
Hopex IT Architecture
User Guide

Hopex Aquila

Information in this document is subject to change and does not represent a commitment on the part of Bi-
zzdesign.
No part of this document is to be reproduced, transmitted, stored in a retrieval system, or translated into any
language in any form by any means, without the prior written permission of Bizzdesign.

© Bizzdesign, Paris, 1996 - 2026
All rights reserved.
Hopex IT Architecture and Hopex are registered trademarks of Bizzdesign.
Windows is a registered trademark of Microsoft Corporation.
The other trademarks mentioned in this document belong to their respective owners.

3

CONTENTS

Contents . 3

Introduction TO HOPEX IT Architecture. 17

Presentation of HOPEX IT Architecture . 19
The Scope Covered by HOPEX IT Architecture .19
Summary of Activities and Deliverables of HOPEX IT Architecture 20
Structure and positioning of the HOPEX IT Architecture solution .20
HOPEX IT Architecture Profiles. .21
Business Roles of HOPEX IT Architecture. .22

The HOPEX IT Architecture Method . 23
Describing Application Architecture. .23

Application system environment description . 23
Describing application systems . 24

Describing Applications .25
Describing flow scenarios . 25
Describing the structure of an application and its services . 26

Defining the Deployment Architecture of an Application .26
Building the Logical Architecture .27

Structure diagram of the logical application system . 29
Logical application system environment diagram . 30

Analyzing the functional coverage of the architecture implemented31
Describing Business Capabilities . 31
Identifying the technological capabilities associated to business capabilities 32
Identifying the applications associated with functionalities . 33

Defining the technical infrastructure .33
Resource Architecture Environment Diagram. 34
Describing Resource Architectures . 34
IT infrastructure assembly structure diagram . 35
Computing Device Assembly Diagram . 37

Designing applications .37
Using UML formalism . 37
Describing batch processing . 38

4 HOPEX IT Architecture

Contents

Describing the list of services and interfaces . 38
Describing application processes . 39

Managing service catalogs . 40
HOPEX IT Architecture Desktop Presentation. .43

Connecting to the solution . 43
HOPEX IT Architecture Desktop Presentation . 43

Presentation of the Solution Architect workspace . 44
Presenting the Solution Architecture Functional Administrator workspace menus 51
Presentation of the Application Designer workspace . 51
Presenting the Application Viewer workspace . 51

Switching between Profiles. 51
Before starting with HOPEX IT Architecture .53

Defining the Work Environment . 53
Accessing the list of libraries with HOPEX IT Architecture . 53
Accessing the list of enterprises with HOPEX IT Architecture . 53

Using Org-units . 54
Creating an org-unit . 54
Internal org-unit/external entity. 54

Using IT architecture diagrams . 54
Creating a structure diagram . 56
Diagram commands with HOPEX IT Architecture . 57
Auto Layout in architecture diagrams . 58
Environment diagram initialization . 59
Creating a Sketching diagram with HOPEX IT Architecture. 60
Creating an ArchiMate@ diagram with HOPEX IT Architecture 61
Using diagram comparison. 61

HOPEX IT Architecture properties pages content. 61
Using duplication with HOPEX IT Architecture . 63

Using duplication with HOPEX IT Architecture in batch mode . 64
Using service catalogs . