previously: Database Tables.

To create a key:
1. Open the table Properties.
2. Click the Characteristics page.
3. In the Keys section, click New.

The key creation dialog box appears.
4. Select the type of key to be created: "foreign" or "primary". Creation of

the key varies according to the type selected.

Primary key

When you select "Primary" type, the key appears in the properties of the table.

To define the properties of the key:
1. Move the mouse over the key and click the Properties button.
2. In the Columns page, you can specify the columns concerned by the

key.

It is also possible to specify the primary key of a table in the Identifiers page of
the properties dialog box of the entity to which the table belongs. See Identifier.

It is also possible to manually specify the primary key by relating it to elements that
can be attributes of the entity or the primary key of another table connected by a
constraint association (multiplicity 1).

In all cases, the key specified will be created in the table on synchronization.

Foreign key

When the key created is a foreign key, a list of database tables is presented.
1. Select the reference table to which the foreign key relates.

If the table you select includes a primary key, a dialog box opens.

Modeling Databases
Database Components

2. Select Yes.
the key appears in the properties of the table.

You can modify the Local Name of the key (the full name of the key is composed
of the name of the database to which it belongs, followed by the name of the table
then the local name: in the above example, "Exchange DB::Concern::Key1").

For a foreign key, as when editing a key, it is possible to specify repository integrity
management on update (On Update) and on deletion (On Delete).

Creating an Index

See previously: Database Tables.

Indexes are created automatically for primary and foreign keys. It is possible to add
to the generated indexes columns used frequently in search criteria.

 It is also possible to specify an index in the Identifiers page of the
properties dialog box of the entity to which the table belongs. An index
specified in this way will be created in the table during synchronization.

Examples of indexes:

To create an index:
1. Open the properties of the table concerned.

The properties window appears.
2. Click the Characteristics page.
3. In the Index section, click New.

The Create Index page appears.
4. Specify the Local Name and click OK.

Depending on the possibilities offered by the DBMS, you can specify the index Type,
index Sort direction ("Ascending" or "Descending"), and if it is a grouped index
(Clustered).

It is then possible to select the columns of the key (or index) in the Columns page
of the properties dialog box of the index.

Adding a Column to a Key or Index

See previously: Database Tables.

To add a column to a key (or to an index):
1. Open the properties of the table concerned.
2. Click the Characteristics page.
3. In the Index section, move the mouse over the index and select

Properties.
The properties dialog box of the index appears.

4. Click the Columns page.
5. Click the Connect button.

The query dialog box appears.
6. Find and select the column to be added to the key (index).

It is possible to indicate the sort order of the key or index, which can be “Ascending”
or “Descending“.

Modeling Databases
Primary and foreign keys

PRIMARY AND FOREIGN KEYS

When the keys of a database are not completely specified, you must Complete
them.

Specifying Primary Keys

To specify the primary keys of the database:
 Right-click the database and select Complete keys.

The Complete keys window appears.
 When database specification is completed, the dialog box presents
an empty list: no additional specification is required.

The Proposition list is used to complete the keys:
• From unique indexes: the columns that belong to a unique index are

proposed as components of the primary key.
• From mandatory columns: these columns are proposed as

components of a key.
• Through name comparison: if the same column name is found in

several tables, the column is proposed as primary key.

Each key is proposed under the table to which it belongs.

To validate a primary key:
1. Select the check box of the Scope column corresponding to the key.

The associated columns are automatically selected by default. You can
eliminate those that correspond to search criteria but are not components
of the key.

2. Click the Apply button.
The Apply button removes from the list the propositions of keys explicitly
accepted or rejected.

For foreign keys, two keys including the same column on the same table are
incompatible: acceptance of one automatically results in rejection of the other.

It is not possible to select several primary keys on the same table: acceptance of
one results in rejection of the others.

 You can complete the specification of keys in several stages. This
allows you to consult the contents of the database while making your
selections. To do this:
• Click the Apply button to save your modifications.
• Click the Cancel button to exit this dialog box without starting

processing.

Specifying Foreign Keys

To specify the foreign keys of the database:
 Right-click the database and select Complete keys.

The Complete keys window appears.
 When database specification is completed, the dialog box presents
an empty list: no additional specification is required.

The Proposition list is used to complete the foreign keys:
• From indexes
• From name comparison

If the proposition is made from indexes, it is based on non-unique indexes of the
table. The reference table is indicated after the name of the key.

To validate a foreign key:
1. Select the check box of the Scope column corresponding to the key.
2. Click the Apply button.

The Apply button removes from the list the propositions of keys explicitly
accepted or rejected.

If no reference table is specified, the wizard automatically proposes the selection of
possible tables. Keys that do not have a reference table cannot be accepted.

On proposition of keys, several tables may be found with an identical primary key.
This could for example be the case for tables corresponding to different sub-types
of the same entity.

Modeling Databases
Primary and foreign keys

Column Primary Key of Two Tables

When the same column is the primary key of two tables, the foreign key proposition
permits creation of each of these two keys.

A choice is then made of which of the two keys should effectively be taken into
account.

Column Primary Key of Three Tables

When the same column is the primary key of three tables, the foreign key
proposition permits creation of one foreign key from a column of a table.

The key proposition permits creation of only one foreign key from table C. The other
should be added in data entry of tables in the database.

 DATA TYPES AND COLUMN DATATYPES

Not all data has the same value type. Datatype determination enables indication of
format and therefore facilitates handling by the different data processing tools.

Hopex manages datatypes at different modeling levels, assuring correspondence of
datatypes at the logical level with datatypes handled by the different supported
DBMSs.

Attribute Datatypes

A type is used to group characteristics shared by several attributes.

To type attributes of an entity, only those datatypes defined for the data model that
contains this entity are proposed.

 A data model is used to represent the static structure of a system,
particularly the types of objects manipulated in the system, their
internal structure, and the relationships between them. A data model is
a set of entities with their attributes, the associations existing between
these entities, the constraints bearing on these entities and
associations, etc.

For more details on data types and reference data type packages, see Datatypes.

Determining Column Datatypes from Attribute Types

Datatypes defined at the logical level level are not always comprehensible for the
target DBMS. In this case, they need to be converted to datatypes corresponding to
the target DBMS.

This conversion intervenes notably at synchronization. Datatypes of attributes
defined in the logical model are translated to datatypes for the generated columns.

Conversion is assured by an equivalence link with pivot types. The pivot types are
an intermediary between logical datatypes and generated datatypes.

Pivot Types

Pivot types are datatypes defined independently of the target DBMS, which you can
use when you do not yet know the system in which the database will be hosted, or
when several systems may be used.

Pivot types have an equivalent datatype in each supported DBMS. They therefore
enable you to define the attribute types just once, then to reinterpret them later as
a function of the target DBMS.

To use the datatypes of a DBMS, you must import the corresponding module. See
Importing a DBMS Version.

Modeling Databases
Data Types and Column Datatypes

List of pivot types

Once imported, the pivot types are available in the Logical data navigation pane,
in the "Pivot" datatype package.

Alphanumeric types Other Information

P-String Alphanumeric character chain

P-Text Alphanumeric character chain

P-Character Alphanumeric string of fixed length Length

P-Varchar Alphanumeric string of variable length

Numeric types

P-Decimal Decimal

P-Double

P-Float

P-Integer Short

P-Long Integer

P-Long Real

P-Real

P-Smallint

P-Tinyint

P-Numeric Number Length, decimal places

P-Currency Amount expressed as currency Length, decimal places

Date types

P-Date Date

P-Time Time

P-DateTime Date and time

Binary types

P-Binary Binary string

P-Byte Binary string

P-Timestamp Identification automatically generated from
the date and time, expressed in thousandths
of seconds since 01 January 1970

Connecting a Datatype to a Pivot Type

Datatypes contained in the "Datatypes Reference" package and associated by
default with all new data models are connected to these pivot types. Therefore when
you create new datatypes, these must be connected to the corresponding pivot
types so that they can subsequently be used at physical level.

To connect a datatype to a pivot type:
1. Open the properties of the datatype.
2. Click the Characteristics page.
3. In the SQL Datatype field, select the pivot type.

Take the "Code" datatype. Open its properties dialog box and click the
Characteristics page. In the SQL Datatype field, you can see that it is connected
to the "P-Character" pivot type .

At synchronization of a logical model to a physical model, this pivot type "P-
Character" will give a datatype CHAR, VARCHAR, LONG or TEXT depending on the
DBMS concerned by synchronization. You can modify the target DBMS without
having to modify the datatype, Hopex assuring automatic conversion. See
Mappings Between Pivot Types and Datatypes.

Connecting a Datatype to a Pivot Type in UML Notation

If you use UML notation and class diagrams to modify your data - and for reasons
of compatibility with earlier versions of Hopex Database - other methods of
referencing pivot types are possible.

You can create new datatypes and connect them to pivot types:
• By inheritance
• By a correspondence link
• By creating a compound datatype

P-Boolean Boolean, equals 0 or 1

P-Multimedia Binary string

P-Varbinary Binary string

Modeling Databases
Data Types and Column Datatypes

By inheritance

You can define your own datatypes by declaring them as subclasses of the pivot
types, as shown in the example below.

The datatypes defined as subclasses will automatically inherit the characteristics of
their superclass. In particular, the datatype conversion rule for the superclass is
applied to the subclass.

It is possible to specify a length and a number of decimal places for the subclass.
These will be taken into account when generating the data types if they were not
already defined for the superclass.

By a correspondence link

To create this link:
1. Open the properties dialog box of the class.
2. Click the Generation > SQL page.
3. Indicate the SQL Type associated with the class.

 Only pivot types of the Standard::Types::Pivot package are
proposed in the list.

4. You can also indicate the length and the number of decimal places to be
applied.

By creating a compound datatype

You can define a compound datatype by assigning to it a list of attributes.

Here the "Address" type is composed of the number, street, zip code, city, and
country.

The derivation of the "Address" attribute will produce these five columns.

It is possible to have several levels of compound types by assigning a compound
type to an attribute of a compound type.

Modeling Databases
Data Types and Column Datatypes

For example, the zip code can be broken down into the main five digits and the four-
digit extension:

Mappings Between Pivot Types and Datatypes

Pivot types establish correspondence between the logical datatypes to which they
are connected and the datatypes for which they have an equivalent in each target
DBMS.

The equivalence links carry conditions that enable them to be distinguished one
from the other.

To visualize correspondences between pivot types and the different DBMS
datatypes, see Pivot Types and Datatypes Correspondence Tables.

Example of correspondence between pivot types and Oracle 8 datatypes

Pivot to Datatype

Pivot Condition Datatype

P-AutoIdentifier NUMBER

P-Binary RAW(@L)

P-Boolean L=2 or L ø RAW(1)

L>1 RAW(@L)

P-Byte RAW(1)

P-Character L=256 or L ø CHAR(@L)

L>2000 LONG

255<L<2001 VARCHAR2(@L)

P-Currency NUMBER(@L,@D)

P-Date DATE

P-Datetime DATE

Datatype to Pivot

P-Decimal NUMBER(@L,@D)

P-Double NUMBER(@L,@D)

P-Float NUMBER(@L,@D)

P-Integer NUMBER(@L)

P-Long Integer NUMBER(@L)

P-Long Real NUMBER(@L,@D)

P-Multimedia LONG RAW

P-Numeric L=0 or L ø NUMBER

L>0 and D ø NUMBER(@L)

L>0 and D not ø NUMBER(@L,@D)

P-Real NUMBER(@L,@D)

P-Smallint NUMBER(@L)

P-String LONG

P-Text VARCHAR2(@L)

P-Time DATE

P-Timestamp ROWID

P-Tinyint NUMBER(@L)

P-Varbinary LONG RAW

P-Varchar L>2000 or L=0 or L ø LONG

0<L<2001 VARCHAR2(@L)

Datatype Condition Pivot

CHAR(L) P-Character

DATE P-Date

LONG P-String

LONG RAW P-Multimedia

NUMBER P-Numeric

NUMBER(L) P-Numeric

NUMBER(L,D) P-Numeric

Pivot Condition Datatype

Modeling Databases
Data Types and Column Datatypes

In this table, we can see that the "P-Numeric" type has three correspondences for
type classes using three different conditions on the equivalence links.

if P_Numeric is assigned to an attribute and the length of this attribute is 10, then
the column justified by this attribute via the synchronization will give Number(10).

The condition is written in VB Script language. The main elements of the condition
are:

• Sub ConditionInvoke (Column, ByRef bValid): the first line
constitutes the signature of the function.

• Column: the column is given as an input parameter.
• bValid : is the return parameter. Its value is "True" if the condition is

verified, "False" if not.

Example:
Sub ConditionInvoke (Column, ByRef bValid)

bValid = False

If (IsNumeric(Column.Length)) Then bValid = True

End Sub

The following can be specified in the condition:
• Presence of a number
• Presence of a decimal
• Range concerned (example: between 0 and 150 inclusive)

Creating New Datatypes

Each datatype is implemented in the form of a class; it is specific to a DBMS version.
It is possible to use masks with datatypes.

Example for Oracle 10

Objective

In the ORACLE scripts, create a numeric datatype called Data8 with a length and a
specified number of decimal places.

RAW(1) P-Boolean

RAW(L) P-Boolean

ROWID P-Timestamp

VARCHAR2(L) P-Varchar

Datatype Condition Pivot

Steps

Steps are as follows:
1. Create a new datatype in Hopex.
2. Connect the datatype to the target DBMS (in this case Oracle 10).
3. Connect the datatype to the corresponding type in the "Pivot" package.
4. Configure the conditions on each link in both directions (from datatype to

pivot type and vice-versa).
 For more information on equivalence links and conditions, see
Determining Column Datatypes from Attribute Types .

Prerequisite Conditions

To see packages containing DBMS datatypes, you must import the corresponding
module. See Importing a DBMS Version.

 It is recommended that a datatype be defined in only one
DBMS version.

To import the module of datatypes:
1. From your HOPEX version, open the HAS Console.
2. From the navigation menu, click Modules.

The HAS console displays:
• installed modules
• the store where you can download modules
• modules to be updated

3. In the store, search for the module to install and download it.

In addition, certain data is protected in Hopex. To be able to modify objects
contained in DBMS packages:

1. Open the administration desktop with the HOPEX Administrator profile.
2. In the upper right-hand corner of the desktop, click on the menu

associated with the administrator’s account and then click Options.
3. In the options window, expand the Installation folder.
4. Click the Customization folder.

The list of options linked to customizing appears in the right pane of the
window.

5. In the Authorize HOPEX data modification box, select "Authorize".
6. Click OK.

Creating a new datatype

To create a new datatype in Hopex Data Governance:
1. Click the Architecture > Data Dictionaries navigation menu.

 In Hopex Data Architecture, click the Data Architecture>
Hierarchy View navigation menu.

2. Expand the Data Dictionaries folder.
3. Click the icon of the "Oracle 10" package and select New > Class.

The Creation of Class dialog box opens.
4. Name your class "Data8 (@L,@D)".
5. Open the properties dialog box of this new class.
6. In the Characteristics page, select “Expression” in the Stereotype

field.

Modeling Databases
Data Types and Column Datatypes

7. In the Type expression field which appears, a little lower, select the
value “Data8 (@L,@D)”.

You can see in the navigator that a new class “Data 8” has been created.

 This new class is automatically created for UML operating
requirements..

Connecting the datatype to the pivot type

If you wish to obtain this datatype after synchronization, you must give it an
equivalence at the logical level.

1. Open the properties of datatype "DATA8 (@L,@D)".
2. Click the Complements page.
3. Right-click the "Conceptual Equivalence" folder and select Connect.
4. In the query dialog box, select the class "P-Numeric".

Configuring conditions on links

To configure a condition on links:
1. Right-click the "Data8" class and select Explorer.
2. Expand the "Conceptual Equivalence" folder.

3. Select the green folder "Programming Language Equivalence".
You will see that there are three other cases of correspondence for Oracle
10.

Conditions on these correspondences must therefore be modified so that
they will be coherent with the conditions placed on the new datatype.

4. Right-click the “NUMBER(@L,@D)” datatype and select Properties.
5. In the Texts page, select "Language equivalence condition", and modify

the text as follows:
Sub ConditionInvoke (Column, ByRef bValid)

bValid = False

Dim IsNumericLength

IsNumericLength = IsNumeric(Column.Length)

Dim IsNumericDecimal

IsNumericDecimal = IsNumeric(Column.Decimal)

If (IsNumericLength and IsNumericDecimal) Then

If (Column.Length <> 8) Then

bValid = True

End If

End If

End Sub

Modeling Databases
Data Types and Column Datatypes

6. In the same way, add the following text in the properties dialog box of
new datatype "Data8".

Sub ConditionInvoke (Column, ByRef bValid)

bValid = False

Dim IsNumericLength

IsNumericLength = IsNumeric(Column.Length)

Dim IsNumericDecimal

IsNumericDecimal = IsNumeric(Column.Decimal)

If (IsNumericLength and IsNumericDecimal) Then

If (Column.Length = 8) Then

bValid = True

End If

End If

End Sub

Verifying datatypes

To verify datatypes:
1. Display the properties of a column concerned by conditions placed on the

datatype.
2. Verify that the mask displayed in the Datatype column is "Data8 (%l,

%d)" for this column.

Example for SQL Server 7

Objective

Reread SQL Server 7 columns containing a non-standard datatype.

Manipulations are the same as for Oracle (see Example for Oracle 10). On this
occasion we shall not create a mask.

Creating a new datatype

To create a new datatype in Hopex Data Governance:
1. Click the Architecture > Hierarchy View navigation menu.
2. Unfold the Data Dictionaries folder.
3. Click the icon of the "Oracle 10" package and select New > Class.

The Creation of Class dialog box opens.
4. Name your class "TLongName".
5. Open the properties dialog box of this new class.
6. In the Characteristics page, select "Expression" in the Stereotype

drop-down list, then click OK.

Connecting the datatype to the pivot type

To connect the datatype to the primitive type:
1. Open the properties of the "TLibelleLong" datatype.
2. Select the Complements page.
3. Right-click the "Conceptual Equivalence" folder and select Connect.

4. In the query dialog box, select the "P-Text" class.

Configuring conditions on links

To configure a condition on links:
1. Right-click the "TLibelleLong" class and select Explorer.
2. Select the green folder "Programming Language Equivalence".

You will see that there is another correspondence for SQL Server 7.
3. Open the properties dialog box of datatype "text".
4. In the Texts page, select "Language equivalence condition", and modify

the text as follows:
Sub ConditionInvoke (Column, ByRef bValid)

bValid = False

Dim IsNumericLength

IsNumericLength = IsNumeric(Column.Length)

If (IsNumericLength) Then

If (Column.Length > 255) Then

bValid = True

End If

End If

End Sub

5. In the same way, add the following text in the properties dialog box of
new datatype "TLongName".

Sub ConditionInvoke (Column, ByRef bValid)

bValid = False

Dim IsNumericLength

IsNumericLength = IsNumeric(Column.Length)

If (IsNumericLength) Then

If (Column.Length <= 255) Then

bValid = True

End If

End If

End Sub

Modeling Databases
Database Modeling Rules

DATABASE MODELING RULES

Hopex Data Architecture provides rules that enable database modeling checks.
The physical regulation contains the rules relating to the database relational
diagram. It is used to check the corresponding relational diagram in a DBMS.

The physical regulation contains rules relating to technical specifications of the
database DBMS. It is used to check consistency of physical parameters of the
relational diagram specific to the DBMS.

Checking a database

You can run a check on the database or on a database object.

To check a database:
1. Right-click the name of the database.
2. Select Administer >Check > Regulation with Propagation.

When several regulations can apply to the check object, a dialog box asks
you to select the required regulation.

The check applies to the database as well as the objects it owns.

Results appear in an HTML report.

For more details, see the Hopex Common Features user guide, "Exploring the
repository", "Tools for Checking Objects".

SYNCHRONIZING LOGICAL AND PHYSICAL
MODELS

Synchronization is a process that translates a class diagram expressed in classes/parts formalism
to a physical model expressed in relational formalism, and vice-versa. It therefore ensures
correspondence of objects in the two models.

 A compatibility option enables to synchronize a data model
(entities/associations) and a physical model. See Logical Formalism and
Synchronization.

The procedure should be carried out periodically. Throughout the modeling project, these models
are each subject to their particular changes. Synchronization intervenes when we wish to compare
the two models and automatically restore canonical mappings that connect them.

The synchronization functionality is available with "Advanced" access to the Hopex repository.

 Synchronization of models of a database can be in one
direction or another - either in physical > logical direction or in
logical > physical direction, but not both at the same time. When
synchronization direction has been determined, synchronization
should not be reversed. Mapping justification between the
logical and physical levels is not guaranteed if this rule is not
followed.

See also Model Mapping.

 "Logical to Physical" Synchronization Rules
 From the Logical Model to the Physical Model
 Reduced Synchronization (Logical to physical mode)
 Running Synchronization After Modifications
 From the Physical Model to the Logical Model
 Configuring Synchronization
 Diagram Synchronization

Synchronization Display Options

Certain synchronization options are filtered by default. To display these:
1. Click Main Menu > Settings > Options.
2. In the Options tree in the left pane, unfold the HOPEX Solutions >

Information Architecture folder.
3. Click the Database synchronization sub-folder.
4. In the right pane, check the desired synchronization options:

• Synchronization (Logical to Physical)
• Synchronization (Physical to Logical)
• Reduced synchronization (Logical to Physical)
• Reduced synchronization (Physical to Logical)

Note that the UML notation is applied by default in the synchronization. See
Formalisms.

Synchronizing logical and physical models
"Logical to Physical" Synchronization Rules

"LOGICAL TO PHYSICAL" SYNCHRONIZATION RULES

The following rules are applied for transforming class diagrams into relational
formalism.

 See also Configuring Name Generation and Data Types and Column
Datatypes.

Logical to Physical Synchronization: the Entities (or Classes)

In Logical to Physical mode, classes and entities are processed in the same way by
the synchronization tool.

 By default, the synchronization tool applies the class
diagram logical formalism. See Logical Formalism and
Synchronization.

General rule
• Any non-abstract entity of the model becomes a table.
• The entity identifier becomes the primary key for the table. If the

identifier is implicit, a column is automatically created. See Configuring
Name Generation.

• Entity attributes become columns in the table.
• Mapping rules are applied to determine the column datatypes from the

datatype (DM) of each attribute. The possible configurations depend on
the DBMS.

 For more detailed information, see Data Types and Column
Datatypes.

Sub-entity
• The foreign key reflecting dependency between the sub-entity and its

super-entity is created.

Abstract entity

An abstract entity does not produce a table at synchronization.

If constraint associations point to an abstract entity, the corresponding foreign keys
are not created, but columns corresponding to the foreign keys are created to
respect table integrity.

When a sub-entity is abstract, all columns and foreign keys of the corresponding
table are taken by the table corresponding to the super-entity.

Conversely, when a super-entity is abstract, all columns and foreign keys of the
corresponding table are taken by the table corresponding to the sub-entity.

To define an abstract entity:
1. Open the properties dialog box of the entity.
2. Click the Characteristics tab.
3. In the Abstract box, select "Yes".

Realized entity

An entity is said to be realized if it produces creation of a table at synchronization.

A "not realized" entity is treated as an abstract entity.

Unlike the "abstract" property which characterizes the entity in all use cases, the
"realized" concept applies only in the context of database synchronization. See
Realized mode.

Logical to Physical Synchronization: the Associations

Synchronization of associations is available with the former UML formalism which
takes into account associations but not parts. See Logical Data Modeling Options.

Constraint associations (multiplicities: 0,1 or 1,1)

A constraint association is a binary association one role of which has maximum
multiplicity 1 In this case, it is not necessary to create a table corresponding to the
association. Simply add a column to the table that corresponds to the entity.

A constraint association (one of its maximum multiplicities is 1) does not result in a
table. In the following example, an order has only one customer.

Synchronization of this data diagram produces one of the two following results:

Synchronizing logical and physical models
"Logical to Physical" Synchronization Rules

The association does not result in a table.

• A column corresponding to the key for the “Customer” entity is created
in the “Order” table.

• A column is also created for each attribute of the association.
• A foreign key “FK_Customer” is added to check the “Customer_ID”

column in the “Order” table. It indicates that the possible values for the
“Customer_ID” column in the “Order” table are the values that already
exist in the “Customer ID” column of the “Customer” table.

The foreign key is created from the entity identifier.

The association is transformed to a table

For the association to be transformed into a table:
1. Open the properties dialog box of the association.
2. Click the Characteristics tab.
3. In the Potential Mapping field, select "Table".

Constraint associations (multiplicities: 0,1 and 0,1)

In this particular case, the combination of multiplicities is ambiguous. There is
nothing that can be used to decide which table should contain the column
corresponding to the attribute.

Synchronization proposes a column in each table.

Deadlocks

The multiplicities 1..X, 1..X indicate that each of the two objects must be connected
to at least one object of the other type in order for it to exist.

This poses problems when creating the first object of each type. In fact:
• An object of type A must exist in order to create an object of type B and

then connect them.
• Conversely, an object of type B must exist in order to create an object of

type A and then connect them.

This is the case for the following multiplicity combinations:
• Multiplicities of 1..*, 1..*
• Multiplicities of 1, 1..*

However, it is not physically impossible to resolve such cases, because the problem
is limited to creating the first object of each type. In addition, no foreign key is
generated for verifying data integrity in the first case, and only one in the second
case, so there is no resulting deadlock situation.

Synchronizing logical and physical models
"Logical to Physical" Synchronization Rules

Multiplicities 1, 1 generate several obligatory foreign keys that will become
deadlocked:

This situation results in complete deadlock, because in order to meet the
constraints, several tables must be created at the same time.

Certain DBMSs prohibit creation of tables of this type.

For correct synchronization, situations such as this should be avoided.
 Select one of the foreign keys and assign it a multiplicity of
1, then assign 0..1 to the other. You can also pull the foreign key
from the table after synchronization , but this is less convenient.

You can still impose the minimum multiplicity of 1 by adding a constraint as shown
below. This constraint will not be taken into account in the synchronization.

 See Constraints for further information.

Here is another example using a reflexive link: Reflexive link 1, 1 or 0..1, 1

We want to show that each exit from a freeway comes before an exit and comes
after an exit.

When modeled this way, all exits must be created at the same time, because each
exit must have a previous exit already created.

To avoid this, set the multiplicities to 0..1 and 0..1.

Non-constraint association

An association where maximum multiplicities are not 1 will have a corresponding
table:

• A column is created for each attribute of connected entities identifiers.
• The primary key for the table uses all these columns.
• A foreign key is also built for each connected entity.
• An additional column is created for each attribute of the association.

Before starting synchronization it is advisable to check validity of the data diagram
and check that synchronization configuration is correct. See Preparing
Synchronization.

Association class

Associations connecting associative classes are not included in synchronization.

Logical to Physical Synchronization: the Parts (UML)

Synchronization of parts is available by default with the new UML formalism.

Synchronizing logical and physical models
"Logical to Physical" Synchronization Rules

The result of the synchronization is determined by the combination of the Whole/
Part link (None, Aggregation, Composition) and the Multiplicity defined on the
part.

Example 1: None / *

In the following example, the “Person” class references the “Car” class, without
multiplicity constraint.

After synchronization, the “Car” part gives rise to a table:
• A column is created for each attribute of connected entities identifiers.
• The primary key for the table uses all these columns.
• A foreign key is also built for each connected entity.

Multiplicity Whole/Part link

Aggregation
Composition

None

None (*)
2 / 6
1..*

The part gives rise to a foreign key
to the owner class

The part gives rise to a table between
the two classes

1
0 / 1

The part gives rise to a foreign key
to the referenced class

and gives rise to a foreign key to
the owner class

The part gives rise to a foreign key to
the referenced class

Example 2: Aggregation / *

A car can have one or several wheels.

After synchronization, the part gives rise to a foreign key to the “Car” class.

Example 3: Composition / 0..1

An order contains an invoice.

After synchronization:
• A foreign key references the “Invoice” table in the “Order” table.
• A foreign key references the “Order” table in the “Invoice” table.

Synchronizing logical and physical models
From the Logical Model to the Physical Model

FROM THE LOGICAL MODEL TO THE PHYSICAL MODEL

This section explains how to synchronize the logical model of a database
(represented by a data diagram) with the corresponding physical (relational) model.

Although synchronization of the relational model from the data diagram essentially
concerns entities, it can also be carried out more generally from classes of a class
diagram.

Synchronization in the reverse direction, from a physical model to a logical model,
is also possible but not on the same database. When synchronization direction has
been selected for an object, synchronization in the other direction will no longer be
possible.

See From the Physical Model to the Logical Model.

The points that follow present synchronization of a database. You can also run
reduced synchronization, in other words on a specific object of the database. See
Reduced Synchronization (Logical to physical mode).

Running Synchronization

Logical to Physical synchronization consists of building the physical model from the
logical model, in other words of creating tables and columns corresponding to data
diagram entities and attributes:

The synchronization tool is available in the Tools > Data Synchronization
navigation pane. You can also open the synchronization tool directly from the
database concerned.

To run a Logical to Physical synchronization on a database:
1. Click the icon of the database and select Synchronize.

The synchronization wizard opens.
2. Select the synchronization type "Logical to physical”.

Step 1: Selecting the source objects to be synchronized

To define synchronization scope:
1. In the logical view tree, expand the list of objects contained in the

database.

2. By default, all objects are selected and therefore included in
synchronization. To exclude an object from thesynchronization, clear it
from the Scope column. When an object is excluded, its mapping is also
excluded.

3. By default, all the objects are "realized", in other words, they give way to
the creation of an object during synchronization. To specify that an
object is "not realized", select it in the Not realized column. For more
detailed information, see Realized mode.

4. When the list of objects has been defined, click the Next in the wizard.

Synchronizing logical and physical models
From the Logical Model to the Physical Model

Step 2: Synchronization options

From the synchronization options, you can:
• in a case where objects of the logical view have already been

synchronized, synchronization will start from zero and will delete existing
target objects.

 When models have already been synchronized, so that
mappings are taken into account at a new synchronization,
make sure the "Target object reinitialization" option is cleared.

• Recalculate target object names: names of physical objects are
recalculated as a function of those of the source objects. This means that
any manual modification of physical object names is canceled.

• Take account of optimizations: all optimizations - including those not
selected in the validation step (see step 4) are proposed.

• Take account of deletions: entities, associations and diagrams that have
been deleted are included in the scope. Consequently, deletion of
corresponding target objects and links is proposed.
See Using Options.

Other options concern target object properties update. By default, synchronization
updates all properties of each object concerned.

Scheduling

You can run synchronization:
• Immediately
• As soon as possible (after publication of updates)
• At a predefined date and time

 When options have been specified, click Next.

Step 3: Protecting objects

Synchronization can impact all objects in an existing database.
 To keep an object intact, select it in the Frozen.
 Click Next to continue.

See Protecting Objects.

Step 4: Validating results

The wizard displays the results that will produce synchronization validation.

Objects that will be automatically modified are indicated by a tick.

Icons preceding object names indicate actions that will be executed on the objects.

Actions can be creation , deletion or update .

An arrow preceding an object indicates that synchronization has an impact on
sub-objects of the object in question.

 Expand the object to view the modifications concerned.

Validating optimizations

Optimizations are customizations on objects thus removed from automatic
synchronization processing.

Optimization examples:

A tick indicates objects that will be modified. If you do
not wish to validate modifications relating to certain
objects, you must clear the corresponding boxes. This
optimization is kept at subsequent synchronizations.

In addition, Hopex deduces optimizations following actions you may have carried
out manually. If you have added a table in the physical view without having created
the corresponding object in the logical view, synchronization does not select

deletion of this table.

So that the object will be deleted, you must select the corresponding box.
 When actions on target objects have been defined, you can click Next.

A report shows actions carried out.

You can close the wizard and view the results in the editor.

Using Options

The combination of the "Take account of optimizations" and "Take account of
deletions" options varies depending on the scope of objects you wish to update.

Take account of optimizations

When this option is selected, synchronization proposes all creations, deletions and
modifications, including optimizations not selected by default at the validation step.

When the option is cleared, only the modifications selected by default are proposed
at the validation step.

This option enables filtering of the synchronization result to present only those
modifications that have a real impact on target data.

Take account of deletions

When this option is selected, synchronization includes entities, associations and
diagrams that have been deleted. Consequently, deletion of corresponding target
objects and links is proposed.

Synchronizing logical and physical models
From the Logical Model to the Physical Model

When this option is cleared, the entities, associations and diagrams that have been
deleted are not included. Consequently, the corresponding target objects are not
modified.

 This option only applies to entities, associations and
diagrams. For other deleted object types (attributes, identifiers,
etc.), the impact on target objects and links is conditioned not
by this option, but by the object that contains them.

This option enables limitation of impact of a synchronization strictly to the source
scope defined by the user, excluding any object not explicitly declared in the scope.
This option can be associated with synchronization scope for use case types.

Possible option combinations

1. "Take account of deletions" option selected and complete
synchronization scope

This is a use case that favors complete synchronization between source and target.
In this case, all objects have a valid mapping on completion of each synchronization
wizard operation. This mode should be used when source and target should be
totally consistent.

2. "Take account of deletions" option selected and partial
synchronization scope

This use case enables working on the selected scope, while including impact of
deleted objects. In particular it enables confirmation of deletions of target objects
following the deletion of source objects of entity, association or diagram types: as
these source objects have been deleted, it is theoretically not possible to include
them in the synchronization scope. Selecting this option makes this choice possible.
This mode should be favored when the scope is wide, and the few objects excluded
from the scope are only excluded temporarily (for example, new objects for which
we wish to delay the impact on the target).

3. "Take account of deletions" option selected and empty
synchronization scope

This is a special mode enabling "cleanup" of target objects whose mapping is no
longer valid, with no other impact.

4. "Take account of deletions" option not selected and partial
synchronization scope

This use case enables working strictly on the selected scope, excluding any impact
outside this scope. In particular it avoids deletions of target objects following the
deletion of source objects of entity, association or diagram types: as these source
objects have been deleted, it is theoretically not possible to exclude them in the
synchronization scope. Clearing this option makes this choice possible. This mode
should be favored for a specific synchronization on a restricted scope, which does
not include total consistency of source and target. In addition, it is the fastest mode.

5. "Take account of deletions" option not selected and complete
synchronization scope

This combination is in principle an infrequent use case. It corresponds to a work
mode in which deletion of source objects has no effect on the target; in other words
no target object created is ever deleted when this mode is activated.

6. "Take account of deletions" option not selected and empty
synchronization scope

This combination has no effect.

Protecting Objects

You can protect an object so that synchronization will have no impact on it. This
excludes the object from synchronization without it disappearing.

There are two object protection modes; one upstream and the other downstream.

Frozen mode

"Frozen" mode concerns the target object, that which results from synchronization.

When you freeze a relational model table, you also freeze all child objects of this
table: no child object is created, modified or deleted by synchronization.

You can freeze objects:
• Before running synchronization, in the database editor.
• When running synchronization, in the options presented in the wizard.

See Step 3: Protecting objects.

Realized mode

"Realized" mode concerns the source object of synchronization.

An object is said to be realized if it produces object creation at synchronization.

An object not realized does not produce object creation at synchronization but is
treated as an abstract object. See Abstract entity.

By default, all objects are realized.

You can exclude a source object from synchronization selecting the "Not realized"
column on the object in question in the synchronization wizard. This action is
available on entities, attributes and associations. The "realized" or "not realized"
action is propagated to child objects.

Synchronizing logical and physical models
From the Logical Model to the Physical Model

Not realized entity example

The "Article" entity has an association to the "Article Type" entity.

The "Article Type" entity is said to be "not realized".

At synchronization, the "Article Type" entity does not produce creation of a table. In
the"Article" table, the foreign key to "ArticleType" is not created; however the
"Code_Type_Article" column is created.

Synchronization Results: Correspondences

When synchronization is completed, the tables, columns, keys, and indexes of the
physical diagram have been synchronized with the data diagram. They can now be
viewed and the desired optimizations made.

Mapping characteristics

For more details on mapping:
 In the mapping editor, select the object mapping element and click

Properties.
 In the window that opens, click the drop down list and select

Characteristics.

Synchronization scope

By default, all objects in synchronized models are included in the synchronization.
You can however exclude an object from the synchronization.

See Step 1: Selecting the source objects to be synchronized.

Synchronization state

You can protect an object so that it will not be modified at synchronization by
specifying that it is "Frozen".

See also Protecting Objects.

Synchronization direction

The synchronization direction of a mapping indicates which object is updated related
to the other.

In certain cases, synchronization is possible in both directions (for example, when
two objects that can be synchronized do not yet have a mapping). In other cases,
it is only possible in one direction (for example, if one of the two objects is already
synchronized) or impossible in both (because each object already has a mapping or
because the object types concerned cannot be subject to synchronization). This
indication is given in the Synchronization box.

Summing up:
• Bidirectional: synchronization in both directions.
• From left to right: synchronization is from left to right (the object on

the right is synchronized with the object on the left).
• From right to left: synchronization is from right to left.
• Never : no mapping is possible between the two objects.

For more details on mapping, see The Database Editor.

Synchronizing logical and physical models
Reduced Synchronization (Logical to physical mode)

REDUCED SYNCHRONIZATION (LOGICAL TO PHYSICAL

MODE)

The synchronization function enables synchronization of a logical model and a
physical model in the database. In design phase, it is often useful to synchronize
part of the current model without having to consider the complete database which
can be extremely large. Hopex Data Architecture enables limitation of
synchronization scope to a set of objects, thus reducing synchronization processing
time.

The points that follow detail "Reduced synchronization" mode in direction Logical >
Physical directions, but it is also available in Physical > Logical direction.

Reduced Synchronization Source Objects

Reduced synchronization is synchronization applied to an object other than to the
database. Reduced synchronization applies only to an object of which the database
has already been synchronized.

Objects on which you can run reduced synchronization are:
• Class
• Association
• Package
• Table
• Table file
• Entity (DM)
• Association (DM)
• Data model

Reduced synchronization scope is determined by the object on which you run
reduced synchronization.

The following cases illustrate reduced synchronization in the logical to physical
direction.

Running from a data model

When you run a synchronization on a data model, by default all objects of the model
are selected in the scope of the synchronization; they are all selected in the editor.

Running from a data model entity

When you run a synchronization from an entity (or another object) belonging to a
data model, only those objects linked to this entity within the same model are
selected by default.

Objects linked to the entity but belonging to another model are displayed in the
editor (when they are connected to the target database) but not selected by default.
You must select the associated check boxes to take them into account in the
synchronization.

The data model of the synchronized entity is taken as scope only if the ownership
link between data model and entity is clearly identified: this is the case when you
select the entity in the navigation window, but not when you select it in a diagram.

Running on an entity outside context

When you run synchronization on an entity outside context, for example in an
explorer window, all objects depending on the modified entity, whether or not
included in different models (on condition that these models are connected to the
target database) are selected by default in synchronization scope, since no
particular model context is identified.

Reduced Synchronization Strategies

At synchronization from an object, the three strategies below can be applied.

Impact of synchronized object on other objects

This strategy enables definition of synchronization scope from the source object,
with the possibility of extending this to all objects dependent on the source object
and likely to be affected by its modification.

Example

With this strategy in the model below, reduced synchronization of the "Model" entity
allows inclusion of the "Car" entity, which has a constraint association to the "Model"
entity.

Synchronizing logical and physical models
Reduced Synchronization (Logical to physical mode)

Logical model

Reduced synchronization results

Impact of other objects on synchronized object

This strategy enables integration in reduced synchronization scope of objects on
which the source object directly depends, for example all objects associated with the
source entity which are necessary for update of the corresponding table.

Example

In the same example as before, taking the "Model" entity as source of reduced
synchronization, the scope extends to the "Group" entity since tables corresponding
to these two entities are linked by a foreign key: the "Group" entity can modify the
"Model" table associated with the "Model" entity via the intermediary foreign key
"FK_Group" (see diagram below).

The "Car" entity however is not taken into account in the scope since it cannot act
on the "Model" table.

Physical model

Synchronizing logical and physical models
Reduced Synchronization (Logical to physical mode)

Reduced synchronization results

All impacts

This strategy allows a combination of the two strategies described above. Scope of
reduced synchronization is extended to objects required by the source object, and
to all objects likely to be affected.

Example

Reduced synchronization results

Running Reduced Synchronization

Before starting, check that option "Reduced synchronization (logical > physical)" is
active:

1. On the desktop, click Main Menu > Settings > Options.
The options window appears.

2. In the left pane of the window, expand the HOPEX Solutions >
Information Architecture folder.

3. Click Database Synchronization.
4. In the right pane of the window, select Activate reduced

synchronization (logical > physical).

To start reduced synchronization:
1. Right-click the object to be synchronized.
2. Select Synchronize.

The synchronization wizard opens.
3. Select the synchronization type "logical to physical".

An entity can be used by several data models, therefore by several
databases. When this is the case, you must select the database
concerned.

4. Select the Strategy.
5. Click Next.
6. Select the objects to be synchronized

The scope selected by default depends on the context in which you select
the object to be synchronized: if reduced synchronization is initialized
from an entity in a diagram, the diagram model in question is selected. If
the entity is selected outside its context, all models in which it appears are
displayed in the editor.

 Selected objects are not memorized and at a new synchronization
default scope is again displayed.

7. Click Next.
8. Define the Synchronization Options. All standard synchronization

options are available with the exception of the "Reinitialize target
objects" option.

9. Click Next.
The target objects protection option is displayed, you can view frozen
objects. Protection of objects cannot be modified.

10. Validate results by clicking Next.
The synchronization report appears.

11. Click OK to close the synchronization wizard.
The mapping editor appears (unless the mapping option was cleared from
the synchronization wizard).

Reduced synchronization options

Reduced synchronization presents the same options as total synchronization, with
the exception of:

• Reinitialization of target objects
• Order

The reduced scope of reduced synchronization does not give a valid result for these
two options

Synchronizing logical and physical models
Running Synchronization After Modifications

RUNNING SYNCHRONIZATION AFTER MODIFICATIONS

When a database has been synchronized and then manually modified, any
additional specifications made directly in the database are retained, unless:

• Reinitialization is requested.
• Changes made in the data diagrams prevent this (addition or deletion of

objects or links).

These changes include:
• Creation of entities, associations, attributes in the data diagram
• Deletion of entities, associations, attributes in the data diagram
• Modifying the characteristics of an attribute
• Modifying the name of an attribute, entity, or association
• Modifying the maximum multiplicity of an association
• Modifying the links of an association

Additional specifications made to the relational diagram may include:
• Deleting objects created by the synchronization
• Creating objects
• Modifying object characteristics created by the synchronization
• Modifying the order of columns in the tables, keys, or indexes

Synchronization after Modification of the Data Diagram

Newly created entities, associations, and attributes in the data diagram

The corresponding elements are created in the relational diagram, according to the
rules used in the first synchronization.

Entities, associations, or attributes deleted from the data diagram

The corresponding elements are deleted in the database. For example, when an
attribute is deleted in the data diagram, the corresponding column(s) are also
deleted.

Modified attribute characteristics

Modifications made to the characteristics of an attribute (type, length, decimal
places, etc.) are reflected in the corresponding column in the relational diagram.

If the value of a characteristic of a column has been changed directly in the
relational diagram, it will be preserved.

Modified name of an attribute, entity, or association

Modifications made to the name of an attribute, entity, or association are not
reflected in the corresponding object in the relational diagram.

Modified maximum multiplicity of an association

If the maximum multiplicity of an association was 1, resulting in the creation of a
migratory column, and has been changed to N, the migratory column is deleted and
the table mapped by the maximum multiplicity of N is created.

Modified association links

Association R no longer concerns entity B, but does concern entity C.

In this case, the migratory column for B in A is no longer mapped.
• It is deleted.
• A migratory column from C is created.

Synchronization after Modifications to the Physical Diagram

Deleted table or column

If you delete objects from the database that were created by the synchronization
(table, column, key, index...), these deletions are memorized and retained.

As long as the entity, association, or attribute that maps the table or column exists,
the table or column is no longer recreated.

Synchronizing logical and physical models
Running Synchronization After Modifications

To recreate a column created by the synchronization and subsequently deleted:
1. Run database synchronization
2. At the results validation step, confirm the creation action (select the

corresponding check box) proposed for this column.

Created objects

Objects (table, column, key, index) created in the relational diagram are retained.

However, deleting the objects they depend on may result in their deletion.

For example, a column is created in a table mapped by an entity. If the entity is then
configured as “No table” or if the entity is disconnected from the datamodel, the
corresponding table will disappear and the column with it.

 Objects created in the relational diagram can be mapped manually.
Objects created at synchronization are mapped automatically.

Modified characteristics of objects created by synchronization

Modifications to the characteristics (SQL name, length, not null, datatypes) of
objects created by synchronization are retained.

Modified order

Concerning modifications of order, processing depends on options defined in the
synchronization wizard (see Step 2: Synchronization options).

FROM THE PHYSICAL MODEL TO THE LOGICAL MODEL

This section describes how to synchronize the physical model model of a database
with the corresponding conceptual model.

"Physical to Logical" Synchronization Rules

Synchronizing the logical model from the physical model enables creation of the
database data diagram from its tables.

Rules used for this transformation are:

- A table of which the primary key is composed of a foreign key relating to the same
columns becomes an entity. A generalization is created between this entity and the
entity corresponding to the table to which the foreign key is pointed.

Physical level example:

Result at the logical level:

Synchronizing logical and physical models
From the Physical Model to the Logical Model

- A table of which the primary key is composed of foreign keys only becomes an
association of multiplicities (*..*). If columns do not belong to the primary key, an
attribute connected to the association will be created for each of these columns.

Physical level example:

Result at the logical level:

- A table of which the primary key contains foreign keys and at least one column
that is not a foreign key becomes an entity. An aggregated association is created
between this entity and the entity corresponding to the table to which each of the
foreign keys is pointed.

The candidate key of the entity is composed of the roles of aggregated associations
and of the attribute(s) corresponding to the other columns of the primary key of the
table.

Physical level example:

Logical level result:

- A table of which the primary key is composed of foreign keys only pointing to the
same table becomes a reflexive association of multiplicities (*..*).

Physical level example:

Logical level result:

- In other cases, each table becomes an entity and its columns the attributes of the
entity.

- A foreign key becomes an association (0..1, *). If all the columns of the key are
mandatory, its cardinalities become (1, *).

Synchronizing logical and physical models
From the Physical Model to the Logical Model

- Types of attributes are recalculated with the help of the conversion table specific
to the target DBMS (see Data Types and Column Datatypes).

Running Synchronization

To start the synchronization:
1. Select the database concerned (in the list of databases or in a diagram

for example).
2. Right-click the database and select Synchronize.

The synchronization wizard opens.
3. Select the synchronization type "physical to logical".

Step 1: Selecting objects to be synchronized

To define synchronization scope:

Scroll the list of objects contained in the database.
1. By default, all objects are selected and therefore included in

synchronization. To exclude an object from the synchronization, clear it
from the Scope column. When an object is excluded, its mapping is also
excluded.

2. By default, all the objects are "realized", in other words, they give way to
the creation of an object during synchronization. To specify that an
object is "not realized", select it in the Not realized column. For more
detailed information, see Realized mode.

3. When the list of objects has been defined, click the Next in the wizard.

Step 2: Synchronization options

From the synchronization options, you can:
• Reinitialize target objects: synchronization starts from zero and deletes

existing target objects.
• Recalculate target object names: names of data diagram objects are

recalculated as a function of those of the relational diagram. This means
that any manual modification of the data diagram is canceled.

• Take account of optimizations: all optimizations - including those not
selected in the validation step (see Validating optimizations) are
proposed.

• Take account of deletions: entities, associations and diagrams that have
been deleted are included in the scope. Consequently, deletion of
corresponding target objects and links is proposed.
See Using Options.

You must also indicate the data model that will own the set of objects created by
the synchronization.

Other options concern target object properties update. By default, synchronization
updates all properties of each object concerned.

Scheduling

You can run synchronization:
• Immediately
• As soon as possible (after publication of updates)
• At a predefined date and time

 When options have been specified, click Next.

Step 3: Protecting objects

Synchronization can impact all target objects.
 To keep an object intact, select it in the Frozen.
 Click Next to continue.

See Protecting Objects.

Step 4: Validating results

The wizard displays the results that will produce synchronization validation.
 To validate these results, click Next.

A report presents a list of processes that have been carried out.

Reduced synchronization

The above synchronization applies to a database but you can also run a Physical >
Logical synchronization on a specific object of the database to reduce
synchronization scope and processing time. See Reduced Synchronization (Logical
to physical mode).

"Physical to Logical" Synchronization Results

Owner data model

A default data model owning the entities is created at the time of the Physical to
Logical synchronization. Synchronized classes and associations are automatically
connected to it. You can then distribute these entities and associations between the
various data models of your study.

Data diagrams

A data diagram is created for each of the relational diagrams of the database.
Classes and associations resulting from the tables of the corresponding relational
diagram are connected to it.

Synchronizing logical and physical models
From the Physical Model to the Logical Model

Mappings

See Synchronization Results: Correspondences.

CONFIGURING SYNCHRONIZATION

This section describes the default options and parameters taken into account at
synchronization.

Preparing Synchronization

To prepare synchronization:
1. Right-click the database and select Properties.

The properties window appears.
2. Click Options > Standard.
3. If you want the physical database name used at SQL script generation to

be different from the database name, specify the target database name
in the SQL Name text box.

4. If required, indicate a Prefix for the SQL Tables. This prefix will be added
to the beginning of the name for each table generated.

 Additional parameters for configuration of synchronization and
generation can be indicated in Options. These parameters vary as a
function of the DBMS selected.

5. Click again on the scroll-down list of the properties window and click
Characteristics.

6. Select the Target DBMS and its version.
 The type of the target DBMS determines:
• For synchronization, the generation of column datatypes based on

the type and length of attributes (see Data Types and Column
Datatypes).

• In generation, the syntax of the generated SQL commands.

7. Click OK to close the dialog box, saving the modifications.

Creation Options

On a database

It is possible to configure synchronization for each database in order to modify:
• Its creation options
• Processing of repository integrity (keys OnDelete or OnUpdate as a

function of the possibilities offered by the DBMS target)

This configuration also concerns processing of the Not Null columns and the
automatic creation of indexes on primary keys.

To configure the creation options for the database:
1. Right-click the database and select Properties.

The properties window appears.

Synchronizing logical and physical models
Configuring Synchronization

2. Click Options > Synchronization.
The corresponding options appear.

You can specify the following parameters:

• Columns Not Null activates/deactivates the WITH DEFAULT option for
Not Null columns.

• OnDelete: key deletion default strategy. Possible values are:
• Restrict: deletion is refused.
• Cascade: deletion of a column is reflected in dependent tables.
• Set Null: indicates "Null".
• Set Default: gives the default value if this is specified. If no default

value is specified, nothing occurs ("No action").
• No Action: nothing occurs.

• OnUpdate: key update default strategy.
• Names cols PK auto: columns derived from the implicit identifier. See

General rule.

Parameters whose names begin with Names of indicate rules applied in name
generation (see Configuring Name Generation).

On the DBMS

The default values for database synchronization and generation parameters are
accessible in the properties dialog box of the DBMS used.

To display DBMS synchronization parameters:
1. In the edit area, click the Main Menu button then Advanced Search.
2. Select the object type "DBMS Version" and click on Find.
3. Right-click the target DBMS name and open its Properties dialog box.
4. Click Options > Synchronization.

By default, the parameters specified at the DBMS levels are valid for all new
databases. When you modify synchronization parameters on a database, this
database no longer takes account of DBMS parameters.

 For more information on synchronization configuration, see also
Running Synchronization.

Configuring Name Generation

Naming rules

The names of physical objects created at "logical to physical" synchronization are
deduced from the Local Name of the logical objects from which they are derived.

As logical object names (class, association, part, attribute, role) are not subject to
any particular restrictions, transformation rules apply by default at their
synchronization. These rules are accessible locally in the Options > Standard page
of synchronized database properties, or globally in the target DBMS properties:

• Identifier size: maximum size of SQL identifier for this target DBMS
• First character: character set authorized for first character of SQL

identifier
• Authorized characters: character set authorized for SQL identifier

characters
• Replacement character: replacement character for unauthorized

characters
• Converted characters: SQL identifier character set to be converted
• Conversion characters character set corresponding to characters to be

converted
• Upper-case conversion: conversion to upper-case of SQL identifiers

It is possible to indicate another name for each synchronized object using its SQL
Name. The SQL Name replaces the Local Name at synchronization, while taking
account of default transformation rules.

The SQL Name of logical objects is accessible in the Generation > SQL page (or
SQL page) of their properties.

Synchronizing logical and physical models
Configuring Synchronization

You can give a different name depending on the database and DBMS.

When fields SQL Name (Database) and SQL Name (DBMS) indicate different
names, the name defined at database level takes precedence at synchronization.

By default, names of relational objects are generated according to the following
masks:

Table Database prefix + name* of entity or association

Column name* of attribute

Primary key "PK_" + name* of entity or association

Foreign key "FK_" + name* of target entity or role if specified

Primary key index "IDX_" + name* of entity or association

Foreign key index "IDX_" + name* of target entity or role if specified

*Name calculated according to previously explained naming rules.

These masks can be modified locally in each database, or globally for a given target
DBMS.

Modifying a naming rule

To modify the mask of a naming rule:
1. Right-click the database and select Properties.
2. Click Options > Synchronization.
3. In the field of the rule in question, click the arrow.

4. Click Modify.
The Enter SQL Mask window opens.

Entering the SQL mask

SQL masks define relational object naming rules at synchronization.
Example: In the DB_EMPLOYEES database, which has the prefix
EMP, the mask ^DB_^ROOT generates the following for the
table derived from the Customer entity: EMP_CUSTOMER

Synchronizing logical and physical models
Configuring Synchronization

In the SQL mask entry dialog box, you can directly enter the Mask using syntax
indicated below, but you can also use entry help proposed in the Component frame.

 In the list in the Component box, select the elements that are to prefix
the names. These elements are:

*Name calculated according to previously explained naming rules.

Size indicates total length limit of the generated name. It also applies to each of the
elements used, which will be shortened to the number of characters indicated
between brackets alongside the element concerned.

Definition of a Timestamp ("^CPT") enables automatic generation of an order
number and indication of its length, (for example, ̂ CPT[^1^] will generate "1", "2",
"3"; ^CPT[^3^] will generate "001", "002", "003").

^ROOT • For a table: name* of the class, association or part from
which it is derived.

• For a column: name* of the attribute or name of the
identifier.

• For a primary key: name* of the class, association or
part from which it is derived.

• For a foreign key: name* of the target class or the role
if specified

• For an FK column: name* of the attribute.
• For an auto PK column: name* of the class identifier.
• For an index on primary key: name* of the class,

association or part.
• For an index on foreign key: name* of the target class

or the role if specified
• For an index: name* of the attribute, role or class.

^DB Database prefix

^EXT • For a foreign key: name* of the association, part or
generalization

• For an index on foreign key: name* of the association,
part or generalization

^TBL Table local name or reference table local name

^TBO • For a foreign key: name* of the class, association or
part from which it is derived

• For an index on foreign key: name* of the class,
association or part from which it is derived

^TBR Reference table name

^KEY Foreign Key name

^CPT Timestamp

The Always option indicates that timestamping begins from the first occurrence
(CLI00, CLI01, etc., instead of CLI, CLI01).

You can also specify characters used as prefix and suffix of this timestamp.

Using the Name Unicity option ensures that the name of an object is not repeated
in the database, repository or table in which this object appears. As such, if you
apply the Name unicity option to a table, different objects of this table cannot have
the same name.

Configuring PK column names (implicit identifier)

At synchronization in Logical > Physical mode, the entity identifier becomes the
primary key of the table. If the identifier is implicit, a column is automatically
created. For more details, see "Logical to Physical" Synchronization Rules.

By default, the name of a column derived from an implicit identifier is built using the
^TBL keyword which corresponds:

• to the name of the migrating table (in other words derived from a foreign
key) if the identifier is migrating

• to the name of the table if the identifier is not migrating

You can modify construction rules and build the name of these columns with the
^KEY keyword corresponding to the name of the foreign key (without " FK_ ") if the
identifier is migrating, as well as with the ^ROOT keyword corresponding to the
name of the identifier (ID). See Modifying a naming rule.

Synchronizing logical and physical models
Configuring Synchronization

Example

When there are two constraint associations between two entities as below:

By default after synchronization, you obtain two columns with identical names,
differentiated only by prefix "1".

You can modify the naming rule and build the name of these columns with the ̂ KEY
keyword corresponding to the name of the foreign key (without " FK_ ").

The name of the foreign key being calculated on the name of the Role when it is
specified, the names obtained for these two columns will be different.

In our example, if you replace "ID^TBL" par "ID^KEY" after synchronization you
obtain:

Synchronizing logical and physical models
Diagram Synchronization

DIAGRAM SYNCHRONIZATION

Synchronization enables translation of a logical data model to a physical model, and
vice versa. Before running synchronization, source diagrams (data diagrams and
physical diagrams) must be saved and closed.

A first synchronization automatically creates the target model diagram. A new
synchronization on previously synchronized models does not include automatic
update of diagrams, in other words of graphical representation of models.
Depending on the changes you have made, the synchronization wizard may propose
update of the target diagram.

Case of Diagram Update at Synchronization

The synchronization wizard proposes diagram update in the following cases.

After source diagram modification

When you run synchronization after source diagram modification, by default the
wizard activates target diagram update. Updating is indicated by display of two
small blue arrows.

Below, at synchronization in logical to physical mode, modification of the logical
diagram automatically produces a physical diagram update.

After target diagram modification

If you have modified the target diagram, for example the physical diagram, by
default the synchronization does not propose update of this target diagram.

To display the case of target diagram update, you must select the synchronization
option "Take account of optimizations". So that the update will be activated, you
must select the check box in question.

After modification of both diagrams

If both diagrams - logical and physical - have been modified, target diagram update
is proposed but not selected by default.

No modification detected

If neither of the two diagrams has been modified, the wizard does not propose
update. It should be noted that any diagram modification must be saved before
closing the diagram so that it will be taken into account by the synchronization
wizard.

Particular case: an entity mapping with two tables

When an entity of the logical model is associated with two tables in the physical
model (following merging of entities for example), the updated physical model
displays only one of the tables.

MODEL MAPPING

In many modeling projects the problem arises of communication between teams of analysts and
architects and the database development teams.

Hopex Data Architecture offers two modeling levels:

 The logical level which describes data modeling in terms of entities and
relationships and is intended for analysts and developers.

 The physical (or relational) level, which describes the database in terms of tables
and interfaces with the DBMS. This level is intended for the designer and the
database administrator.

By enabling change from one data model to another, the database editor favors consistency
between the architecture of data and its support systems.

The following points are covered:

 The Database Editor
 Mapping Details

THE DATABASE EDITOR

The database editor allows you to synchronize the different views of a database
manually; the logical model and the physical (or relational) model.

The synchronization wizard automatically maps the the two views. See
Synchronizing logical and physical models.

After synchronization, you can create or modify mappings in the editor manually,
but this method no longer guarantees consistency of the two models. The
denormalization wizard maintains this consistency. See Denormalizing logical and
physical models.

Run the editor on a database

To open the editor on a database:
 Click the database icon and select Mapping Editor.

The mapping editor juxtaposes the logical view and the physical view of
the database. When a mapping tree exists, it is automatically displayed.
When a tree has not been created for the database, a window prompts
you to create it.

Creating a Logical/Physical Mapping Tree

To create a mapping tree:
1. In the creation dialog box that opens, indicate the name of the new

mapping tree.
2. In the Nature list box, select the nature of the tree: "Logical/Physical".
3. In the Left Object and Right Object frames, select the logical and

physical models that you wish to align.
4. Click OK.

The editor displays the mapping tree juxtaposing the two models.

Creating a Mapping

To create a mapping between an entity and a table:
1. In the database editor, select the entity then the table.

Model Mapping
The Database Editor

2. Click Create mapping item.

The mapping is created from the last object selected. Therefore, in order to create
a mapping from the logical model to physical, in other words to define an object of
the physical model from an object of the logical model, you must select the logical
model object then the physical model object and create the mapping from the latter.
If a mapping cannot be created, an error message appears (see Synchronization
direction).

New mapping example

Consider the "Person" entity that contains the "Birth Date" attribute. In physical
formalism it has as mapping the "Person" table which contains the "Birth_Date"
column.

Suppose we add the "Age" attribute on the entity. This can be calculated from the
birth date. So as not to create a column corresponding to this new attribute at
synchronization, you can directly connect it to the "Birth_Date" column.

To create a mapping between the "Age" attribute and the "Birth_Date" column:
1. In the editor, on one side select the "Birth_Date" column, and on the

other the "Age" attribute.
2. Click Create mapping item.

When the mapping has been created, a tick appears in front of the "Age" attribute.

Deleting a mapping

To delete a mapping on an object:
 Select the object in question and click the Delete mapping item

button.

Model Mapping
Mapping Details

MAPPING DETAILS

Objects with mappings are ticked green. When you select one of these objects, its
mapping appears in the mapping properties dialog box located by default at the
bottom of the database editor. It groups the names of objects connected in the two
formalisms, the object types and comments where applicable.

Mapping example

The "Customer" table is selected in the logical view tree:

The mapping displays the following objects:

This means that the "Customer" table is derived from the entity of the same name.

Mapping Properties

To view mapping properties:
1. In the mapping editor, select the mapping item and click Properties.
2. In the window that opens, click the drop down list and select

Characteristics.

See also Mapping characteristics.

Mapping Report

In a document you can generate detail of mappings between the two database
models. This can be an HTML, text or XML file.

Generating an HTML report

To generate the HTML report of a mapping tree:
 In the database editor toolbar, click the drop-down list and select HTML

Report.

The corresponding file opens. It presents detail of mappings of the physical view and
the logical view in the form of a table.

Each row of the table presents an object of the model and its equivalent in the other
model. In the middle of each row appears the status of the mapping between the
two objects.

At the end of the document, you will also find a list of invalid mappings.

Model Mapping
Mapping Details

Object status

Indicators enable indication of status of synchronized objects. A filter bar allows you
to show all or only certain of these indicators. This bar is available by selecting View
> Toolbar in the editor.

Object status can be characterized as:

 Valid

 Invalid (when an object has kept a mapping to an object that no longer exists)

 No mapping

 Frozen (Protected)

 Standard

Saving display of editor indicators

An option allows you to save the status of indicators in the mapping editor. It is
specific to the user and the current mapping tree. A user who has selected the
indicators display option will automatically find the status of objects in the
previously created mapping tree.

The indicators display option of the editor is cleared by default. To activate it:
1. On the desktop, click Main Menu > Settings > Options.
2. In the left pane of the options window, select Mapping Editor.
3. In the right pane, select option Save display of editor indicators.
4. Click OK.

Mapping Source

When you select an object in the editor in one of the formalisms, you can display its
mapping in the other formalism.

To display an object mapping:
 In the mapping editor, select the object concerned and click Find.

The editor displays the source object.

Mapping example

Consider the "Price List" table created in the logical model. In the pop-up menu of
the table, select Locate. You will see that it corresponds to an association.

Opening the logical model diagram, you can see that this is the "Price List"
association that connects the "Catalog" and "Article" entities.

At synchronization, this non-constraint association produces a table in which:
• A column is created for each connected entity.
• The primary key for the table uses all these columns.
• A foreign key is also built for each connected entity.

Model Mapping
Mapping Details

For more information on synchronization of associations, see Logical to Physical
Synchronization: the Associations.

Mapping Drawing

To view the mapping drawing:
 In the mapping tree, select the objects concerned.

A window appears at the bottom of the editor showing a drawing of objects and their
connecting links.

DENORMALIZING LOGICAL AND PHYSICAL
MODELS

After having synchronized a data model and a physical model, you can develop them by modification
in their diagrams. This method does not however guarantee consistency between the two models.

Denormalization wizards have been created to ensure such consistency. They allow you to modify
definition of one model while maintaining consistency with the other.

The wizards also allow you to quickly carry out duplication or merging operations without mapping
transfer and/or without source object deletion when you wish to transfer modifications in the
relational model.

 In Hopex Data Architecture V2R1, the denormalization
functionality is only available for data models, it does not apply
to packages (UML notation).

The following points are covered here:

 Denormalization Principles
 Logical Denormalization
 Physical Denormalization

DENORMALIZATION PRINCIPLES

Denormalization enables transformation or detailing of models as a function of
specific requirements: choice of modeling, performance optimization, physical
implementation level, redundancies, etc.

The denormalization tool is presented in the form of wizards enabling execution of
these transformations.

A wizard applies to an object or group of objects. Depending on optimization type
requested, denormalization creates new objects in a model starting from initial
objects (source objects).

Denormalization: consistency of models

Denormalization changes the object of a model. When this model has been mapped
with another (see Synchronizing logical and physical models), you can manage
impact of this change on the other model.

At denormalization, you can therefore:

- Transfer or not transfer mappings with synchronized objects.

- Delete or keep source objects.

Transferring mappings

Transfer of mappings guarantees stability and consistency between two models.
When denormalization creates a new object at the logical level, mapping with the
physical object is transferred to the new logical object. When you clear this option,
mappings with new objects are not created and the two models must therefore be
resynchronized.

 So that synchronization can validate changes resulting from
denormalization, make sure the "Reinitialize target objects"
option is cleared.

Deleting source objects

Source objects are deleted by default. Non-deletion of source objects allows you to
keep initial objects after denormalization.

Synchronization and Denormalization

In data modeling, synchronization and denormalization are often combined to
respond to particular use cases.

Denormalizing logical and physical models
Denormalization Principles

Example

A PAYMENT entity that you wish to represent in the database by three tables
TRANSFER, CHECK and OTHER. To produce this modeling:

1. Create the PAYMENT entity.
2. Run synchronization (logical to physical) to obtain the PAYMENT table.
3. Run the physical wizard to horizontally partition the PAYMENT table.
4. Rename the three duplicates TRANSFER, CHECK and OTHER.

The three tables obtained in this way are now connected to the PAYMENT entity and
will follow the developments of future synchronizations.

Combining denormalization and synchronization options

Impact of a denormalization on two synchronized models varies depending on the
options selected.

Consider the example of a logical denormalization. Possible combinations are:
• Deletion of source objects + transfer of mappings: logical model source

objects are deleted. The physical level is unchanged; mapping with
logical objects resulting from denormalization is assured.

• Deletion of source objects + non-transfer of mappings: physical objects
corresponding to logical objects resulting from denormalization are
created. The physical objects corresponding to deleted logical objects are
deleted.

• Non-deletion of source objects + transfer of mappings: logical model
source objects are kept. The physical level is unchanged; mapping with
objects resulting from denormalization is assured.

• Non-deletion of source objects + non-transfer of mappings: physical
objects corresponding to objects resulting from denormalization are
created. Existing physical objects are kept.

 Particular cases: ascending and descending merges:
In the case of an ascending merge, the supertype entity plays a
particular role. Denormalization keeps its mapping in all cases.
Similarly, in the case of a descending merge, subtype entities
play a particular role; their mapping is kept in all cases.

Denormalization: Use Case

Combination of denormalization options varies depending on design mode of your
models.

1. Maintaining stability at the physical level when a modification is
applied at the logical level.

Context: a synchronization has already been established between the logical and
physical levels. The physical level is in production. A modification must be applied
at the logical level, without impact on the physical level.

Recommended denormalization options: transfer of mappings, deletion of source
objects.

This use case corresponds to a preventive maintenance-oriented work mode:
modifications are carried out by anticipation on the logical level, knowing that the
physical level must not be modified until further notice.

Result: after denormalization, mappings are re-established between target logical
objects and physical objects. After synchronization, nothing changes at the physical
level.

2. Developing the physical level when denormalization is applied
at the logical level.

Context: a synchronization has already been established between the logical and
physical levels. The physical level is not frozen and must develop as a function of
the logical level.

Recommended denormalization options: non-transfer of mappings, deletion of
source objects.

This use case favors developments at conceptual level, ignoring impact at the
physical level.

Result: after denormalization, target logical objects are without mappings and
physical objects corresponding to source logical objects are no longer synchronized.
After synchronization, the physical level is updated: the physical objects
corresponding to source logical objects (objects existing before denormalization are
deleted; new physical objects corresponding to target logical objects (objects
created by denormalization) are created.

3. Simplifying logical level development during the development
phase.

Context: a synchronization has already been established between the logical and
physical levels, or the new physical level has not yet been implemented.

Recommended denormalization options: non-transfer of mappings, non-deletion of
source objects.

This use case corresponds to an "incremental" work mode: logical level source
objects are unchanged. The model is supplemented by target objects resulting from
denormalization. These target objects produce a new section at the physical level
and the existing physical section remains stable.

Result: after denormalization, mappings are unchanged. After synchronization, new
physical objects corresponding to new logical objects are created; physical objects
corresponding to source logical objects are unchanged.

4. Favoring installation of multiple scenarios in development
phase.

Context: a synchronization has already been established between the logical and
physical levels, several modeling options temporarily coexist for a single physical
level.

Recommended denormalization options: transfer of mappings, non-deletion of
source objects.

Denormalizing logical and physical models
Denormalization Principles

This use case, to be used with care, enables keeping two modeling options at
conceptual level that produce a common result at the physical level.

Result: after denormalization, physical objects remain connected to source logical
objects and are also connected to target logical objects. After synchronization,
objects at the physical level are unchanged.

LOGICAL DENORMALIZATION

Logical denormalization applies to data model entities (or classes) and attributes.

Running Logical Denormalization

To denormalize logical formalism:
1. Right-click the database with which the data model is associated and

select Denormalize.
A wizard opens.

2. Select the type of denormalization concerned (logical) and follow the
instructions of the wizard. See Logical Denormalization Wizards.

Logical denormalization example

Suppose that you wish to transform the "Order line" entity to an association.

To transform this entity to an association:
1. Right-click the "Order management" database which contains this entity

and select Denormalize.
A wizard opens.

2. Select the Logical denormalization.
3. Click Next.
4. In the Select the denormalization type field, select "Transform an

entity to an association".
5. Click Next.

Denormalizing logical and physical models
Logical Denormalization

6. In the editor tree, select the Scope column opposite the "Order line"
entity check box.

 You can select several entities at denormalization.
7. Click Next.

Denormalization options appear. Mapping transfer and source object
deletion are activated by default. This means that the "Order line" entity
will be deleted and the mapping link with the "Order line" table will be
transferred to the association which replaces it.

8. Click Next.
The editor displays changes produced by this denormalization. You can
see that the "Order line" entity will be deleted and the "Order line"
association will be created.

 When a selected entity cannot be transformed, the editor will
indicate the reason.
You can refuse a modification by clearing the corresponding box.

9. Validate results by clicking Next.
This transformation is definitive and will be taken into account by the next
synchronization.
On completion of denormalization, you can see that the "Order line"
association that replaces the entity is now mapped with the "Order line"
table.

 If an object is protected, it is not possible to select it during
denormalization.

Logical Denormalization Wizards

Transform association to entity

This denormalization enables transformation of an n-ary association, whatever its
multiplicities, to an entity. An association of multiplicity '*,1' is created between this
entity and the entities of the association.

Before

After

Transform entity to association

This denormalization enables transformation of an entity with n binary associations,
of which opposite roles are of multiplicity '1', to an association. A new n-ary
association of multiplicity * is created between these entities.

Denormalizing logical and physical models
Logical Denormalization

Before

After

Transform generalization to association

This denormalization enables transformation of a generalization between two
entities to an association. An association of multiplicity *,1 is created between the
two entities and the generalization is deleted.

Before After

Transform association to generalization

This denormalization enables transformation of an association 1,* to a
generalization. A generalization is created between the two entities and the
association is deleted.

Vertical partition of an entity

This denormalization enables division of an entity into several entities. The
attributes, associations and generalizations are shared between the entities.

Before After

Before After

Denormalizing logical and physical models
Logical Denormalization

Horizontal partition of an entity

This denormalization enables duplication of an entity.

Horizontal partition and synchronization in Logical > Physical
mode

Consider a "Catalog" entity. After horizontal partition, this entity gives two entities
"Catalog-1" and "Catalog-2".

After synchronization of the Logical > Physical mode, the two entities have a table
as mapping.

If you display properties of mappings, you will note that both are bidirectional,
meaning that entities and table are updated in both directions of synchronization.

If you carry out logical modifications on these entities and then re-run
synchronization, the editor displays a signal on the target table; it does not know
which entity to take to carry out updates.

When you select an entity, this is kept as reference entity (for example Catalog-1).
The other entity will be kept in one direction only, in other words Catalog-2 could
be updated in the logical model but will have no impact on the table.

Before After

Merging of entities

This denormalization enables merging of entities.

Merging of ascending entities

This denormalization enables merging of an entity with its parent entity: all
attributes and links are transferred to the parent entity and the child entity is
deleted.

Before After

Before After

Denormalizing logical and physical models
Logical Denormalization

Merging of descending entities

This denormalization enables merging of an entity with its child entity: all attributes
and links are transferred to the child entity and the parent entity is deleted.

Copy/paste of attributes

This denormalization enables transfer of attributes of an entity or association to
other entities or associations.

Before After

Before After

PHYSICAL DENORMALIZATION

Physical denormalization applies to database objects represented by tables,
columns, keys and indexes.

Running Physical Denormalization

To denormalize the physical formalism:
1. Right-click the database and select Denormalize.

A wizard presents all customizations possible on database objects.

Physical denormalization example

It is possible to arrange that a table is partitioned into two separate tables, either
to separate columns of the two tables (vertical partition), or to duplicate information
in a table in two others (horizontal partition).

Consider the example of an order entry. This order entry is represented by an entity
at the logical level, and gives a table at the physical level. Suppose that order entry
has to be managed differently at technical level, depending on whether it is a
telephone or Internet order. This change can be integrated in the physical model
without having to modify the logical model in parallel. To do this, we arrange that
the entity representing order entry is partitioned into two tables; one for telephone
orders, the other for Internet orders. By integrating this modification from the
wizard, the partition becomes automatic at each synchronization, and the two
models remain consistent.

To create a horizontal partition such as that described above:
1. Right-click the "Order management" database that contains this entity

and select Denormalize.
A wizard opens.

2. Select the Physical denormalization.
3. Click Next.
4. In the Select the denormalization type field, select "Horizontal

partition of table".
5. Click Next.
6. In the editor tree, select the table you wish to duplicate, in this case

"Order".
7. Click Next.

Denormalization options appear. Mapping transfer and source object
deletion are activated by default. This means that the "Order" table will
be deleted and the link with the "Order" entity will be transferred to the
two tables.
Specify the number of partitions, in other words the number of tables
created. The tool creates two tables by default.

Denormalizing logical and physical models
Physical Denormalization

8. Click Next.
The editor displays changes produced by this denormalization. You can
see that the "Order" table will be deleted and that two new tables will be
created.

9. Validate results by clicking Next.
This transformation is definitive and will be taken into account by the next
synchronization.
On completion of denormalization, you can see that the two new tables
are now mapped with the "Order" entity.

 Denormalization here applies to the physical model. The
synchronization that will take this customization into account
must therefore be run in the same direction, in other words from
logical model to the physical. It is not valid in the other
direction.

List of Physical Denormalization Wizards

Vertical partition of a table

This denormalization enables division of a table into several tables. Columns are
shared between the tables obtained.

Only columns that are not part of a key can be distributed between tables.

Horizontal partition of a table

This denormalization enables duplication of a table. The two tables obtained contain
all columns of the original table.

Before After

Before After

Denormalizing logical and physical models
Physical Denormalization

Merging of tables

This denormalization enables merging of tables.

Primary keys option

When you run merging of tables, an option allows you to determine the primary key
of the merge table: you can select one of the primary keys of the source tables or
merge all primary keys of the source tables.

When you select a primary key for the merge table, only those foreign keys that
reference this primary key are transferred. Foreign keys that reference primary keys
that are not transferred are not taken into account.

Therefore in the following example, if you merge tables A and B and keep the
primary key of table A, the primary key of B disappears at merge. Nor is foreign key
FKab transferred since it references primary key B. The other foreign keys, FKca and
FKbd, are transferred in the relational diagram.

Before After

Transform foreign key to table

This denormalization enables transformation of a foreign key to a table. A new table
and two new foreign keys are created. The original foreign key is deleted.

Transform table to foreign key

This denormalization enables transformation of a table to a foreign key. The table
and its two foreign keys are deleted and a new foreign key is created.

Before After

Before After

Denormalizing logical and physical models
Physical Denormalization

Copy/paste of columns

This denormalization enables transfer of columns of one table to another.

Before After

GENERATING SQL SCRIPTS

The SQL generation function produces SQL script files, which, from logical objects of your Hopex
repository (database, table, column, etc.) allow you to create, modify or update the corresponding
objects in the target DBMS of your choice.

Generation takes into account parameters inherited from the target DBMS (specified for the
database), parameters that you can customize at a global level (see Configuring Database
Generation) or at a more detailed level, on a column or primary key for example.

For the main target DBMSs on the market, the database editor makes accessible a "physical view"
that allows you to optimize the SQL grammar of generated scripts in order to integrate technical
options specific to the selected DBMS, such as partitioning. See Adding Physical Properties to
Database Objects.

Finally, logical level can be completed by generation of physical objects specific to each database
for a DBMS, such as logical views, stored procedures and triggers.

The different generation modes presented below take into account the constraints linked to
database administration under different systems with maximum flexibility.

The points covered here are:

 Running SQL Generation
 Incremental Generation
 Configuring SQL generation
 Supported Syntax
 Defining Database Views
 Defining Triggers for a Database
 Using Stored Procedures
 Adding Physical Properties to Database Objects

RUNNING SQL GENERATION

Prerequisite

Display of certain generation targets can be filtered. Before starting generation,
check that the selected generation target is activated:

1. On the desktop, click Main Menu > Settings > Options.
2. In the left pane of the options window, expand the HOPEX Solutions >

Data Management folders.
3. Click the SQL Generation folder.

This folder contains all supported SQL generators.
4. In the right part of the window pane select those that you want to display

in Hopex Data Governance or Hopex Data Architecture

For generation targets, see Supported DBMS versions.

Generating SQL scripts
Running SQL Generation

SQL Generation Objects

Objects taken into account in generation are:
• Table
• Column
• Primary key
• Foreign key
• Indexes
• Data group
• Logical view
• Material view
• Trigger
• Stored procedure
• Job Title
• Synonym
• Sequence
• Cluster
• Partition

Scripts generated by Hopex manage only the structure of relational objects, their
content is not covered.

Start the generation wizard

See Prerequisite.

To start an SQL generation:
1. Click Tools > SQL Code Generation.

A wizard opens.
2. Define the Generation scope:

• database for a complete generation
• another SQL object for a partial generation.

3. For complete generation, select the database concerned and click Next.
4. Select the Generation Mode.

Four generation modes are possible:
• "Creation": generates creation orders for all objects.
• "Deletion": generates object deletion orders only.
• "Replacement": starts deletion of objects, then recreation (to avoid

creation of duplicates for example). Supposes that the target DBMS
supports this generation mode.

• "Modification": modifications only are taken into account. Unlike the
other modes that act without taking account of what possibly exists,
this mode enables connection to the DBMS server to obtain read-only
access to the database already created. The wizard compares the
Hopex data file and the database information. After analysis of the

two structures, the wizard generates the corresponding modification
SQL orders. See Incremental Generation.

 This mode is only available for the main DBMSs. See Supported
DBMS versions.

5. Click Next.
A dialog box then presents the objects generated.

6. Click Next.
Generation starts. A dialog box presents progress of the operation
indicating the file(s) containing the result.
Click Open to see the list of the files generated.

When the extension used for the generated files is recognized by Windows, you need
only double-click the file name to view it using the editor associated with the
extension.

Generating SQL scripts
Incremental Generation

INCREMENTAL GENERATION

When a database has already been generated, you can subsequently reflect only
changes to the database using "Modification" mode of SQL generation.

For a database, incremental generation allows you to:
• consult in an HTML report the differences between the database and its

representation in Hopex.
• produce SQL scripts enabling update of the target database from its

description in Hopex.

Incremental Generation Objects

Objects managed by incremental generation are the same as those of generation in
"Creation" mode: table, column, primary key, foreign key, index, data group, logical
view, material view, trigger, stored procedure, function, synonym, cluster, partition.

Scripts generated by Hopex manage only the structure of relational objects, their
content is not covered. Incremental generation options enable isolation of SQL
orders that require particular precautions or additional processing.

Running Incremental Generation

Generation options

Incremental generation is done in a global file; it is carried out from the database
and not from a particular modified object.

Before starting generation:
1. Right-click the database and select Properties.

The properties window of the database appears.
2. Click the drop-down list then Options > Generation.
3. In Script Distribution, select "A global file".
4. Click OK.

In options, you must also indicate incremental generation mode, which authorizes
object deletion or not.

For more details on generation options, see Configuring Database Generation.

Start the generation wizard

To run incremental generation:
1. Right-click the database and select Generate the code.

2. In the Generation mode field, select "Modification".
 This "Modification" command is only available for the main DBMSs.
See Supported DBMS versions.

3. Select the Data source. Incremental generation can be carried out:
• From an ODBC connection.
• From an extraction file See Extracting Database Schema Description

from Data Sources.
4. Click Next.
5. When connected to the target DBMS, enter the name of the owner. This

will enable you to filter the tables to be taken into account in the
generation.

6. Click Next.

The result window presents two files, the SQL file and a "Report.htm" file. The latter
file is a report of the generation. It is a dynamic file that presents initial content of
the database and modifications carried out.

Each row of the list describes:
• The Hopex object. This can be empty if it has been deleted from the

Hopex repository.
• The DBMS update reference as compared to Hopex. The various actions

possible on objects are:
• Creation
• Modification

• Deletion

• Replacement

• A warning symbol when the update of a DBMS object is not
complete, or when this must be handled with care. When this icon is
present, a block in the generated script details what cannot be updated.

• Object on DBMS side. This can be empty in the context of creation on the
Hopex side.

• The link to the object update script.

From each object you can access all its sub-objects by expanding the corresponding
tree. You can also view the physical parameters. In a context of object modification,
only the modified physical parameters are displayed.

Generating SQL scripts
Incremental Generation

There is also a report of the generation (.txt) in the properties dialog box of the
generated database.

CONFIGURING SQL GENERATION

Configuring the DBMS Version

Supported DBMS versions

This list is given as a guide only. It is not intended to be an exhaustive list, and may
change as new DBMS versions are released.

Modifying DBMS version properties

Generation configuration is carried out to check the size of the identifiers generated,
the characters authorized, etc.

To configure generation options of a DBMS version:
1. Search for the DBMS in question using the search tool.
2. Open its properties.
3. In the properties window of the DBMS, click the drop down list and select

Options > Generation.
4. Modify the parameters you wish to change.

 The parameters available vary as a function of the target DBMS. If
the Generation subtab does not appear, check that the generation
option linked to the DBMS concerned is selected.

Product Editor Supported Versions

SQL ANSI ISO 9075 1992

DB2 IBM OS 390 V5 / OS 390 V7 / OS
390 V8
UDB V5 / UDB V7 / UDB V8

Ingres II Computer Associates 2.0

Dynamic Server Informix 7.3

Oracle Oracle 8 / 9i / 10 / 11

SQL Server Microsoft 7 / 2000 / 2005 / 2008

Adaptative Server Sybase 11 / 12.5

Teradata Database Teradata 14

PostgreSQL PostgreSQL Global
Development Group

9.3

Generating SQL scripts
Configuring SQL generation

Configuring Database Generation

To configure generation of a database:
1. Open the database properties dialog box.
2. Click the drop-down list then Options > Generation.

As for configuration of a target, the parameters proposed vary as a function of the
DBMS and an explanatory message indicates the use of each parameter.

You can specify the following parameters:
• The Trigger Name parameters define the names of three types of

trigger.
• Error Ref Value: user error number for the current DBMS.
• Val. Default Value: activates/deactivates generation of DEFAULT orders

for columns.
• Quoted Identifier: activates/deactivates generation of quotes around

SQL identifiers (SQL name).
• Qualifier : enables prefix of object names. See Prefixing Object Names.
• Mode Generation Inc: this parameter applies to incremental

generation and can take values "Alter" and "Drop/Create".
• "Alter" does not authorize deletion of objects (tables, indexes, etc.) at

the level of generated scripts. Only those instructions that can be
executed using the ALTER command are generated. For physical
parameters, deletion is still authorized (this is the case notably for
partitions).

• "Drop/Create" authorizes object deletion. If an update cannot execute
via the ALTER command, the object is deleted then recreated.

By default, the parameter takes value "Alter".
• Script Distribution: indicates if the result of generation should be

created in a unique file or in one file per object or in one file per object
type.

• SQL Script: name of the file generated when this is a unique file. By
default, this sub-folder is called REFEXT. You can customize at DBMS

level. The arrow at extreme right of the field allows you to reinitialize the
parameter.

 You can also reinitialize all parameters of the object
concerned. This action should be carried out with care.

• Script Directory: relative generation folder.
• The various Ext parameters allow you to specify extensions of each file

generated for tables, datagroups, views, etc.
• Conversion: format of generated files (ANSI Windows or ASCII MS-

DOS).
• CREATE CLUSTER: activates/deactivates generation of CREATE

CLUSTER orders.
• CREATE TABLE: activates/deactivates generation of CREATE TABLE

orders.
• CREATE TABLESPACE: activates/deactivates generation of CREATE

TABLESPACE orders.
• PRIMARY KEY: activates/deactivates generation of PRIMARY KEY

orders.
• FOREIGN KEY: activates/deactivates generation of FOREIGN KEY

orders.
• CREATE INDEX: activates/deactivates generation of CREATE INDEX

orders.
• CREATE PROCEDURE: activates/deactivates generation of stored

procedures.
• CREATE INDEX PK: activates/deactivates generation of CREATE INDEX

orders for primary key indexes.
• CREATE INDEX[UNIQUE]: activates/deactivates generation of CREATE

INDEX orders for unique indexes.
• CREATE VIEW: activates/deactivates generation of logical views.
• CREATE SEQUENCE: activates/deactivates generation of CREATE

SEQUENCE orders.
• CREATE SYNONYM: activates/deactivates generation of CREATE

SYNONYM orders.
• CREATE TRIGGER: activates/deactivates generation of triggers.
• Comments: activates/deactivates generation of Hopex comments in

SQL script.
• UNIQUE: activates/deactivates generation of UNIQUE orders.
• UNIQUE[PK]: activates/deactivates generation of UNIQUE orders for

primary keys.
• PRIMARY KEY syntax: PRIMARY KEY orders are generated in CREATE

TABLE order or in an ALTER TABLE order.
• Position FOREIGN KEY: generation of FOREIGN KEY orders after each

CREATE TABLE or grouped at end of script.
• COMMENT ON TABLE: comments on tables (0:no comment, 1:one line,

Total:all text)
• COMMENT ON COLUMN: comments on columns (0:no comment, 1:one

line, Total:all text)
 Generation of comments is only possible for target systems that
accept these (Oracle, DB2,...).

• The various Add-Ons parameters activate/deactivate generation of add-

Generating SQL scripts
Configuring SQL generation

ons on tables, datagroups, etc.
• Tbspace of Tables: by default, tables are generated in the SYSTEM

tablespace.
• Tbspace of Indexes: by default, tables are generated in the SYSTEM

tablespace.

Prefixing Object Names

There is a schema concept for most DBMSs, which enables definition of a logical
grouping for objects.

Therefore at creation of a table for example, it can be automatically stored in a
schema, and if this is not specified, a default schema can be automatically assigned.

In Hopex there is not a schema concept, but a specific concept - the Qualifier -
which enables prefix of database object names at generation. If for example you
want objects to have names prefixed "MEGA", you must enter this value in the
Qualifier field of the objects in question.

Inheritance

The Qualifier property can be defined at database level and on all other object types.
There is an Inheritance system: if the Qualifier is not specified at the level of a table,
by default it is the value entered on the database that is taken into account.

To prefix the name of an object at generation:
1. Open the properties dialog box of the object in question.
2. Click the drop-down list then Options > Generation.
3. In the Qualifier field, enter the value that will prefix the name of the

object.

DBMSs concerned

The Qualifier is available for the following DBMSs:
• Oracle
• SQL Server
• DB2
• MySQL

SUPPORTED SYNTAX

CREATE TABLE Instruction

The CREATE TABLE instruction defines a table. The definition includes:
• Table name
• The names and attributes of its columns.
• The attributes of the table such as its primary and foreign keys.

The syntax is as follows:
CREATE TABLE table-name (col1-name col1-type [NOT NULL]

...

name-coln type-coln [NOT NULL])

For DB2, the syntax is as follows:
CREATE TABLE table-name (col1-name col1-type [NOT NULL]

...

name-coln type-coln [NOT NULL])

[in Tablespace <Name>]

For Oracle, the syntax is as follows:
CREATE TABLE table-name (col1-name col1-type [NOT NULL]

...

name-coln type-coln [NOT NULL])

[Tablespace <Name>]

• table name : “SQL” value for the table, or else defaults to the name of
the table; unrecognized characters are replaced by "_"

• col-name: Value of the SQL Name attribute for the column, or by
default the name of the column; unrecognized characters are replaced by
“_”

• col-type
• NOT NULL: See Managing NOT NULL.
• Tablespace: DB2 and Oracle: Name of the target tablespace for the

tables

The PRIMARY KEY clause is generated within the CREATE TABLE command (see
PRIMARY KEY clause).

Managing NOT NULL

Clauses NULL, NOT NULL and NOT NULL WITH DEFAULT are generated
automatically on the columns of primary keys and on columns derived from
obligatory attributes at time of synchronization.

Generating SQL scripts
Supported Syntax

These values can be initialized as "Null", "Not Null" or "Not Null with Default" as a
function of configuration defined in the database Properties dialog box for Not Null
Columns, in the Synchronization subtab of the Options tab.

The values proposed can then be modified on each column.

PRIMARY KEY clause

Defining a primary key

One or more of the columns in a table can be used to uniquely identify each row in
the table. Values in these columns must be specified. They act as the primary key
for the table.

A table must have only one primary key or none.

Each column name must identify a column in the table, and the column cannot be
identified more than once.

Processing and generating SQL commands

After declaring the names of the columns in the table, if the PRIMARY KEY option
is enabled, the name(s) of the columns in the primary key are declared as follows:

PRIMARY KEY (list of columns in the primary key)

The PRIMARY KEY clause is generated within the CREATE TABLE command.

For Oracle, the complete PRIMARY KEY clause is as follows:
CONSTRAINT PK_<key name> (list of columns in the primary
key)

FOREIGN KEY clause

Database integrity can be ensured either by FOREIGN KEY clauses or by generated
triggers, depending on the target DBMS. (In Oracle, it is ensured either with
triggers, or with FOREIGN KEY clauses, depending on the database configuration.)

One or more columns in a table can refer to a primary key in this table or in another
table. These columns form the foreign key. These columns do not need to have a
value in each row.

Example 1 Example 2

The primary key "PK" has only one column, "PK-
col".
CREATE TABLE table-name
(PK-col CHAR(9) NOT NULL,
info1 CHAR(7),
info2 CHAR(7),
PRIMARY KEY (PK-col)

The primary key "PK1" has columns "PK11" and
"PK12".
CREATE TABLE table-name
PK11 CHAR(9) NOT NULL,
PK12 CHAR(9) NOT NULL,
info1 CHAR(7),
info2 CHAR(7),
PRIMARY KEY (PK11, PK12)

The table containing the referenced primary key is a parent table. The table
containing the foreign key is a dependent table.

Each column name must identify a single column in the table, and the same column
cannot be identified more than once. If the same list of column names is specified
in more than one FOREIGN KEY clause, these clauses cannot identify the same
table.

The table name specified in the FOREIGN KEY clause must identify a parent table.
A foreign key in a dependent table must have the same number of columns as the
primary key for the parent table.

The number of foreign keys is unlimited.

Processing and generating SQL commands

After declaring the primary keys (PRIMARY KEY), the column name(s) for the
foreign key(s) are declared for a table using FOREIGN KEY:

FOREIGN KEY (list of columns in the foreign key) REFERENCES
<Parent table name> [ON DELETE <Action>] [ON UPDATE
<Action>]

or:
ALTER TABLE tablename [ADD] FOREIGN KEY (list of columns for
the foreign key) REFERENCES <Parent table name > [ON DELETE
<Action>] [ON UPDATE <Action>]

For Oracle, the syntax is as follows:
CONSTRAINT FK_<name of the foreign key> (list if columns for
the foreign key) REFERENCES <Parent table name > [ON DELETE
<Action>] [ON UPDATE <Action>]

or:
ALTER TABLE...

Examples

The table "table1-name" has two foreign keys. These keys have no components.
CREATE TABLE table1-name

pk1 CHAR(9) NOT NULL,

pk2-rel12 CHAR(7) NOT NULL,

pk3-rel13 CHAR(7) NOT NULL,

info1 CHAR(7),

info2 CHAR(7),

PRIMARY KEY (pk1))

ALTER TABLE table1-name ADD FOREIGN KEY(cp2-rel12)
REFERENCES table2-name

ALTER TABLE table2-name ADD FOREIGN KEY(cp3-rel13)
REFERENCES table3-name

Generating SQL scripts
Supported Syntax

The table “table1-name” has a foreign key “fk2” which has two components, “fk21”
and “fk22”. The foreign key "fk2" has no reference (it is therefore a component of
the primary key of another table).

CREATE TABLE table1-name

pk1 CHAR(9) NOT NULL,

fk21 CHAR(7) NOT NULL,

fk22 CHAR(7) NOT NULL,

info1 CHAR(7),

PRIMARY KEY (pk1))

ALTER TABLE table1-name ADD FOREIGN KEY (fk21, fk22)

REFERENCES table2-name

The table “table1-name” has a foreign key, “fk2”. The foreign key “fk2” is equivalent
to the primary key “pk2” which has two components, “pk21” and “pk22”. The
columns identified by “pk21” and “pk22” are “NOT NULL”.

CREATE TABLE table1-name

pk1 CHAR(9) NOT NULL,

pk21 CHAR(7) NOT NULL,

pk22 CHAR(7) NOT NULL,

info1 CHAR(7),

info2 (CHAR7),

PRIMARY KEY (pk1))

ALTER TABLE table1-name ADD FOREIGN KEY (pk21, pk22)

REFERENCES table2-name

UNIQUE clause

A UNIQUE clause is generated for each unique index in the table, unless this index
corresponds to the primary key.

Processing and generating SQL commands

For each unique index, the following clause is generated:
UNIQUE (col1,...,coln)

(col1,...n,coln) represent the columns used by the index.

CREATE INDEX Instruction (Oracle, Sybase, SQL Server)

Definition of an index

An index is a set of columns in a table for which a direct access is defined.

For Sybase and SQL Server, the value of the index-type attribute for the index
determines what type of index is generated: UNIQUE, CLUSTERED, or UNIQUE
CLUSTERED.

Processing and generating SQL commands

For each index a clause is generated as a function of the target DBMS.

For Oracle:
CREATE INDEX (column1,..., columnN) [TABLESPACE
(TbSpaceName)

(column1, ..., columnN) represent the columns in the index; TbSpaceName is the
name of the tablespace for the indexes (see Configuring SQL generation).

For Sybase and SQL Server:
CREATE [UNIQUE] [CLUSTERED] INDEX (IndexName) (TableName)
(column1,..., columnN)

(column1, ..., columnN) represent the columns in the index; TbSpaceName is the
name of the tablespace for the indexes (see Configuring SQL generation).

CREATE VIEW Clause

A view is defined for a database. It can include one or more tables.
CREATE VIEW view-name

AS

SELECT

(column-name,column-name,...)

You can enhance this definition in the view specification (see Defining Database
Views).

Generating SQL scripts
Defining Database Views

DEFINING DATABASE VIEWS

A physical view is a virtual table, of which structure and content are deduced from
one or several other tables with an SQL query.

Database views are created in a tree format, which automatically generates part of
the view definition. The user can then add to it as desired.

Creating Database Views

To create a physical view from a database:
1. On the desktop, click the Architecture > Databases navigation menu.
2. In the edit area click Hierarchy.
3. Unfold the relevant database folder.
4. Right-click the Physical View folder and select New > Physical View.

The view creation wizard opens.
5. In the Owner field, select the database concerned.
6. In the Physical View Component field, click New.
7. Select the tables concerned by the view
8. Click OK.

The physical view editor appears.

The left tree displays tables to which the physical view relates, with their columns.
The right tree displays the tables and columns that constitutes the view. By default
these ones have the same names as the source tables and columns. You can rename
them.

Add a table or a column to a view

To add a table to a view:
1. In the right-hand part of the editor, right-click the Table folder and

select Table view.

Select the desired table and click OK.

To add a column to a view:
1. In the right-hand part of the editor, right-click the Column folder and

select Column view.
2. Select the desired column and click OK.

SQL Definition

The right side of the dialog box, labeled SQL Definition, shows the SQL code that
would be generated to define the view. The code is initially calculated based on the
definition indicated in the tree.

You can modify this code, in particular by using joints. You can also directly enter
modifications in the SQL frame.

View joints

By default, the edition of logical views window proposes the foreign keys of the
selected tables where these exist.

It is thus possible to complete specification of a view by associating with it foreign
keys, potential sources of joints.

To associate a foreign key with the view:
 Select the foreign key in the tree on the left and drag it into the SQL

definition field.

User mode

You can modify the view code by typing directly in the SQL definition field:
 Click the Save button so that the SQL Definition will be saved in the

repository as is.

After you have modified the definition, you can restore the definition as determined
by the tree:

 Click the Initialize the SQL definition button.
A message warns you that the previously saved definition will be
reinitialized. %In other words, any user additions made to the definition
will be lost.

 Click OK to confirm.

Generating SQL scripts
Defining Database Views

Fields

Field categories correspond to object types used in the declarative tree: table, view,
column and foreign key column. Fields displayed in the SQL definition correspond to
elements declared in the tree.

The foreign key type does not produce a field category: usable fields are derived
from key columns and not from the keys themselves.

The Field properties button displays properties of the object corresponding
to the selected field.

If an object is added to the tree, a corresponding field becomes available for
insertion.

If an object is renamed in the tree or in the repository, its references remain valid
and the fields are displayed in the text with the new name.

If an object is deleted in the tree or in the repository, its references become invalid
and are indicated as such in the fields.

Defining a Data Group

A data group - or tablespace - is a group, in the same physical pages of the
database, of the rows of several tables to optimize queries, joints in particular.
Example: Tablespace in DB2, Cluster in Oracle etc.

To define data groups in the database:
1. Open the database properties dialog box.
2. Click the drop-down list then Components.
3. The Data groups section displays the list of data groups
4. Click the New button.
5. In the dialog box that opens, indicate the Name of the data group.
6. Click OK.

Then open the properties window of the data group to define the tables and indexes
that it includes.

To specify the tables and indexes included in the data group:
1. Select the data group and click Properties.

The data group properties dialog box appears.
2. Click the drop-down list then Tables.
3. Click the Connect button.
4. In the list of database tables presented, select the tables to be included.

 Click Disconnect to remove a table from the list in the case of
error.

5. Carry out the same operations for the indexes of the data group.
6. Click OK.

DEFINING TRIGGERS FOR A DATABASE

A trigger is processing recorded in a database, which automatically triggers on
updating a table.

Creating Triggers

Triggers are defined at the level of database tables.
 It should be noted that triggers are defined as a function of the
target DBMS; this is why it is important to check that the target DBMS is
correct before creating triggers.
If the target DBMS is later modified, triggers created for the DBMS are
not deleted but deactivated.

To create a trigger in Hopex Data Governance:
1. On the desktop, click the navigation menu then Architecture >

Hierarchy View.
 In Hopex Data Architecture, click the navigation menu then
Data Architecture > Logical Data Assets.

2. Expand the folder of the database then the table concerned.
3. Right-click the Trigger folder and select New > Trigger.

The dialog box for creating a trigger opens.
4. Specify the name of the trigger and actions triggered. See Trigger

triggering.

Trigger triggering

Triggering can occur following one of the three following actions:
• At Creation of a row in the table.
• At Deletion of a row.
• At Modification of the table or of a particular column.

In addition, you can choose to run it Before or After these actions, on the entire
table, or on each row concerned.

References

The "Reference of old rows" and "Reference of new rows" fields create in the trigger
code references to lines inserted, deleted or updated.

The name indicated in the "Reference of old rows" field corresponds to the line that
existed before the update.

The name in the "Reference of new rows" field indicates the line after the update.

In the case of insertion, only the new line is valid.

In the case of deletion, only the old line is valid.

Generating SQL scripts
Defining Triggers for a Database

SQL Definition

The SQL Definition option in the properties window of the trigger presents the
trigger code.

To display the trigger code:
1. Right-click the trigger and select Properties.

The properties window of the trigger appears.
2. Click the drop-down list then click Texts.
3. Select the SQL Definition tab.

Repository Integrity

Repository integrity is managed by creation of foreign keys on a database.
It groups all constraints allowing a check of the impact of modification of a table in
tables connected to it.
It could be that the existence of keys in certain DBMSs does not involve a systematic
check. It could also be that you wish to customize constraints to be applied on a
particular table.
This is why you can generate in triggers the code that corresponds to repository
integrity management.

To generate repository integrity of a table:
1. Right-click the database and select Trigger Initialization.

The trigger generation dialog box opens.
2. Select one of the options offered:

• Generate Trigger by type
• Generate Trigger by repository integrity

3. Select the tables of the database.
4. Click Next.

Triggers are automatically created for the selected tables.
When generation has been completed, the triggers appear under the
Trigger folder available under each table. There are three trigger types:
• An update trigger (U_followed by table name), which enables

specification of the action to be carried out in case of modification of a
line of the table that is part of the foreign key.

• A delete trigger (D_), which specifies the action to be carried out in
case of deletion.

• An insert trigger (I_), which specifies the action to be carried out in
case of insertion.

These triggers are only valid for a target DBMS. When you change DBMS, you must
regenerate the triggers.

USING STORED PROCEDURES

Hopex Data Architecture allows you to create stored procedures.

A stored procedure combines a procedural language and SQL requests within a
program. It enables execution of a particular task on a database. It is recorded in a
database and can be called from a program external to the database of from a
trigger.

A stored procedure can be implemented in two ways; either as a procedure or as a
function.

 A procedure is a set of instructions executing a sub-program.

 A function is a procedure returning a value on completion of
execution.

To create a procedure stored on a database:
1. Open the database properties dialog box.
2. Click the drop-down list then Components.

The Stored Procedures section displays the list of stored procedures.
3. Click the New button.
4. In the window that opens, specify the name of the procedure and its

nature (Procedure or Function).
5. Click OK.

The stored procedure appears. Open its properties to define its code.

Example of stored procedure for Oracle

This is an example of a stored procedure updating the unit price of a part as a
function of the part identifier:

CREATE PROCEDURE update_part_unitprice (part_id IN INTEGER,
new_price IN NUMBER)

IS
Invalid_part EXCEPTION;

BEGIN

-- HERE’S AN UPDATE STATEMENT TO UPDATE A DATABASE RECORD

UPDATE sales.parts

SET unit_price = new_price

WHERE id = part-id;

-- HERE’S AN ERROR-CHECKING STATEMENT

If SQL%NOTFOUND THEN

RAISE invalid_part;

END IF;

EXCEPTION

-- HERE’S AN ERROR-HANDLING ROUTINE

WHEN invalid_part THEN

raise_application_error(-20000, ’Invalid Part ID’);

Generating SQL scripts
Using Stored Procedures

END update_part_unitprice;

ADDING PHYSICAL PROPERTIES TO DATABASE OBJECTS

When your database has been defined in a relational diagram, you can generate the
corresponding SQL scripts for the different DBMSs.

The physical data navigation pane allows you to complete database physical
modeling by specifying parameters specific to each DBMS and therefore to produce
complete SQL scripts.

In Hopex, you can also import physical parameters defined on reverse engineered
objects. See: Physical Properties Reverse Engineering.

You can adapt the same logical model to several DBMSs. It is not necessary to
duplicate objects.

Target DBMSs

To define a target DBMS on a database:
1. Open the properties dialog box of the database concerned.
2. Click the Characteristics page.
3. Specify the target DBMS field in the corresponding field.

See also Importing a DBMS Version.

Creating Physical Properties

To create physical properties on objects of a database:
1. On the desktop, click the navigation menu then Data Architecture >

Physical data.
2. In the edit area click Database physical hierarchy.

The list of repository databases appears in the edit area.
3. Expand the folder and the sub-folders of the databases concerned.

Parameters are presented in tree form, conforming to SQL grammar of the DBMS
considered (refer to DBMS SQL documentation).

Generating SQL scripts
Adding Physical Properties to Database Objects

Two folder types are presented in the tree:
• Navigation folders.
• Parameter groups that you must instance.

Each parameter group, represented by an "SQL clause" object, has a properties
page enabling value definition.

SQL clauses defined in this way are accessible just like repository standard objects.
For example it is possible to query SQL objects that have a given parameter value.

By default, clauses cannot be reused from one object to another. It is however
possible to define a clause for one object and connect it to other objects. In this
case, any modification of the clause affects all objects that use it.

Objects containing physical parameters

Not all objects in Hopex support physical parameters. These concern only:
• Data groups
• Tables
• Indexes
• Clusters

Creating a new clause

To define object parameters:
1. Right-click the corresponding parameter group and select New > SQL

clause.

2. Open the properties window of the clause and specify the value of the
parameter to be defined.

Connecting a clause

You can assign the same clause to several objects, on condition that you connect
the correct clause type.

Consider the "Order Management" database with Oracle 9i as DBMS.

On the column "Code_catalogue", create "Clause 1" of type "inline_constraint".

You can connect "Clause 1" to another column. Being the same type of clause, this
is copied on the new column with no problem.

On the other hand, if you connect "Clause 1" to an object of type different from that
initially defined on "Clause 1" - for example "Storage_clause" - then "Clause 1"
changes type to take that of the last element connected. In other words, "Clause 1"
that was type "inline_constraint" takes type "storage_clause". This change is
reflected on the start columns to which "Clause 1" was connected.

Naming clauses

Standard case

By default, the clause takes the name of the clause type to which it is attached.
When you attach a clause to another type, the name automatically adapts.

Specific naming

A specific name can be given to a clause. In this case, the clause name becomes
static and will not be modified at change of clause type.

 You can return to dynamic mode by overloading the name empty.

Generating SQL scripts
Adding Physical Properties to Database Objects

Specific naming is essential when a clause is used in different contexts (generic
clause).

Multiple clauses

For a given level, several clauses can be attached to the same clause type. To
distinguish different clauses, the clause name comprises the name of the clause
type followed by its hexaIdAbs.

Naming from a property

It is possible to modify standard behavior by defining an automatic naming rule for
an SQL clause type. This configuration is carried out at the clause type _settings
property level. In the example below, the configuration on clause type
"range_PARTITION" for Oracle 9i indicates that the name of SQL clauses of this type
will be built from the value of the PARTITION property.

When the parameter has been executed, names of SQL clauses are automatically
calculated from values of the PARTITION property.

The name of SQL clauses is not taken into account in SQL generation. In the
example provided, it is the value of the PARTITION property that feeds the
generated SQL scripts.

Physical Model Customization Example

You can partition a table to simplify data access or to manage the information blocks
differently.

Suppose you wish to partition the "Order Line" table of the "Order Management"
database using the Oracle by hash method. This method enables dynamic
calculation of table partitioning.

Hash partitioning instruction syntax

Check that the database has Oracle 9i as target DBMS.
 Open its properties dialog box and click the Characteristics page.

The DBMS name is indicated in the Target DBMS box.

Display the physical properties of the "Order Management" database:
1. On the desktop, click the navigation menu then Data Architecture >

Physical data.
2. In the edit area click Database physical hierarchy.

The list of repository databases appears in the edit area.
3. Expand the folder and the sub-folders of the "Order Management"

database to display the parameters linked to the Oracle grammar.

To partition the "Order line" table:
1. Expand the "Order_line" table.
2. Expand the "MEGA_Oracle::relational_table" parameter group.

Generating SQL scripts
Adding Physical Properties to Database Objects

3. Right-click the "MEGA_Oracle::table_properties" clause type and select
New > SQL clause.

4. Name the clause "Order_line/Table_properties".
It appears in the navigation tree.

5. Under this clause, expand the
"MEGA_Oracle::table_partitioning_clauses" parameter group. It contains
the different partitioning types that can be produced in Oracle.

6. On the "MEGA_Oracle::hash_partitioning" folder, create the clause
"Order_line/hash_partitioning".

7. Open its properties page.
8. In the PARTITION BY HASH page, indicate the columns on which

breakdown applies. To do this, connect the columns concerned by
partitioning.

9. Close the properties dialog box.
10. Under the clause "Order_line/hash_partitioning" two clause types are

available:
• individual_hash_partitions: enables naming of each partition.
• hash_partitions_by_quantity: enables definition of the number of

partitions you wish to create.
11. Create the clause "Order_line/Hash_partition_by_quantity".
12. Open its properties page.
13. Select the PARTITIONS page.
14. In the Hash partition quantity field, indicate the number of partitions.

These partitions are represented by data groups.
15. In the STORE IN field, connect the data groups.

To obtain the script corresponding to this partitioning, right-click the "Order line"
table and select Generate the code.

Generating the SQL File

When object customization has been completed, you can generate the
corresponding script file to consult the results, without having to regenerate the
entire database.

For example, to generate the SQL file of an index:
 Right-click the index and select Generate the code.

See also Generating SQL scripts.

REVERSE ENGINEER TABLES

Reverse engineering enables you to take existing databases and create the corresponding tables
and columns in the Hopex repository.

Reverse engineering can be done from a previous database extraction. See Extracting Database
Schema Description from Data Sources.

The tables and columns are integrated in a database where they can be easily maintained and
documented.

The following points are covered here:

 Running Reverse Engineering
 Recognizing Datatypes by ODBC
 Physical Properties Reverse Engineering
 Extracting Database Schema Description from Data Sources

RUNNING REVERSE ENGINEERING

To run reverse engineering:
1. In the navigation menu click Tools > Reverse target database.

A window opens.
2. Select the source database.
3. Click Next.
4. Select the Type of data source: Extraction file obtained using the data

extraction utility (see Extracting Database Schema Description from Data
Sources).

5. Indicate the location of the file.
6. Define the Options:

If the database has already been reverse engineered, it is possible to
specify the extent of the Reinitialization, which can concern only
Additions, Deletions or Modifications.
The Simulation option is provided so you can simulate the operation and
generate a report indicating the impact on the repository.

7. Click the Next button to run reverse engineering.
Messages inform you of progress.

8. On completion of processing, a report displays the details of the
execution.
At the end of reverse engineering, the database tables and columns are
created. However, the relational diagram must be created in order to view
the database in a graphical model.

 If non-standard datatypes were created in the DBMS, they must be
added to the configuration if they are to be recognized by Hopex. See
Recognizing Datatypes by ODBC.

Reverse engineer tables
Recognizing Datatypes by ODBC

RECOGNIZING DATATYPES BY ODBC

When reading a database, HOPEX asks the database (Oracle in our example) what
are the datatypes, throughthe intermediary of ODBC.

For example, if Oracle contains a datatype "SQL_LONGVARCHAR", HOPEX will know
that this is a "P-Text" datatype.

To do this, HOPEX uses the "xmdb.xdr" file, located in the "Mega\Mega_Std" folder.

The part of the "xmdb.xdr" file that concerns correspondence of datatypes starts
with the following line:

<!-- Mapping of standard Datatypes -->

Each line is presented as follows:
<!-- #DataType(5B845EAE3BAF0020) = "SQL_LONGVARCHAR"

Standard::Types::Pivot::P-Text -->

• The figure between brackets (here 5B845EAE3BAF0020) is the absolute
identifier of the datatype.

• The text between quotation marks (here SQL_LONGVARCHAR) is the
name of the ODBC datatype.

• The path that follows (here Standard::Types::Pivot::) specifies in which
HOPEX package the corresponding data type is located.

• Finally, the HOPEX datatype (here P-Text) is indicated.

To recognize the datatypes the software uses, in order, the three following lists:
• List of datatypes added by the user.

When you create a datatype manually, in order that it will be recognized
you must add a rule to the list.

• List of datatypes of the ODBC driver used.
Example: here there is one list of datatypes for Ingres and two lists for
Oracle for different drivers (Oracle driver and Microsoft driver)

<!-- Declaration Rule Parser Datatypes for Ingres -->

<!-- #DataType(13ED147938B5008F) = "SQL_CHAR,SQL_INGRESC"
Standard::Types::Pivot::P-Character -->

<!-- #DataType(5B845EAE3BAF0020) =
"SQL_VARCHAR,SQL_INGRESTEXT" Standard::Types::Pivot::P-Text
-->

<!-- #DataType(13ED1A3D38B501E0) =
"SQL_DECIMAL,SQL_INGRESMONEY" Standard::Types::Pivot::P-
Currency -->

<!-- #DataType(13ED1A3038B501D5) =
"SQL_TIMESTAMP,SQL_INGRESDATE" Standard::Types::Pivot::P-
Date -->

<!-- Declaration Rule Parser Datatypes for Oracle with
Oracle Driver -->

<!-- #DataType(B55EB70C3471008F) =
"SQL_TIMESTAMP,SQL_Oracle8DATE" Standard::Types::Pivot::P-
Datetime -->

<!-- #DataType(45F44A3B3BAF003D) =
"SQL_VARBINARY,SQL_Oracle8RAW" Standard::Types::Pivot::P-
Binary -->

<!-- #DataType(B55EB71E347100BC) =
"SQL_VARCHAR,SQL_Oracle8ROWID" Standard::Types::Pivot::P-
Timestamp -->

<!-- #DataType(B55EB6F134710044) =
"SQL_DECIMAL,SQL_Oracle8DECIMAL" Standard::Types::Pivot::P-
Numeric -->

<!-- #DataType(B55EB6F134710044) =
"SQL_TINYINT,SQL_Oracle8NUMBER(3,0)"
Standard::Types::Pivot::P-Numeric -->

<!-- #DataType(B55EB6F134710044) =
"SQL_INTEGER,SQL_Oracle8DECIMAL" Standard::Types::Pivot::P-
Numeric -->

<!-- Declaration Rule Parser Datatypes for Oracle with
Microsoft Driver -->

<!-- #DataType(B55EB70C3471008F) =
"SQL_TIMESTAMP,SQL_OracleDATE" Standard::Types::Pivot::P-
Datetime -->

<!-- #DataType(45F44A3B3BAF003D) =
"SQL_VARBINARY,SQL_OracleRAW" Standard::Types::Pivot::P-
Binary -->

<!-- #DataType(B55EB71E347100BC) =
"SQL_CHAR,SQL_OracleROWID" Standard::Types::Pivot::P-

Reverse engineer tables
Recognizing Datatypes by ODBC

Timestamp -->

<!-- #DataType(B55EB6F134710044) =
"SQL_DECIMAL,SQL_OracleNUMBER" Standard::Types::Pivot::P-
Numeric -->

• List of standard datatypes.

Datatype Recognition Problems

It is necessary to add a correspondence between datatypes in the "xmdb.xdr" file
in the following two cases:

• The datatype is incorrectly recognized.
The user can confirm this by noting for example that an "Integer"
datatype in Oracle becomes a "P-Number" datatype in MEGA, instead of
"P-Integer".

• The datatype is not recognized.
When the datatype is not recognized, a message of the following type
appears at the bottom of the dialog box when reading the target
database:
DataType 'SQL_Data8' not recognized. See Help for how to configure
correspondence of Datatypes.

To add a datatype correspondence:
1. Open the extraction results file.
2. Locate in this file the correspondence between the datatypes.

For example, in the expression:
<COLDATATYPE

Name="COLDATATYPE.JAVA036HTTP036DEPLOYMENT036DIGEST036.IS09

5DOC095ROOT" DataType="SQL_DECIMAL"

the ODBC datatype is "SQL_DECIMAL" and the HOPEX datatype is
"SQL_Oracle8DECIMAL".

3. Add in any location in the "xmdb.xdr" file a line indicating the
correspondence between datatypes constructed as above.
Example:

<!-- #DataType(B55EB6F134710044) = "SQL_Data8"

Standard::Types::Pivot::P-Text -->

Here we have defined the "SQL_Data8" datatype as a "P-Text" datatype.

PHYSICAL PROPERTIES REVERSE ENGINEERING

Reverse engineering also enables creation in Hopex of physical properties on
objects of a database.

Physical properties are parameters enabling expression, for a relational object
(table, index, etc.), of the way in which information will be stored within a database.
These parameters are specific to each DBMS and can evolve depending on versions
of the same DBMS.

See also Adding Physical Properties to Database Objects.

Default Values

Certain DBMS properties are automatically reversed in Hopex even if they have not
been explicitly specified.

So as not to recover these values by default, Hopex provides for each DBMS and
for each DBMS version a generic clause that contains the list of these default values
and treating them specifically.

At reverse engineering, DBMS properties with values equal to values defined in the
generic clause are not imported.

You can activate the generic clause by importing into Hopex the .mol file
associated with each DBMS in the Mega_Std folder of your installation.

Eliminating Redundant and Transverse Values

At reverse engineering of objects in Hopex, certain physical properties that have
not been clearly determined are automatically regenerated by the DBMS via an
inheritance mechanism.

With Oracle for example, the value of property PCTFREE in a table, if it has not been
specified, is directly inherited from that of its attached tablespace. Such a value is
called transverse, since it is derived from an inheritance between two distinct object
types. A value is said to be redundant if inheritance is derived from objects of the
same type.

At reverse engineering, Hopex does not recover transverse and redundant values.

Only the management of redundant values can be customized.

Reverse engineer tables
Physical Properties Reverse Engineering

Specific Cases

Physical properties of tablespaces

In certain cases, reverse engineering of object physical properties requires an ODBC
connection with DBMS Administrator rights. For example with Oracle, reverse
engineering of the physical properties of tablespaces requires that you use a
"System" account.

Clusters Reverse Engineering

Reverse engineering of a cluster in Oracle is carried out correctly if the connecting
user verifies one of the two following conditions:

• The user is owner of the cluster
• The user has Administrator profile

If the cluster is not accessible, it is not reversed.

When the user sees the cluster but is neither owner nor administrator, the cluster
is reversed, but the link between columns of the cluster and columns of the attached
tables is not reversed in Hopex.

 From a technical viewpoint, for an administrator user, reverse
engineering depends on the view oracle sys.all_clu_columns
(relationship between cluster columns and table columns). This view
enables reversing only of information relating to objects of which the
user is owner.

EXTRACTING DATABASE SCHEMA DESCRIPTION FROM

DATA SOURCES

HOPEX Data Source Extractor is an application that uses ODBC APIs to extract
the schema definition from a database. This description, obtained in structured
format, can then be used for reverse engineering purposes in Hopex or for
generation in modification mode.

The extraction tool is available in 64 bit-version.

It can be deployed separately from HOPEX.

Required Data Source Configuration

To use HOPEX Data Source Extractor, you must have the ODBC Data Sources
(64 bits) tool. This Microsoft tool is installed with Windows and is accessible from
the Start menu.

Downloading HOPEX Data Source Extractor

To install the tool, make sure you have installation rights on your computer.

HOPEX Data Source Extractor is available on the MEGA HOPEX Store. To
download it:

1. Visit the HOPEX Store at: https://store.mega.com/modules.
2. Select the HOPEX Data Source Extractor module.
3. Unzip the file on a computer that has access to the relevant database.

 For more details about ODBC Data Source Administrator, see
the tool documentation in MSDN : http://go.microsoft.com/fwlink/
?linkid=282669.

Starting Data Extraction

For data extraction, it is necessary to define an ODBC data source with the ODBC
Data Source Administrator tool:

1. Launch the ODBC Data Source Administrator tool.
2. Click the Drivers tab.
3. Select the driver and click OK.

The database driver must have a conformance level of 1 or higher. The object
extraction field depends on the driver used in the ODBC data source definition.

https://store.mega.com/modules

Reverse engineer tables
Extracting Database Schema Description from Data Sources

To extract the description of a database:
1. Run the HOPEX Data Source Extractor utility (in the directory indicated

when downloading the module).
A wizard appears.

2. Select the type of data source from which you want to extract the
schema description.
The main supported DBMS are presented, you can display the other data
source types by clicking on Other Data Source Types.

3. Click Next.
The list of corresponding data sources appears.

 This list is empty if these connections are not defined or could not
be established.

4. Select a data source and click Next.
The connection windows appears.

Reverse engineer tables
Extracting Database Schema Description from Data Sources

5. If they are not already defined at the data source level, specify a User
ID, a Password, and a Server Name. If other parameters are required
by the ODBC driver, you will be prompted for them when the connection
is established.

6. Click Next to confirm the connection.
Once the connection has been established, select the desired extraction
options.

 If some of the options remain disabled, this is because the driver
does not support them.

 To obtain information on the ODBC protocol used, click the ODBC
information button.

7. Select the elements to be extracted in addition to the tables and
columns. By default, all of these elements are selected.
All the accessible tables are displayed, whether or not you are the owner.
Synonym tables can also appear if you select the corresponding check
box.

 A synonym is an alternative name given to an object (table, view,
stored procedure, synonym and sequence). A synonym can be defined
to indicate an object in another database.

To view only those tables belonging to a specific Owner, select the
appropriate owner from the drop-down list. It may take a few seconds for

Reverse engineer tables
Extracting Database Schema Description from Data Sources

the list of owners and their tables to appear. Table extraction takes a few
minutes.
The following elements are included in the extraction:
• Primary keys (Primary keys).
• Foreign keys (Foreign keys).
• Index (Index): these are indexes that do not use primary keys.
• Primary index (Primary index): these are indexes that do not use

primary keys.
 Not all drivers support the ODBC primitives used to extract
these elements; if this is your case, a message will indicate this
in the report file. In addition, some DBMS do not handle the
corresponding concepts, which are then ignored.

The Destination file field specifies the name and path of the extraction
file; use the Browse button to specify its location.

8. After selecting the extraction options, click the Extract button to begin
the extraction.
A message reports the number of tables extracted. You can select the
Warnings button to view the report file.
You can view the list of accessible tables by clicking the List Tables
button, and then select specific tables from the list for extraction (all
tables are selected by default).

9. On completion of extraction, click Open file to consult the result. The
report file is available at {Current User Data}/Local/Mega.

 If the extraction is incomplete, it is advisable to use another driver
with a compliance level higher than 1.

The result file can be used for the reverse engineering (see Reverse engineer
tables). It contains a database description in the form of Hopex objects.

When the extraction operation has been completed:
 Click Close to disconnect from the data source.
 Click Back to perform a new extraction.

Extraction Report File

The file that reports on the table extraction is created by the ODBC extraction utility.
It is called <FIC>_CRD.TXT where <FIC> represents the first three characters of
the name of the results file.

It contains a list of the tables that were reread.

Example:
==

 Data Source Extracting: DATASOURCE

==

Table: OWNER.TABLENAME1

Table: OWNER.TABLENAME2

 (cont.)

==

End of extraction

==

Extraction Results File

The extraction results file contains the description of the tables and columns that
results from the read. This file has extension ".xml".

Reverse engineer tables
Extracting Database Schema Description from Data Sources

Example of extraction file:

Customizing ODBC Extraction

When the extraction is incomplete or does not correspond to your needs, you can
customize the extraction with the Odwdbex.ini file. This configuration depends on
the ODBC driver you are using.

You can customize the extraction in a number of different ways by using:
• ODBC standard APIs available for the main concepts (Table, Column,

Key, Index, etc.)
• Hopex queries delivered as a replacement for ODBC standard APIs
• customized queries.

By default, ODBC standard APIs are used for the main concepts and Hopex queries
for the other concepts. For some ODBC drivers, Hopex queries are used for the
main concepts as the result obtained by the ODBC standard is incomplete.

Using the Odwdbex.ini file and customized queries

To customize extraction:
1. Contact your data administrator to obtain the customized queries

corresponding to your ODBC driver used to select objects (Eg: primary
keys, foreign keys, sequences, etc).

2. In the "All users" folder in Windows, create a file named Odwdbex.ini
(example: C:\Documents and Settings\All
Users\ApplicationData\Mega\Odwdbex.ini).

3. Edit the file and add the queries for the concepts whose behavior you
want to manage. The concepts that are not cited here remain
unchanged.
[<DBMS Name>]
PRIMARY KEYS="Custom query"
FOREIGN KEYS="Custom query"
TBLCOLUMNS="Custom query"
...

The <DBMS Name> value depends on the ODBC utility. To obtain the appropriate
value:

1. Run the Hopex extraction tool (mgwdbx32.exe).
2. In the Data Source menu, select the data source.
3. Then click System > ODBC Information.
4. Read the "DBMS Name".

You can edit the Odwdbex.ini file by selecting System > Edit Odwdbex.ini in the
Hopex extraction tool. Check that the file is archived.

For more the format of queries, see Select Clause Formats.

Using ODBC standard APIs

To force the use of ODBC APIs:
1. Edit the Odwdbex.ini file.
2. At the level of each concept concerned, modify the extraction strategy

using the keyword: USE_DRIVER_ODBC.
Example in the ODWDBEX.INI file:

[<DBMS Name>]

INDEXES=USE_DRIVER_ODBC

Select Clause Formats

 It is important to use the indicated syntax and in particular
not to omit any of the "1"s. Note that the clauses must fit on a
single line in the ODWDBEX.INI file.

Reverse engineer tables
Extracting Database Schema Description from Data Sources

Primary Keys
SELECT

1,

TABLE_OWNER,

TABLE_NAME,

COLUMN_NAME,

KEY_SEQUENCE,

PK_NAME

FROM ...

WHERE ...

• TABLE_OWNER: owner of the primary key table
• TABLE_NAME: name of the primary key table
• COLUMN_NAME: name of the primary key column
• KEY_SEQUENCE: Number of the column in the key sequence (starts at 1)
• PK_NAME: Name of the primary key; “1” if this name is not supported by

the DBMS.

Foreign Keys
SELECT

1,

PKTABLE_OWNER,

PKTABLE_NAME,

1,

1,

FKTABLE_OWNER,

FKTABLE_NAME,

FKCOLUMN_NAME,

KEY_SEQ,

UPDATE_RULE,

DELETE_RULE,

FK_NAME

FROM ...

WHERE ...

• PKTABLE_OWNER: name of the owner of the primary key table
(reference table)

• PKTABLE_NAME: name of the primary key table
• FKTABLE_OWNER: name of the owner of the foreign key table
• FKTABLE_NAME: name of the foreign key table
• FKCOLUMN_NAME: name of the foreign key column
• KEY_SEQ: number of the column in the key sequence (starts at 1)
• UPDATE_RULE : R: Restrict, C: Cascade
• DELETE_RULE : R: Restrict, C: Cascade
• FK_NAME: name of the foreign key; “1” if this name is not supported by

the DBMS.

Indexes
SELECT

1,

TABLE_OWNER,

TABLE_NAME,

NON_UNIQUE,

1,

INDEX_NAME,

TYPE,

SEQ_IN_INDEX,

COLUMN_NAME,

COLLATION

FROM ...

WHERE ...

• TABLE_OWNER: name of the owner of the table concerned by the
statistic or the index

• TABLE_NAME: name of the index table
• NON_UNIQUE: the indexes must have a unique value
• INDEX_NAME: name of the index
• TYPE : Index type
• SEQ_IN_INDEX: number of the column in the key sequence (starts at 1)
• COLUMN_NAME: name of the column
• COLLATION: column sort; "A" increasing order, "D" decreasing order

Reverse engineer tables
Extracting Database Schema Description from Data Sources

Columns
SELECT

1,

COLUMN_OWNER,

TABLE_NAME,

COLUMN_NAME,

DataType ODBC,

DataType Name,

Detail,

Length,

Scale,

1,

NULLABLE,

COMMENT,

DEFAULT_VALUE,

1,

1,

1,

Order

WHERE [Joint between <MEGA:OWNER><MEGA:OBJECT_NAME>]

• <MEGA:OWNER> is replaced by the user, the Schema or "".
• <MEGA:OBJECT_NAME>] is replaced by the name of the table.
• COLUMN_OWNER: name of the column, string with 128 characters.
• TABLE_NAME: name of the table, string with 128 characters.
• DataType ODBC: data type in the form of an integer. This value is the

value of ODBC data types therefore comprised of the following:
 # -1 (SQL_LONGVARCHAR)

 # -2 (SQL_BINARY

 # -3 (SQL_VARBINARY)

 # -4 (SQL_LONGVARBINARY)

 # -5 (SQL_BIGINT)

 # -6 (SQL_TINYINT)

 # -7 (SQL_BIT)

 # 0 (SQL_UNKNOWN_TYPE)

 # 1 (SQL_CHAR)

 # 2 (SQL_NUMERIC)

 # 3 (SQL_DECIMAL)

 # 4 (SQL_INTEGER)

 # 5 (SQL_SMALLINT)

 # 6 (SQL_FLOAT)

 # 7 (SQL_REAL)

 # 8 (SQL_DOUBLE)

 # 9 (SQL_DATE)

 # 10 (SQL_TIME)

 # 11 (SQL_TIMESTAMP)

 # 12 (SQL_VARCHAR)
• DataType Name: name of the data type, string of 128 characters. It is

built as follows: "SQL_<DbmsName><String>"
• Precision: length in MEGA if "Length" is empty.
• Length: length in MEGA if greater than 0.
• Scale: integer
• NULLABLE: integer specifying if the column can be NULL. ODBC values

possible: 0 (SQL_NO_NULLS), 1 (SQL_NULLABLE) or 3
(SQL_NULL_WITH_DEFAULT).

• COMMENT: column comments, string with 1257 characters.
• DEFAULT_VALUE: default value of the column, string with 1257

characters.

W

PIVOT TYPES AND DATATYPES
CORRESPONDENCE TABLES

The following tables show correspondence between pivot types and the different supported DBMSs
and their versions.

 DB2 Version 9 For OS
 MySQL 5.0
 Oracle 11
 PostgreSQL9.3
 SQL ANSI/ISO 9075:1992
 SQL Server 2008
 Teradata Database

DB2 VERSION 9 FOR OS

Pivot --> Datatype (DB2 Version 9 For OS)

Pivot Condition Datatype

P-AutoIdentifier INTEGER

P-Binary CHAR(@L) FOR BIT
DATA

P-Boolean CHAR(@L) FOR BIT
DATA

P-Byte CHAR (1) FOR BIT
DATA

P-Character Not Unicode and (L=0 or L ø) CHAR

Not Unicode and 0<L<256 CHAR(@L)

Not Unicode and (L=256 or L
ø)

GRAPHIC(@L)

Not Unicode and L>255 VARCHAR(@L)

Not Unicode and L>255 VARGRAPHIC(@L)

P-Currency DECIMAL(@L, @D)

P-Date DATE

P-Datetime TIMESTAMP

P-Decimal L=0 or L ø DECIMAL

L>0 and D ø DECIMAL(@L)

L>0 and D not ø DECIMAL(@L, @D)

P-Double DOUBLE

P-Float L=0 or L ø FLOAT

L<>0 FLOAT(@L)

Pivot Types and Datatypes Correspondence Tables

P-Integer INTEGER

P-Long Integer INTEGER

P-Long Real REAL

P-Multimedia BLOB

BLOB(@L)

CLOB

CLOB FOR MIXED
DATA

CLOB(@L)

CLOB(@L) FOR MIXED
DATA

LONG VARCHAR FOR
BIT DATA

P-Numeric L not ø and D not ø DECIMAL(@L, @D)

L>9 and D ø FLOAT(@L)

4<L<10 and D ø INTEGER

(L<5 and D ø) or L ø SMALLINT

P-Real REAL

P-Smallint SMALLINT

P-String LONG VARCHAR

P-Text LONG VARCHAR

P-Time TIME

P-Timestamp TIMESTAMP

P-Tinyint SMALLINT

Pivot --> Datatype (DB2 Version 9 For OS)

Pivot Condition Datatype

P-Varbinary L <=1024 VARCHAR(@L) FOR
BIT DATA

L>1024 XML

P-Varchar Not Unicode and (L=0 or L ø) VARCHAR

Not Unicode and L<>0 VARCHAR(@L)

Unicode VARGRAPHIC(@L)

Pivot --> Datatype (DB2 Version 9 For OS)

Pivot Condition Datatype

Datatype --> Pivot (DB2 Version 9 For OS)

Datatype Condition Pivot

BLOB P-Multimedia

BLOB(L) P-Multimedia

CHAR P-Character

CHAR (1) FOR BIT
DATA

P-Byte

CHAR(L) P-Character

CHAR(L) FOR BIT DATA P-Boolean

CLOB P-Multimedia

CLOB FOR MIXED
DATA

P-Multimedia

CLOB(L) P-Multimedia

CLOB(L) FOR MIXED
DATA

P-Multimedia

DATE P-Date

DECIMAL P-Decimal

DECIMAL(L) P-Decimal

Pivot Types and Datatypes Correspondence Tables

DECIMAL(L, D) P-Decimal

DOUBLE P-Double

FLOAT P-Float

FLOAT(L) P-Float

INTEGER P-Integer

LONG VARCHAR P-Text

LONG VARCHAR FOR
BIT DATA

P-Multimedia

REAL P-Real

SMALLINT P-Smallint

TIME P-Time

TIMESTAMP P-Datetime

VARCHAR(L) P-Varchar

VARCHAR(L) FOR BIT
DATA

P-Varbinary

XML P-Varbinary

Datatype --> Pivot (DB2 Version 9 For OS)

Datatype Condition Pivot

MYSQL 5.0

Pivot --> Datatype (MySQL 5.0)

Pivot Condition Datatype

L>0 and D not ø REAL (@L,@D) UN-
SIGNED

L=0 or L ø REAL UNSIGNED

L>0 and D not ø REAL (@L,@D) UN-
SIGNED ZEROFILL

L=0 or L ø REAL UNSIGNED ZER-
OFILL

P-AutoIdentifier INTEGER

P-Binary L ø or L<=0 BINARY

L is numeric and L<>0 BINARY (@L)

P-Boolean BOOLEAN

P-Byte L ø or L<=0 BIT

L is numeric and L<>0 BIT (@L)

P-Character Not Unicode and L=0 CHAR

Unicode and L<>0 CHAR (@L) UNICODE

Unicode and L=0 CHAR UNICODE

Not Unicode and L<>0 CHAR(@L)

P-Character Ascii L ø or L<=0 CHAR ASCII

L is numeric and L<>0 CHAR(@L) ASCII

Pivot Types and Datatypes Correspondence Tables

P-Character Binary Not Unicode and L<>0 CHAR (@L) BINARY

Unicode and L<>0 CHAR (@L) UNICODE
BINARY

Not Unicode and L=0 CHAR BINARY

Unicode and L=0 CHAR UNICODE BINA-
RY

P-Character Unicode L is numeric and L<>0 CHAR (@L) UNICODE

L ø or L<=0 CHAR UNICODE

P-Character Unicode Bina-
ry

L is numeric and L<>0 CHAR (@L) UNICODE
BINARY

L ø or L<=0 CHAR UNICODE BINA-
RY

P-Currency DECIMAL(@L,@D)

P-Date DATE

P-Datetime DATETIME

P-Decimal L=0 or L ø DECIMAL

L>0 and D ø DECIMAL (@L)

L>0 and D not ø DECIMAL(@L,@D)

P-Decimal Unsigned L>0 and D ø DECIMAL (@L) UN-
SIGNED

L>0 and D not ø DECIMAL (@L,@D) UN-
SIGNED

L=0 or L ø DECIMAL UNSIGNED

Pivot --> Datatype (MySQL 5.0)

Pivot Condition Datatype

P-Decimal Unsigned Zero-
fill

L>0 and D ø DECIMAL (@L) UN-
SIGNED ZEROFILL

L>0 and D not ø DECIMAL (@L,@D) UN-
SIGNED ZEROFILL

L=0 or L ø DECIMAL UNSIGNED
ZEROFILL

P-Double L=0 or L ø DOUBLE PRECISION

L>0 and D not ø DOUBLE PRECISION
(@L,@D)

P-Double Unsigned L>0 and D not ø DOUBLE PRECISION
(@L,@D) UNSIGNED

L=0 or L ø DOUBLE PRECISION
UNSIGNED

P-Double Unsigned Zero-
fill

L>0 and D not ø DOUBLE PRECISION
(@L,@D) UNSIGNED
ZEROFILL

L=0 or L ø DOUBLE PRECISION
UNSIGNED ZEROFILL

P-Float L=0 or L ø FLOAT

L>0 and D ø FLOAT (@L)

L>0 and D not ø FLOAT (@L,@D)

P-Float Unsigned L>0 and D ø FLOAT (@L) UNSIGNED

L>0 and D not ø FLOAT (@L,@D) UN-
SIGNED

L=0 or L ø FLOAT UNSIGNED

Pivot --> Datatype (MySQL 5.0)

Pivot Condition Datatype

Pivot Types and Datatypes Correspondence Tables

P-Float Unsigned Zerofill L>0 and D ø FLOAT (@L) UNSIGNED
ZEROFILL

L>0 and D not ø FLOAT (@L,@D) UN-
SIGNED ZEROFILL

L=0 or L ø FLOAT UNSIGNED ZER-
OFILL

P-Integer L ø or L<=0 INTEGER

L is numeric and L<>0 INTEGER (@L)

P-Integer Unsigned L is numeric and L<>0 INTEGER (@L) UN-
SIGNED

L ø or L<=0 INTEGER UNSIGNED

P-Integer Unsigned Zerofill L is numeric and L<>0 INTEGER (@L) UN-
SIGNED ZEROFILL

L ø or L<=0 INTEGER UNSIGNED
ZEROFILL

P-Long Integer L ø or L<=0 BIGINT

L is numeric and L<>0 BIGINT (@L)

P-Long Integer Unsigned L is numeric and L<>0 BIGINT (@L) UN-
SIGNED

L ø or L<=0 BIGINT UNSIGNED

P-Long Integer Unsigned
Zerofill

L is numeric and L<>0 BIGINT (@L) UN-
SIGNED ZEROFILL

L ø or L<=0 BIGINT UNSIGNED ZE-
ROFILL

P-Longblob LONGBLOB

P-Longtext LONGTEXT

P-Mediumblob MEDIUMBLOB

Pivot --> Datatype (MySQL 5.0)

Pivot Condition Datatype

P-Mediumint L ø or L<=0 MEDIUMINT

L is numeric and L<>0 MEDIUMINT (@L)

P-Mediumint Unsigned L is numeric and L<>0 MEDIUMINT (@L) UN-
SIGNED

L ø or L<=0 MEDIUMINT UN-
SIGNED

P-Mediumint Unsigned Ze-
rofill

L is numeric and L<>0 MEDIUMINT (@L) UN-
SIGNED ZEROFILL

L ø or L<=0 MEDIUMINT UN-
SIGNED ZEROFILL

P-Mediumtext MEDIUMTEXT

P-Multimedia BLOB

P-National Varchar L ø or L<0 NATIONAL VARCHAR

L is numeric and L<>0 NATIONAL VARCHAR
(@L)

P-National Varchar Binary L is numeric and L<>0 NATIONAL VARCHAR
(@L) BINARY

L ø or L<0 NATIONAL VARCHAR
BINARY

P-Numeric L=0 or L ø NUMERIC

L>0 and D ø NUMERIC (@L)

L>0 and D not ø NUMERIC (@L,@D)

P-Real L=0 or L ø REAL

L>0 and D not ø REAL (@L,@D)

P-Smallint L ø or L<=0 SMALLINT

L is numeric and L<>0 SMALLINT (@L)

Pivot --> Datatype (MySQL 5.0)

Pivot Condition Datatype

Pivot Types and Datatypes Correspondence Tables

P-Smallint Unsigned L is numeric and L<>0 SMALLINT (@L) UN-
SIGNED

L ø or L<=0 SMALLINT UNSIGNED

P-Smallint Unsigned Zero-
fill

L is numeric and L<>0 SMALLINT (@L) UN-
SIGNED ZEROFILL

L ø or L<=0 SMALLINT UNSIGNED
ZEROFILL

P-String VARCHAR(@L)

P-Text TEXT

P-Time TIME

P-Timestamp TIMESTAMP

P-Tinyblob TINYBLOB

P-Tinyint L ø or L<=0 TINYINT

L is numeric and L<>0 TINYINT (@L)

P-Tinyint Unsigned L is numeric and L<>0 TINYINT (@L) UN-
SIGNED

L ø or L<=0 TINYINT UNSIGNED

P-Tinyint Unsigned Zero-
fill

L is numeric and L<>0 TINYINT (@L) UN-
SIGNED ZEROFILL

L ø or L<=0 TINYINT UNSIGNED
ZEROFILL

P-Tinytext TINYTEXT

P-Varbinary L ø or L<0 VARBINARY

L is numeric and L>=0 VARBINARY (@L)

P-Varchar L ø or L<=0 VARCHAR

L is numeric and L=0 VARCHAR(@L)

Pivot --> Datatype (MySQL 5.0)

Pivot Condition Datatype

P-Varchar Binary L is numeric and L<>0 VARCHAR (@L) BINA-
RY

L ø or L<0 VARCHAR BINARY

P-Wide Character L ø or L<=0 NATIONAL CHAR

L is numeric and L<>0 NATIONAL CHAR (@L)

P-Wide Character Binary L is numeric and L<>0 NATIONAL CHAR (@L)
BINARY

L ø or L<=0 NATIONAL CHAR BI-
NARY

P-Year L ø or L<=0 YEAR

L is numeric and L<>0 YEAR(@L)

Pivot --> Datatype (MySQL 5.0)

Pivot Condition Datatype

Datatype --> Pivot (MySQL 5.0)

Datatype Condition Pivot

BIGINT P-Long Integer

BIGINT (L) P-Long Integer

BIGINT (L) UNSIGNED P-Long Integer Unsigned

BIGINT (L) UNSIGNED
ZEROFILL

P-Long Integer Unsigned
Zerofill

BIGINT UNSIGNED P-Long Integer Unsigned

BIGINT UNSIGNED ZE-
ROFILL

P-Long Integer Unsigned
Zerofill

BINARY P-Binary

BINARY (L) P-Binary

BIT P-Byte

BIT (L) P-Byte

Pivot Types and Datatypes Correspondence Tables

BLOB P-Multimedia

BOOLEAN P-Boolean

CHAR P-Character

CHAR (L) BINARY P-Character Binary

CHAR (L) UNICODE P-Character Unicode

CHAR (L) UNICODE BI-
NARY

P-Character Unicode Bina-
ry

CHAR ASCII P-Character Ascii

CHAR BINARY P-Character Binary

CHAR UNICODE P-Character Unicode

CHAR UNICODE BINA-
RY

P-Character Unicode Bina-
ry

CHAR(L) P-Character

CHAR(L) ASCII P-Character Ascii

DATE P-Date

DATETIME P-Datetime

DECIMAL P-Decimal

DECIMAL (L) P-Decimal

DECIMAL (L) UN-
SIGNED

P-Decimal Unsigned

DECIMAL (L) UN-
SIGNED ZEROFILL

P-Decimal Unsigned Zero-
fill

DECIMAL (L,D) UN-
SIGNED

P-Decimal Unsigned

DECIMAL (L,D) UN-
SIGNED ZEROFILL

P-Decimal Unsigned Zero-
fill

Datatype --> Pivot (MySQL 5.0)

Datatype Condition Pivot

DECIMAL UNSIGNED P-Decimal Unsigned

DECIMAL UNSIGNED
ZEROFILL

P-Decimal Unsigned Zero-
fill

DECIMAL(L,D) P-Decimal

DOUBLE PRECISION P-Double

DOUBLE PRECISION
(L,D)

P-Double

DOUBLE PRECISION
(L,D) UNSIGNED

P-Double Unsigned

DOUBLE PRECISION
(L,D) UNSIGNED ZERO-
FILL

P-Double Unsigned Zero-
fill

DOUBLE PRECISION
UNSIGNED

P-Double Unsigned

DOUBLE PRECISION
UNSIGNED ZEROFILL

P-Double Unsigned Zero-
fill

FLOAT P-Float

FLOAT (L) P-Float

FLOAT (L) UNSIGNED P-Float Unsigned

FLOAT (L) UNSIGNED
ZEROFILL

P-Float Unsigned Zerofill

FLOAT (L,D) P-Float

FLOAT (L,D) UNSIGNED P-Float Unsigned

FLOAT (L,D) UNSIGNED
ZEROFILL

P-Float Unsigned Zerofill

FLOAT UNSIGNED P-Float Unsigned

FLOAT UNSIGNED ZER-
OFILL

P-Float Unsigned Zerofill

Datatype --> Pivot (MySQL 5.0)

Datatype Condition Pivot

Pivot Types and Datatypes Correspondence Tables

INTEGER P-Integer

INTEGER (L) P-Integer

INTEGER (L) UN-
SIGNED

P-Integer Unsigned

INTEGER (L) UN-
SIGNED ZEROFILL

P-Integer Unsigned Zerofill

INTEGER UNSIGNED P-Integer Unsigned

INTEGER UNSIGNED
ZEROFILL

P-Integer Unsigned Zerofill

LONGBLOB P-Longblob

LONGTEXT P-Longtext

MEDIUMBLOB P-Mediumblob

MEDIUMINT P-Mediumint

MEDIUMINT (L) P-Mediumint

MEDIUMINT (L) UN-
SIGNED

P-Mediumint Unsigned

MEDIUMINT (L) UN-
SIGNED ZEROFILL

P-Mediumint Unsigned Ze-
rofill

MEDIUMINT UN-
SIGNED

P-Mediumint Unsigned

MEDIUMINT UN-
SIGNED ZEROFILL

P-Mediumint Unsigned Ze-
rofill

MEDIUMTEXT P-Mediumtext

NATIONAL CHAR P-Wide Character

NATIONAL CHAR (L) P-Wide Character

NATIONAL CHAR (L)
BINARY

P-Wide Character Binary

Datatype --> Pivot (MySQL 5.0)

Datatype Condition Pivot

NATIONAL CHAR BI-
NARY

P-Wide Character Binary

NATIONAL VARCHAR P-National Varchar

NATIONAL VARCHAR
(L)

P-National Varchar

NATIONAL VARCHAR
(L) BINARY

P-National Varchar Binary

NATIONAL VARCHAR
BINARY

P-National Varchar Binary

NUMERIC P-Numeric

NUMERIC (L) P-Numeric

NUMERIC (L,D) P-Numeric

REAL P-Real

REAL (L,D) P-Real

REAL (L,D) UNSIGNED

REAL (L,D) UNSIGNED
ZEROFILL

REAL UNSIGNED

REAL UNSIGNED ZER-
OFILL

SMALLINT P-Smallint

SMALLINT (L) P-Smallint

SMALLINT (L) UN-
SIGNED

P-Smallint Unsigned

SMALLINT (L) UN-
SIGNED ZEROFILL

P-Smallint Unsigned Zero-
fill

SMALLINT UNSIGNED P-Smallint Unsigned

Datatype --> Pivot (MySQL 5.0)

Datatype Condition Pivot

Pivot Types and Datatypes Correspondence Tables

SMALLINT UNSIGNED
ZEROFILL

P-Smallint Unsigned Zero-
fill

TEXT P-Text

TIME P-Time

TIMESTAMP P-Timestamp

TINYBLOB P-Tinyblob

TINYINT P-Tinyint

TINYINT (L) P-Tinyint

TINYINT (L) UNSIGNED P-Tinyint Unsigned

TINYINT (L) UNSIGNED
ZEROFILL

P-Tinyint Unsigned Zero-
fill

TINYINT UNSIGNED P-Tinyint Unsigned

TINYINT UNSIGNED
ZEROFILL

P-Tinyint Unsigned Zero-
fill

TINYTEXT P-Tinytext

VARBINARY P-Varbinary

VARBINARY (L) P-Varbinary

VARCHAR P-Varchar

VARCHAR (L) BINARY P-Varchar Binary

VARCHAR BINARY P-Varchar Binary

VARCHAR(L) P-Varchar

YEAR P-Year

YEAR(L) P-Year

Datatype --> Pivot (MySQL 5.0)

Datatype Condition Pivot

ORACLE 11

Pivot --> Datatype (Oracle 11)

Pivot Condition Datatype

P-AutoIdentifier NUMBER

P-Binary RAW(@L)

P-Boolean L=2 or L ø RAW(1)

L>1 RAW(@L)

P-Byte RAW(1)

P-Character Not Unicode and (L<2001
or L ø)

CHAR(@L)

L>4000 LONG

Not Unicode and (L=2001
or L ø)

NCHAR(@L)

Unicode and
2000<L<4001

NVARCHAR2(@L)

Not Unicode and
2000<L<4001

VARCHAR2(@L)

P-Currency NUMBER(@L,@D)

P-Date DATE

P-Datetime DATE

P-Decimal NUMBER(@L,@D)

P-Double NUMBER(@L,@D)

P-Float 0<L<127 FLOAT(@L)

L=0 or L>126 or L ø FLOAT

P-Integer NUMBER(@L)

Pivot Types and Datatypes Correspondence Tables

P-Long Integer NUMBER(@L)

P-Long Real NUMBER(@L,@D)

P-Numeric L=0 or L ø NUMBER

L>0 and D ø NUMBER(@L)

L>0 and D not ø NUMBER(@L,@D)

P-Real NUMBER(@L,@D)

P-Smallint NUMBER(@L)

P-String LONG

P-Text Unicode NVARCHAR2(@L)

Not Unicode VARCHAR2(@L)

P-Time DATE

P-Timestamp L<10 TIMESTAMP(@L)

L>9 or L ø TIMESTAMP

P-Tinyint NUMBER(@L)

P-Varchar L>4000 or L=0 or L ø LONG

Unicode and 0<L<4001 NVARCHAR2(@L)

Not Unicode and
0<L<4001

VARCHAR2(@L)

Pivot --> Datatype (Oracle 11)

Pivot Condition Datatype

Datatype --> Pivot (Oracle 11)

Datatype Condition Pivot

CHAR(L) P-Character

DATE P-Date

FLOAT P-Float

FLOAT(L) P-Float

LONG P-String

NUMBER P-Numeric

NUMBER(L) P-Numeric

NUMBER(L,D) P-Numeric

RAW(1) P-Boolean

RAW(L) P-Boolean

TIMESTAMP P-Timestamp

TIMESTAMP(L) P-Timestamp

VARCHAR2(L) P-Varchar

Datatype --> Pivot (Oracle 11)

Datatype Condition Pivot

Pivot Types and Datatypes Correspondence Tables

POSTGRESQL9.3

Pivot --> Datatype (PostgreSQL9.3)

Pivot Condition Datatype

P-Boolean boolean

P-Byte L=0 or L ø bit

Valid bit(@L)

P-Character L=0 or L ø char

Valid char(@L)

P-Currency money

P-Date date

P-Decimal L=0 or L ø decimal

L>=1 and D ø decimal(@L)

L>=1 decimal(@L,@D)

P-Double double precision

P-Integer integer

P-Long Integer bigint

P-Numeric L=0 or L ø numeric

L>=1 and D ø numeric(@L)

L>=1 numeric(@L,@D)

P-Real real

P-Smallint smallint

P-Text text

P-Time L=0 or L ø time

Valid time(@L)

P-Timestamp L=0 or L ø timestamp

L <> 0 timestamp(@L)

P-Varchar L=0 or L ø varchar

Valid varchar(@L)

Pivot --> Datatype (PostgreSQL9.3)

Pivot Condition Datatype

Datatype --> Pivot (PostgreSQL9.3)

Datatype Condition Pivot

bigint P-Long Integer

bit P-Byte

bit(L) P-Byte

boolean P-Boolean

char P-Character

char(L) P-Character

date P-Date

decimal P-Decimal

decimal(L) P-Decimal

decimal(L,D) P-Decimal

double precision P-Double

integer P-Integer

money P-Currency

numeric P-Numeric

numeric(L) P-Numeric

numeric(L,D) P-Numeric

real P-Real

Pivot Types and Datatypes Correspondence Tables

smallint P-Smallint

text P-Text

time P-Time

time(L) P-Time

timestamp P-Timestamp

timestamp(L) P-Timestamp

varchar P-Varchar

varchar(L) P-Varchar

Datatype --> Pivot (PostgreSQL9.3)

Datatype Condition Pivot

SQL ANSI/ISO 9075:1992

Pivot --> Datatype (SQL ANSI/ISO 9075:1992)

Pivot Condition Datatype

P-AutoIdentifier INTEGER

P-Binary BIT VARYING(@L)

P-Boolean BIT(@L)

P-Byte BIT(@L)

P-Character CHAR(@L)

P-Currency DECIMAL(@L,@D)

P-Date DATE

P-Datetime DATETIME

P-Decimal DECIMAL(@L,@D)

P-Double DOUBLE PRECISION

P-Float FLOAT

P-Integer INTEGER

P-Long Integer INTEGER

P-Long Real REAL

P-Multimedia BIT VARYING(@L)

P-Numeric L>4 INTEGER

L=5 or L ø SMALLINT

P-Real REAL

P-Smallint SMALLINT

P-String VARCHAR(@L)

P-Text VARCHAR(@L)

Pivot Types and Datatypes Correspondence Tables

P-Time TIME

P-Timestamp DATETIME

P-Tinyint SMALLINT

P-Varbinary BIT VARYING(@L)

P-Varchar VARCHAR(@L)

Pivot --> Datatype (SQL ANSI/ISO 9075:1992)

Pivot Condition Datatype

Datatype --> Pivot (SQL ANSI/ISO 9075:1992)

Datatype Condition Pivot

BIT VARYING(L) P-Multimedia

BIT(L) P-Boolean

CHAR(L) P-Character

DATE P-Date

DATETIME P-Datetime

DECIMAL(L,D) P-Currency

DOUBLE PRECISION P-Double

FLOAT P-Float

INTEGER P-Integer

REAL P-Real

SMALLINT P-Smallint

TIME P-Time

VARCHAR(L) P-Varchar

SQL SERVER 2008

Pivot --> Datatype (SQL Server 2008)

Pivot Condition Datatype

P-AutoIdentifier uniqueidentifier

P-Binary binary(@L)

P-Boolean bit

P-Byte bit

P-Character Not Unicode and (L<8001
or L ø)

char(@L)

Not Unicode and (L=8001
or L ø)

nchar(@L)

Not Unicode and L>8000 ntext

Not Unicode and L>8000 text

P-Currency L not empty or L > 10 money

 L empty or L < 11 smallmoney

P-Date smalldatetime

P-Datetime datetime

P-Decimal decimal(@L,@D)

P-Double numeric(@L,@D)

P-Float L empty float

 L not empty float(@L)

P-Integer int

P-Long Integer bigint

P-Long Real real

Pivot Types and Datatypes Correspondence Tables

P-Multimedia image

P-Numeric numeric(@L,@D)

P-Real real

P-Smallint smallint

P-String Unicode ntext

Not Unicode text

P-Text Unicode ntext

Not Unicode text

P-Time time

P-Timestamp timestamp

P-Tinyint tinyint

P-Varbinary varbinary(@L)

P-Varchar Not Unicode and L>8000 ntext

Not Unicode and (L=8001
or L ø)

nvarchar(@L)

Not Unicode and L>8000 text

Not Unicode and (L<8001
or L ø)

varchar(@L)

P-Wide Character nchar(@L)

P-Wide String nvarchar(@L)

Pivot --> Datatype (SQL Server 2008)

Pivot Condition Datatype

Datatype --> Pivot (SQL Server 2008)

Datatype Condition Pivot

bigint P-Long Integer

binary(L) P-Binary

bit P-Boolean

char(L) P-Character

datetime P-Datetime

decimal(L,D) P-Decimal

float P-Float

float(L) P-Float

image P-Multimedia

int P-Integer

money P-Currency

nchar(L) P-Wide Character

numeric(L,D) P-Numeric

nvarchar(L) P-Wide String

real P-Real

smalldatetime P-Date

smallint P-Smallint

smallmoney P-Currency

text P-Text

time P-Time

timestamp P-Timestamp

tinyint P-Tinyint

uniqueidentifier P-AutoIdentifier

varbinary(L) P-Varbinary

varchar(L) P-Varchar

Datatype --> Pivot (SQL Server 2008)

Datatype Condition Pivot

Pivot Types and Datatypes Correspondence Tables

TERADATA DATABASE

Pivot --> Datatype (Teradata Database 14)

Pivot Condition Datatype

P-AutoIdentifier NUMBER

P-Boolean BYTEINT

P-Byte L=0 or L ø BYTE

L>0 BYTE(@L)

P-Character L=0 or L ø CHAR

L>0 CHAR(@L)

P-Date DATE

P-Datetime DATE

P-Decimal L=0 or L ø and D=0 Or D ø DECIMAL

L>0 and D=0 Or D ø DECIMAL(@L)

P-Double NUMBER(@L,@D)

P-Float FLOAT

P-Integer INTEGER

P-Long Integer BIGINT

P-Long Real FLOAT

P-Multimedia L=0 or L ø BLOB

L>0 BLOB(@L)

P-Numeric L=0 or L ø and D=0 Or D ø NUMBER

L ø and D > 0 NUMBER(*,@D)

L>0 and D=0 Or D ø NUMBER(@L)

L>0 and D>0 NUMBER(@L,@D)

P-Real FLOAT

P-Smallint SMALLINT

P-String VARCHAR(@L)

P-Text VARCHAR(@L)

P-Time TIME

D > 0 TIME(@D)

P-Timestamp TIMESTAMP

D > 0 TIMESTAMP(@D)

P-Tinyint SMALLINT

P-Varbinary VARBYTE(@L)

P-Varchar VARCHAR(@L)

Pivot --> Datatype (Teradata Database 14)

Pivot Condition Datatype

Datatype --> Pivot (Teradata Database 14)

Datatype Condition Pivot

BIGINT P-Long Integer

BLOB P-Multimedia

BLOB(L) P-Multimedia

BYTE P-Byte

BYTE(L) P-Byte

BYTEINT P-Boolean

CHAR P-Character

CHAR(L) P-Character

DATE P-Date

DECIMAL P-Decimal

Pivot Types and Datatypes Correspondence Tables

DECIMAL(L) P-Decimal

FLOAT P-Real

INTEGER P-Integer

NUMBER P-Numeric

NUMBER(*,D) P-Numeric

NUMBER(L) P-Numeric

NUMBER(L,D) P-Numeric

SMALLINT P-Smallint

TIME P-Time

TIME(D) P-Time

TIMESTAMP P-Timestamp

TIMESTAMP(D) P-Timestamp

VARBYTE(L) P-Varbinary

VARCHAR(L) P-Varchar

Datatype --> Pivot (Teradata Database 14)

Datatype Condition Pivot

403

DATA ANALYSIS REPORTS

HOPEX Data Architecture offers different types of reports designed to analyze the
business data defined in the repository.

 For more details on how the reports work, see the HOPEX Common
Features guide, "Generating Reports".
 Reports on the diagrams available in standard mode with HOPEX
are also accessible with HOPEX Data Architecture.

Accessing Reports

To access HOPEX Data Architecture reports:
 In the navigation bar, click Reports.

Some analysis reports are embedded in the repository objects. These reports are
available in the properties of these objects, in the Reports page.

For example, the reports displayed under Reports >
Description Reports > Data Domain Map are also accessible in
the properties of a data domain map.

Description Reports

The View Report

See The View Report.

Glossary Report

HOPEX Data Architecture provides a ready-to-use glossary report to
automatically build the business glossary of terms derived from a set of Business
dictionaries. For each term, the glossary displays a list of associated definitions with
their text, synonyms and components list.

404

Report parameters
This consists of defining report input data.

Report example
The example below shows the terms from the "Media Library"
dictionary.

Parameters Parameter type Comment

List of libraries Library Not mandatory

List of business
dictionaries

business dictionary Mandatory if no library

Example option yes or no Used to display the business informa-
tion examples

Show the com-
ponent type icon

yes or no

405

Data Analysis Reports

Data Domain Map

On a data map, two report templates allow you to visualize the hierarchy of the
domains that make it up.

Data Domain Tree Map Report

In this report, filters allow you to view:
• the number of components in each domain
• the number of functional owners

 The functional owner has a responsibility for the use of a data in a
domain. You can specify the functional owners of the components of a
domain in the properties of the domain in question, under the
Components section. See The Components of a Concept Domain Map.

• the number of reference data
• the number of data declared as sensitive.

Data Map Breakdown Report

This report also displays the domains that make up the map. The following
information is available for each domain:

• the number of sensitive data
• the number of reference data
• average data quality

406

Data Domain Dependencies

Based on a data map, this report presents the structural dependencies of the data
used between data areas in the form of a string graph.

It is possible to dive into a data domain and view the dependencies between sub-
domains where they exist.

By selecting a domain, its links with the other domains are highlighted.
Below you can see the links between the "Maintenance" data
domain and the "Flight Ops" data domain.

Word Cloud Reports

Amount of Information in Information Areas

This report template relates to areas of an information container.

In the generated report, the size of the area name is proportional to the number of
information that compose the area.

407

Data Analysis Reports

Extent of the Description of the Information

This report template relates to information containers (business dictionary, data
dictionary, database) and display the corresponding elements: concepts, classes,
tables, etc.

In the report, the size of the element name is proportional to the number of
information that characterize it (for example attributes and relations that
characterize a class).

Use of Information in Data Area

This report template relates to information containers (business dictionary, data
dictionary, database) and display the corresponding elements: concepts, classes,
tables, etc.

In the report, the size of the element name is proportional to its use in the
information areas.

Data Usage Reports

Use of information held by a container

For the object selected as input (eg: a package), the report displays:
• the information that it holds (eg: classes or data views)
• the areas that use this information, with which access rights
• the applications that use the areas (via data stores that are used to

declare them on the applications, application systems, application
service or microservice), and through which components (in read-only or
read/write).

A report template presents this information in the form of a dendrogram, another
report template in the form of a table.

Report parameters
This consists of defining report input data.

Parameters Object types

Subject Business dictionary
Database
Package
Data Model
Catalog of NoSQL data building block
Data type packages

408

Use of information in an domain

For the object selected as input (an area), the report displays:
• the information used (eg: classes or data views in the case of an

application data area), with which access rights.
• in which applications the selected area is used (via data stores that are

used to declare them on the applications, application systems,
application service or microservice), and through which components (in
read-only or read/write).

Report parameters
This consists of defining report input data.

A report template presents this information in the form of a dendrogram, another
report template in the form of a table.

Use of information of an information map

The input parameter is an information map that can group together one or more
area(s).

This report displays
• the areas and the data that it uses, with the access rights for this data.
• in which systems (applications, application systems, application services

or microservice) the areas are used and with which components of these
systems, specifying the access mode (read-only or read/write).

A report template presents this information in the form of a dendrogram, another
report template in the form of a table.

Use of information

The root object of the report consists of an item of information (concept, class, data
view, table, etc.). For this root, the report displays:

• the areas that use this information, with which access rights
• in which systems (applications, application systems or microservice)

these areas are used and with which components of these systems,
specifying the access mode (read-only or read/write).

Parameters Object types

Subject Application data area
Logical Data Area
Business information area
File structure
Relational data area
NoSql data area

409

Data Analysis Reports

Report parameters
This consists of defining report input data.

Use of information of the domains of a container

For the object selected as input (a container), the report displays:
• the areas owned
• the domains used by the areas, with which access rights
• the systems that use these areas and the access mode of the

components of these systems (read-only or read/write)

Report parameters
This consists of defining report input data.

Policies Reports

Regulatory Framework Report

This report displays the list of information constrained by a regulatory framework.

See Analyzing Information Constrained by a Regulation.

Parameters Object types

Subject Class
Concept
State concept
Event concept
Concept type
Entity
Period type
Representation type
Table
Datatype
Concept view
Data view
Physical view

Parameters Object types

Subject Business dictionary
Database
Package
Data Model
Catalog of NoSQL building blocks Data
type package

410

Rules Report

This type of report allows you to select a set of rules (business, operational or
system) and view in tabular form the regulations they implement.

See Ensure Compliance with Data: Create Business Rules.

Report DataSets

A Report DataSet is a data table created using repository objects, on which instant
reports can be generated.

HOPEX Data Architecture provides different types of Report DataSets.

Creating a Report DataSets

To create a Report DataSet
1. Click the navigation menu, then Reports.
2. In the navigation pane, click Other Reports.
3. In the edit area, click My Report DataSets.
4. click New.
5. Specify:

• the name of the report
• the holder (optional)
• the definition of the Report DataSet, on which the report is based

6. Click OK.

Example of a Report Dataset

Definition of terms used

This type of Report DataSet has a list of terms as input parameter.

411

Data Analysis Reports

Using selected terms, you can, for example, create a "matrix" type
instant report that presents the list of concepts that use the terms in
question.

To create an instant report for this type of Report DataSet:
1. Create a "Term definition" Report DataSet type.

 See above Creating a Report DataSets.
2. Open the properties of the Report DataSet.
3. Display the Data page.
4. (If needed) In the Parameters section, click Add and select the input

parameters, here the terms.
5. (If needed) In the Report DataSet section, click Refresh.
6. In the Report DataSet section, click Instant Report.
7. Select the required instant report, here a matrix.
8. Click OK.

Business dictionary x Concept Matrix

A concept can be referenced by one or more business dictionaries.

This Report DataSet has a list of business dictionaries as input. It is used to create
a "Matrix" type business report that lists the concepts referenced in the selected
business dictionaries.

To create an instant report for this type of Report DataSet:
1. Create a "Business Dictionary Matrix x Concepts" type Report DataSet.

 See above Creating a Report DataSets.
2. Open the properties of the Report DataSet.
3. Display the Data page.

412

4. (If needed) In the Parameters section, click Add and select the input
parameters, here the terms.

5. (If needed) In the Report DataSet section, click Refresh.
6. In the Report DataSet section, click Instant Report.
7. Select the required instant report, here a matrix.
8. Click OK.

413

DATA VALIDATION WORKFLOW

HOPEX Data Architecture includes a standard workflow to manage the progress
of the design of information assets, from their creation to the end of their validation.

The workflow definition is provided by default on the data lineage, data domain and
data map, for the business, logical and physical layers.

The workflow can be extended to other data items.

By default, the instantiation of this workflow is optional and not automatic. You can
select and decide on which object you want to create a workflow instance.

Validation workflow steps

Workflow instantiation can be performed by the data designer or the owner of the
object data. In addition, all other persons assigned as Data Asset Manager, Data
Steward, Data Quality Manager and Data Chef Officer can use the "Data
Contributor" profile to connect to HOPEX data and trigger the validation steps.

For each transition triggered, a notification or e-mail is sent to the assigned person
on the subject of the workflow.

414

For more details on workflows, see Using Workflows.

For more details on business roles, see Business Roles of HOPEX Data Architecture.

Generating a workflow report

Workflow reports are available on the different types of objects (data lineage, data
domains, etc.); they display the number of objects located at each step of the
workflow (number of objects in design, in analyze, etc.).

To generate a workflow report:
1. Click the navigation menu then click Dashboard.
2. Click + to add a report.
3. Expand the Information Architecture folder, then the Design Status

sub-folder.
4. Select the report concerned.

The report appears in your dashboard.

415

DATA IMPORT AND EXPORT

HOPEX Data Architecture provides Excel file templates so that you can import into the HOPEX
repository existing business and logical data, from which you can build business dictionaries
automatically. You can also use these templates to export data from the HOPEX repository.

A template dedicated to data quality allows to collect measures of data quality criteria
(Completeness, Unicity, Timeless, etc.).

 Importing Business Data from an Excel File
 Importing Logical Data from an Excel File
 Importing Data Assessments

416

IMPORTING BUSINESS DATA FROM AN EXCEL FILE

HOPEX Data Architecture provides an Excel file template so that you can import
a set of existing business information into the HOPEX repository.

You can use the template to simply import a list of terms and their definitions, in
order to generate a glossary, or for a more detailed description of business
information, with the ability to define the relationships between concepts, their
synonyms, etc.

You can also use this template to export business data from the repository.

Downloading the Excel File Template

To download the Excel template associated with the business data:
1. On the HOPEX Data Architecture desktop, click Main menu > Export

> Excel.
2. In the wizard that appears, check the option "From a template".
3. Click Next.
4. In the Predefined Template File field, select "Concept Template".
5. Click twice on Next and save the created file. It contains the structure

provided by the model.

Content of the Excel Template

The template contains the following sheets that interact with each other:
• Business Dictionary
• Data Category
• Term
• Concept
• Synonym
• Hyperonyme
• Component
• State concept

Term Sheet

The Term sheet allows you to import a set of terms with their name, language and
definition.

It contains the following columns:

417

Data Import and Export
Importing Business Data from an Excel File

Term_Ident

This property allows you to identify the term when it is referenced in other sheets
of the file. If only the Term sheet is used in the Excel file, it is not necessary to
define this property.

Term_Name

This property defines the name of the term.

Business Dictionary

In this column you must indicate the name of the business dictionary in which the
imported Terms, Concepts and other business objects will be created.

It is not possible to specify different business dictionary names in the same Excel
file. It is also important to enter the same name in all object lines of the sheets to
be imported.

Language

This property indicates the abbreviation of the language associated with the term,
for example FR, EN, etc. This abbreviation is used to identify the language of the
object in HOPEX.

When you click in the corresponding column, a list of languages is proposed.

Text Definition

This property contains the definition of terms and is used to create in HOPEX the
concepts that correspond to the terms entered in the sheet.

The Text Definition property is to be completed when only the Term sheet is used
or when the term concerned has only one definition. If the term has several
definitions, they must be declared in the Concept sheet. Thus each of the concepts
refers to the associated term (via its identifier declared in the Term sheet) and
carries its definition in the Text Definition property of the Concept sheet (see
below the example of the Concept sheet).

Example of Term sheet:

Concept Sheet

The Concept sheet allows you to link concepts to the terms defined in the Term
sheet, and to give their definition.

418

Concept_Ident

This property identifies the concept that corresponds to the term.

Term_Ident

This property identifies the term from which the concept is derived and which is
defined in the Term sheet.

Concept_Name

This property is optional; it is used for information purposes. The name of the
concept is that of the associated term.

Text Definition

This property contains the definition of the term from which the concept is derived.

Example:
The sheet below gives all the concepts and definitions associated with the term
"Order" (defined in the terms sheet with the identifier "T0"):

Synonym Sheet

The Synonym sheet allows you to link terms defined in the Term sheet to
definitions entered in the Concept sheet, by designating the terms as synonyms of
the definition (the definition being carried by a concept).

Concept_Ident

This property identifies the concept that corresponds to the term.

Concept_Name

This property is optional; it is used for information purposes. It gives the name of
the concept.

Term_Ident

This property identifies the term associated with the synonym, which is defined in
the Term sheet.

419

Data Import and Export
Importing Business Data from an Excel File

Term_Name

This property is optional; it is used for information purposes. It gives the name of
the term.

Component sheet

The Component sheet is used to define the relationships between concepts.

Concept_Component_Ident

This property identifies the concept components.

Term_Ident

This property is to be defined if the component is to designate the term. By default
the component name is initialized from the referenced concept.

Owner_Concept_Ident

This property is mandatory; it identifies the owner concept.

Referenced_Concept_Ident

This property is mandatory; it identifies the referenced concept.

State Concept sheet

The State Concept sheet allows you to import a set of concept states associated
with terms.

Concept_State_Ident

This property identifies the concept state to be imported.

Term_Ident

This property identifies the associated term, which is defined in the Term sheet.

Concept_State_Name

This property is optional; it is used for information purposes. The name of the
concept state is derived from the corresponding term.

Text Definition

This property contains the definition of the associated term.

StateOf_Ident

This property identifies the concept of the state. If this property is null, the concept
state is created without a concept.

See also: Importing Logical Data from an Excel File.

420

IMPORTING LOGICAL DATA FROM AN EXCEL FILE

HOPEX Data Architecture provides an Excel file template so that you can import
a set of existing logical information into the HOPEX repository. You can also use this
template to export data from the repository.

Downloading the Excel File Template

To download the Excel template associated with the logical data:
1. On the HOPEX Data Architecture desktop, click Main menu > Export

> Excel.
2. In the wizard that appears, check the option "From a template".
3. Click Next.
4. In the Predefined Template File field, select "Data Excel Template".
5. Click twice on Next and save the created file. It contains the structure

provided by the model.

Content of the Excel Template

The template contains the following sheets:

Data Dictionary sheet

The Data Dictionary sheet allows you to import a set of data dictionaries with their
name and owner.

Data Dictionary Short Name

Name of the data dictionary. This property is mandatory.

Data Dictionary ID

The ID is used to identify the business dictionary, in the event that several
dictionaries have the same name. This property is optional.

Data Dictionary Owner Name

Name of the holding data dictionary. This property is optional.

Data Dictionary Owner ID

The ID is used to identify the holding business dictionary, in the event that several
have the same name. This property is optional.

421

Data Import and Export
Importing Logical Data from an Excel File

Comment

Comment of the data dictionary. This property is optional.

Data Type sheet

The Data Type sheet defines the data types to be imported.

Data Type Short Name

Name of the data dictionary. This property is mandatory.

Data Type ID

The ID is used to identify the data type, in the event that several have the same
name. This property is optional.

Data Type Package Name

Name of the package that holds the data type. This property is optional.

In the case of a hierarchy in detention, the syntax of the name is as follows: <Name
of the holding package 1>::<Name of the holding package 2>

Example:
Standard::Types::Data Types Reference

Data Type Package ID

The ID is used to identify the data type package, in the event that several have the
same name.

Length

Length of the data type.

Decimal

“Decimal” value.

Data Type Type

You can associate a standard type with the type of data to be imported, for example
"P-Character".

Comment

Comment of the data type.

Data Type Component sheet

The Data Type Component sheet defines the attributes of the data types defined
in the Data Type sheet.

422

Attribute Short Name

Name of the data type attribute. This property is mandatory.
Example: “Number”.

Owner Data Type Name

Name of the holding data type. This property is mandatory if the ID of the holding
data type is not specified.

Example: "Address".

Owner Data Type ID

ID of the holding data type. This property is mandatory if the ID of the data type is
not specified.

Data Type Name

Name of the attribute data type.
Example: “Number”.

Data Type ID

ID of the attribute data type.

Length

Length of the attribute data type.

Decimal

“Decimal” value.

Comment

Comment of the data type attribute.

Class sheet

The Class sheet enables to define classes to be imported. Enter the name of the
class. Enter the class ID when different classes have the same name.

Class Short Name

Name of the class. This property is mandatory.

Class ID

The ID is used to identify the class, in the event that several have the same name.
This property is optional.

423

Data Import and Export
Importing Logical Data from an Excel File

Data Dictionary Name

Name of the data dictionary that holds the class. This property is optional.

Data Category

You can give the class a classification, e.g. "sensitive data", "reference data", and
so on.

Comment

Comment of the class.

Attribute sheet

The Attribute sheet defines the attributes of the classes defined in the Class sheet.

Leave the first column blank if you want to create new occurrences, or fill it in with
the Absolute Hopex ID if you want to update existing data.

Short Name

Name of attribute.

Class Name

Name of the holding class. The name or the ID of the class is mandatory.

Class ID

ID of the holding class. The name or the ID of the class is mandatory.

Length

Length of the attribute.

Decimal

“Decimal” value.

Comment

Comment of the attribute.

Relationship sheet

Part Name

Name of the part.

Owner Class Name

Name of the holding class. The name or the ID of the class is mandatory.

424

Owner Class ID

ID of the holding class. The name or the ID of the class is mandatory.

Referenced Class Name

Name of the referenced class. The name or the ID of the referenced class is
mandatory.

Referenced Class ID

ID of the referenced class. The name or the ID of the class is mandatory.

Multiplicity

Multiplicity of the part.

Generalization sheet

Generalization Name

Name of the part.

Super Class Name

Name of the general class. The name or the ID of the class is mandatory.

Super Class ID

ID of the general class. The name or the ID of the class is mandatory.

Sub Class Name

Name of the sub- class. The name or the ID of the class is mandatory.

Sub Class ID

ID of the sub- class. The name or the ID of the class is mandatory.

425

Data Import and Export
Importing Data Assessments

IMPORTING DATA ASSESSMENTS

HOPEX provides an Excel template to import data quality criteria values into your
repository.

This Excel template is mapped to the data quality assessment template
implemented in the direct assessment tool of HOPEX Data Architecture.

It can be used for different types of objects that have direct evaluation, e.g.
concepts, classes, tables, etc.

Import Example

Below is an example of importing the different quality values of a concept.

Values defined in the Excel file

Résult in HOPEX Data Architecture

426

Content of the Excel Template

Downloading the Excel Template

The Data Quality Excel Template is available in the MEGA HOPEX Store. To
download it:

1. Go to the HOPEX Store, at the following address:https://
community.mega.com/t5/HOPEX-Store/bd-p/hopex-store.

2. Click Data Quality Excel Template.
3. Download the file.

Importing an Excel File of Data Assessments

To import data assessments from an Excel file:
1. Click the Main Menu then Import > Excel (*.xls; *.xlsx).
2. To the right of the Excel Import File field, click Browse .
3. Select the file containing the assessments.

Columns Description

HOPEX Identifier _IdAbs of an object assessed. When this property is speci-
fied, the Object Type and Name columns are not required.

Object Type This property indicates the type of object assessed:
"Concept", "Concept view", "Class", "Data view", "Table".
This property must be defined when the HOPEX identifier is
not specified.

Object Name This property indicates the long name of the assessed object.
It must be defined when the HOPEX identifier is not specified.

Completeness Corresponds to the evaluation criteria "Completeness".

Uniqueness Corresponds to the evaluation criteria "Unicity".

Timeliness Corresponds to the evaluation criteria "Timeless".

Validity Corresponds to the evaluation criteria "Validity".

Accuracy Corresponds to the evaluation criteria "Accuracy".

Consistency Corresponds to the evaluation criteria "Consistency".

Assessor Name Assessor name. If no assessor is indicated, the name of the
current user is taken by default in HOPEX.

Evaluation Date Object assessment date. For the same object, measurements
can be made at different times.

427

Data Import and Export
Importing Data Assessments

4. Click Import.

428

	HOPEX Data Architecture
	Contents

	Introduction to HOPEX Data Architecture
	The Scope Covered by HOPEX Data Architecture
	Three Modeling Levels
	Data Category
	Design Workflow
	Definition of Responsibilities
	Analysis reports

	Connecting to HOPEX Data Architecture
	HOPEX Data Architecture Profiles
	Business Roles of HOPEX Data Architecture

	The HOPEX Information Architecture desktop
	HOPEX Data Architecture Home Page
	Scope Indicators

	Displaying the working environment of an enterprise
	Creating an enterprise and its working environment

	Business Glossary
	Introduction to the Creation of a Business Ontology
	Vocabulary Management Process
	Analysis and organization of business concepts
	Concept realization

	Consulting the Business Glossary
	Searching for Terms in the Business Glossary
	Prerequisite
	Scope of the Search
	Starting the Search
	Search filters
	Result filters

	Displaying the Details of a Term
	Standard characteristics
	Advanced characteristics

	Generating a Glossary
	Launching a Glossary Report
	Using the Glossary in a Multilingual Context

	Defining Business Information
	Objects Used
	Concept and Term
	Links Between Concepts
	Definition links
	Dependency links

	Concept Properties
	Concept Instances: Individuals
	The Life Cycle of a Concept or Individual
	Concept life cycle
	Individual life cycle

	Periods
	Classifying Concepts and the Concept Type Notion
	The Concept View
	Dictionary Element Realization

	Presentation of Concept Modeling Diagrams
	The Concept Domain Diagram
	Concept Structure Diagram
	Concept Type Structure Diagram
	State Concept State Structure Diagram
	Individual Structure Diagram
	The concept life cycle structure diagram

	Business Dictionary
	The Elements of a Business Dictionary
	Accessing the elements of a business dictionary
	Importing business information

	Work Business Dictionary
	Creating a Business Dictionary
	Initializing a Business Dictionary Using Logical or Physical Data
	Initializing a Business Dictionary Using Logical Data
	Initializing a Business Dictionary Using Physical Data
	Initializing a Business Dictionary from Meta Datasets
	Initializing a Business Dictionary when Creating Logical or Physical Data
	Displaying the Realization Chart

	Concept Domain Map
	Creating a Concept Domain Map
	The Components of a Concept Domain Map
	Example of a Concept Domain Map
	Reports Available on a Concept Domain Map

	Concept Domain
	Creating a Concept Domain
	Creating the Structure Diagram for a Concept Domain
	Building Concept Diagrams
	Creating a concept diagram of a concept domain
	The components of a concept diagram
	Overview of links between objects
	Graphic appearance of diagram objects

	Defining the Components of a Concept Domain
	The components of a concept domain
	Defining the access mode to the components (CRUD)

	Concept
	Accessing the List of Concepts
	Creating Concepts
	Concepts and Terms
	Connecting an existing term to a concept
	Creating terms in multiple languages from a concept
	Creating synonyms in multiple languages

	Renaming Concepts
	Concept Properties
	Overview
	Characteristics
	Components
	Relationships
	Data Usage
	Rules and Regulations
	Data Quality
	Reports
	Workflows

	Concept Components
	Accessing Concept Components
	Creating a Concept Component from a Diagram
	Describing Concept Power Components
	Describing a Computed Concept Component

	Concept Properties
	Creating a Concept Property
	Creating a Concept Property
	Connecting a concept property to a concept
	Connecting two concept properties

	Creating a Computed Concept property

	Concept Inheritances
	Accessing Concept Inheritances
	Creating a Concept Inheritance from a Concept Diagram
	Defining Inheritance of a Concept Component
	Creating a Concept Component Substitution

	Concept structure diagram
	Individuals
	Accessing Concept Individuals
	Creating an Individual
	Individual Properties
	Creating an Individual Classification
	Creating a Dictionary Entity Component
	Individual Structure Diagram

	Concept or Individual States
	Describing State Concepts
	Accessing the state concepts list
	Creating a state concept from a business dictionary
	State concept properties

	Describing Event Concepts
	Accessing the event concept list
	Creating an event concept from a business dictionary
	Event concept properties
	Connecting an event concept to its concept

	State Concept Structure Diagram
	Describing Individual States and Events
	Accessing the individual state and event list
	Creating an Individual state from a concept domain
	Individual state properties
	Creating an Individual event from a concept domain
	Connecting an individual event to an individual

	Concept life cycle structure diagram
	Creating a concept life cycle
	Creating a concept life cycle structure diagram
	Adding a concept life cycle event
	Creating a concept life cycle transition

	Using periods

	Concept Type
	Accessing the Concept Types List
	Creating a New Concept Type
	Concept Type Properties
	Describing Concept Type Components
	Accessing concept type components
	Creating a concept type component from a concept domain

	Describing Concept Type Variations
	Accessing concept type variations
	Creating a concept type variation from a concept domain

	The Concept Type Structure Diagram

	Concept View
	Creating a Concept View
	Defining the Concept View Content
	Displaying objects in the view
	Adding a source object to the concept view
	Adding a component to the concept view

	The View Report

	Calculation Rule on Concepts
	Associating a Calculation Rule with a Business Object
	Calculation Rule on a Concept Property
	Example
	Creating the calculation rule
	Defining rule input and output objects

	Calculation Rule on a Concept

	Connecting the Business Concepts to the Logical and Physical architecture
	Realization of Concept
	Defining the Object that Realizes a Concept
	Defining the Concept Realized by a Class

	Using Realization Matrices
	Realization Levels
	Creating a Realization Matrix

	Data and Database Design
	Modeling Data dictionaries
	Logical Data Modeling Options
	Formalisms
	Notations

	Overview of Logical Data
	Data Dictionary
	Data Domain Map
	Logical Data Domain
	Logical Data View
	Data Model
	Example

	Data Dictionary
	Elements of a Data Dictionary
	Accessing the elements of a data dictionary
	Importing logical data

	Data Domain Map
	Creating a Data Domain Map
	Components of a Data Domain Map

	Data Domains and Logical Data Domains
	Creating a Data Domain
	The Data Domain Diagram
	Example of diagram
	Creating the diagram of a data domain
	Adding an object to the diagram

	Adding a Component to the Data Domain
	Defining the access mode to the components (CRUD)

	Logical Data View
	Creating a Logical Data View
	Creating a data view (from a list of views)
	Creating a data view directly from an object

	Displaying Source Objects in the Data View
	Defining the Data View Components
	Embedded component
	Referenced component
	Using a view in another view

	Class Diagram
	Creating a Package
	Creating a Class Diagram

	Datatypes
	Data Type Packages
	Creating a New Datatype Package
	Creating a datatype

	Referencing Datatype Packages
	Assigning Types to Attributes

	Data Model
	Summary of Concepts
	Data Model
	Data diagram

	Building a Data Model
	Prerequisite
	Creating a Data Model
	Creating a Data Diagram

	Entities
	Creating an entity

	Attributes
	Creating attributes
	Inherited attributes

	Associations
	Creating an Association
	Defining association roles (ends)
	Multiplicities
	Aggregation
	Composition

	Reflexive Associations
	“N-ary” Association
	Constraints
	Normalization Rules
	First Normal Form
	Second Normal Form
	Third Normal Form

	Generalizations
	What is a generalization?
	Multiple sub-entities
	Multiple inheritance
	Creating a generalization
	Discriminator

	Entity Identifier
	Identification by an attribute

	Data Model Mapping
	Functional Objectives
	Running the mapping editor
	Creating a mapping
	Deleting a mapping
	Mapping details
	Example of mapping between data models

	IDEF1X Notation
	About Data Modeling with IDEF1X
	Summary of Concepts
	Creating a Data Model (IDEF1X)
	Prerequisite
	Creating a Data Model
	Data Diagram (IDEF1X)

	Entities (IDEF1X)
	Creating an entity
	Attributes

	Associations (IDEF1X)
	Mandatory identifying relationship
	Mandatory non-identifying relationship
	Mandatory Non-Identifying Relationship
	non-specific relationship
	Associative entity
	Defining Association Roles
	Multiplicities

	Categorization Relationships (Generalizations) - (IDEF1X)
	What is a Categorization (Generalization)?
	Creating a Categorization
	Multiple Categories
	Multiple Category Clusters
	Complete Categorization
	Discriminator

	I.E. Notation
	About Data Modeling with I.E.
	Summary of Concepts
	Creating a Data Model (I.E)
	Prerequisite
	Creating a Data Model
	Data Diagram (I.E.)

	Entities (I.E.)
	Creating an entity
	Attributes

	Associations (I.E)
	Overview
	Associations and their Multiplicities

	Sub-types (I.E)
	What is sub-type?
	Multiple Subtypes
	Advantages of sub-types
	Multiple inheritance
	Creating a sub-type

	Merise Notation
	About Data Modeling
	Summary of Concepts
	Creating a Data Model (Merise)
	Prerequisite
	Creating a Data Model
	Data Diagram (Merise)

	The entities (Merise)
	Creating an entity

	The associations (Merise)
	Examples of associations
	Reflexive relationships
	"n-ary" relationships
	Participations or cardinalities
	Creating an Association (Relationship)

	Attributes (Information) - Merise
	Properties
	Identifier
	Creating Attributes

	Normalization Rules (Merise)
	First Normal Form
	Second Normal Form
	Third Normal Form

	Refining Data Model Specification (Merise)
	Ordering Attributes
	Attribute Description
	Participations or cardinalities

	Sub-typing (Merise)
	What is sub-type?

	Modeling Databases
	Logical Formalism and Synchronization
	Database
	Creating Databases
	Database Properties
	Associating a Package with a Database
	Importing a DBMS Version

	Relational Schema Map and Relational Schemas
	Relational Schema Map
	Creating a relational schema map
	Components of a relational schema map

	Relational Schema
	Creating a Relational Schema
	Relational Schema Diagram

	Relational Diagram
	Creating the Relational Diagram
	Creating objects in the diagram
	Configuring display of relational diagrams

	Database Components
	Database Tables
	Creating a table
	Deleting a table

	Table Columns
	Viewing columns
	Creating a column
	Deleting a column

	Modifying Keys and Indexes
	Creating a Key
	Primary key
	Foreign key

	Creating an Index
	Adding a Column to a Key or Index

	Primary and foreign keys
	Specifying Primary Keys
	Specifying Foreign Keys
	Column Primary Key of Two Tables
	Column Primary Key of Three Tables

	Data Types and Column Datatypes
	Attribute Datatypes
	Determining Column Datatypes from Attribute Types
	Pivot Types
	Connecting a Datatype to a Pivot Type
	Connecting a Datatype to a Pivot Type in UML Notation

	Mappings Between Pivot Types and Datatypes
	Example of correspondence between pivot types and Oracle 8 datatypes

	Creating New Datatypes
	Example for Oracle 10
	Example for SQL Server 7

	Database Modeling Rules

	Synchronizing logical and physical models
	Synchronization Display Options
	"Logical to Physical" Synchronization Rules
	Logical to Physical Synchronization: the Entities (or Classes)
	General rule
	Sub-entity
	Abstract entity
	Realized entity

	Logical to Physical Synchronization: the Associations
	Constraint associations (multiplicities: 0,1 or 1,1)
	Constraint associations (multiplicities: 0,1 and 0,1)
	Deadlocks
	Non-constraint association
	Association class

	Logical to Physical Synchronization: the Parts (UML)
	Example 1: None / *
	Example 2: Aggregation / *
	Example 3: Composition / 0..1

	From the Logical Model to the Physical Model
	Running Synchronization
	Step 1: Selecting the source objects to be synchronized
	Step 2: Synchronization options
	Step 3: Protecting objects
	Step 4: Validating results

	Using Options
	Take account of optimizations
	Take account of deletions
	Possible option combinations

	Protecting Objects
	Frozen mode
	Realized mode

	Synchronization Results: Correspondences
	Mapping characteristics

	Reduced Synchronization (Logical to physical mode)
	Reduced Synchronization Source Objects
	Running from a data model
	Running from a data model entity
	Running on an entity outside context

	Reduced Synchronization Strategies
	Impact of synchronized object on other objects
	Impact of other objects on synchronized object
	All impacts

	Running Reduced Synchronization
	Reduced synchronization options

	Running Synchronization After Modifications
	Synchronization after Modification of the Data Diagram
	Newly created entities, associations, and attributes in the data diagram
	Entities, associations, or attributes deleted from the data diagram
	Modified attribute characteristics
	Modified name of an attribute, entity, or association
	Modified maximum multiplicity of an association
	Modified association links

	Synchronization after Modifications to the Physical Diagram
	Deleted table or column
	Created objects
	Modified characteristics of objects created by synchronization
	Modified order

	From the Physical Model to the Logical Model
	"Physical to Logical" Synchronization Rules
	Running Synchronization
	Step 1: Selecting objects to be synchronized
	Step 2: Synchronization options
	Step 3: Protecting objects
	Step 4: Validating results
	Reduced synchronization

	"Physical to Logical" Synchronization Results
	Owner data model
	Data diagrams
	Mappings

	Configuring Synchronization
	Preparing Synchronization
	Creation Options
	On a database
	On the DBMS

	Configuring Name Generation
	Naming rules
	Modifying a naming rule
	Entering the SQL mask
	Configuring PK column names (implicit identifier)

	Diagram Synchronization
	Case of Diagram Update at Synchronization
	After source diagram modification
	After target diagram modification
	After modification of both diagrams
	No modification detected
	Particular case: an entity mapping with two tables

	Model Mapping
	The Database Editor
	Run the editor on a database
	Creating a Logical/Physical Mapping Tree

	Creating a Mapping
	Deleting a mapping

	Mapping Details
	Mapping Properties
	Mapping Report
	Object status
	Saving display of editor indicators

	Mapping Source
	Mapping Drawing

	Denormalizing logical and physical models
	Denormalization Principles
	Denormalization: consistency of models
	Transferring mappings
	Deleting source objects

	Synchronization and Denormalization
	Combining denormalization and synchronization options

	Denormalization: Use Case

	Logical Denormalization
	Running Logical Denormalization
	Logical denormalization example

	Logical Denormalization Wizards
	Transform association to entity
	Transform entity to association
	Transform generalization to association
	Transform association to generalization
	Vertical partition of an entity
	Horizontal partition of an entity
	Merging of entities
	Merging of ascending entities
	Merging of descending entities
	Copy/paste of attributes

	Physical Denormalization
	Running Physical Denormalization
	Physical denormalization example

	List of Physical Denormalization Wizards
	Vertical partition of a table
	Horizontal partition of a table
	Merging of tables
	Transform foreign key to table
	Transform table to foreign key
	Copy/paste of columns

	Generating SQL scripts
	Running SQL Generation
	Prerequisite
	SQL Generation Objects
	Start the generation wizard

	Incremental Generation
	Incremental Generation Objects
	Running Incremental Generation
	Generation options
	Start the generation wizard

	Configuring SQL generation
	Configuring the DBMS Version
	Supported DBMS versions
	Modifying DBMS version properties

	Configuring Database Generation
	Prefixing Object Names
	Inheritance
	DBMSs concerned

	Supported Syntax
	CREATE TABLE Instruction
	Managing NOT NULL
	PRIMARY KEY clause
	FOREIGN KEY clause
	UNIQUE clause

	CREATE INDEX Instruction (Oracle, Sybase, SQL Server)
	Definition of an index
	Processing and generating SQL commands
	CREATE VIEW Clause

	Defining Database Views
	Creating Database Views
	Add a table or a column to a view

	SQL Definition
	View joints
	User mode
	Fields

	Defining a Data Group

	Defining Triggers for a Database
	Creating Triggers
	Trigger triggering
	References
	SQL Definition

	Repository Integrity

	Using Stored Procedures
	Adding Physical Properties to Database Objects
	Target DBMSs
	Creating Physical Properties
	Objects containing physical parameters
	Creating a new clause
	Connecting a clause
	Naming clauses
	Physical Model Customization Example

	Generating the SQL File

	Reverse engineer tables
	Running Reverse Engineering
	Recognizing Datatypes by ODBC
	Datatype Recognition Problems

	Physical Properties Reverse Engineering
	Default Values
	Eliminating Redundant and Transverse Values
	Specific Cases
	Physical properties of tablespaces
	Clusters Reverse Engineering

	Extracting Database Schema Description from Data Sources
	Required Data Source Configuration
	Downloading HOPEX Data Source Extractor
	Starting Data Extraction
	Extraction Report File
	Extraction Results File

	Customizing ODBC Extraction
	Using the Odwdbex.ini file and customized queries
	Using ODBC standard APIs

	Select Clause Formats
	Primary Keys
	Foreign Keys
	Indexes
	Columns

	Pivot Types and Datatypes Correspondence Tables
	DB2 Version 9 For OS
	MySQL 5.0
	Oracle 11
	PostgreSQL9.3
	SQL ANSI/ISO 9075:1992
	SQL Server 2008
	Teradata Database

	Data Analysis Reports
	Accessing Reports
	Description Reports
	The View Report
	Glossary Report
	Data Domain Map
	Data Domain Dependencies

	Word Cloud Reports
	Amount of Information in Information Areas
	Extent of the Description of the Information
	Use of Information in Data Area

	Data Usage Reports
	Use of information held by a container
	Use of information in an domain
	Use of information of an information map
	Use of information
	Use of information of the domains of a container

	Policies Reports
	Regulatory Framework Report
	Rules Report

	Report DataSets
	Creating a Report DataSets
	Example of a Report Dataset

	Data Validation Workflow
	Validation workflow steps
	Generating a workflow report

	Data Import and Export
	Importing Business Data from an Excel File
	Downloading the Excel File Template
	Content of the Excel Template
	Term Sheet
	Concept Sheet
	Synonym Sheet
	Component sheet
	State Concept sheet

	Importing Logical Data from an Excel File
	Downloading the Excel File Template
	Content of the Excel Template
	Data Dictionary sheet
	Data Type sheet
	Data Type Component sheet
	Class sheet
	Attribute sheet
	Relationship sheet
	Generalization sheet

	Importing Data Assessments
	Import Example
	Content of the Excel Template
	Downloading the Excel Template
	Importing an Excel File of Data Assessments

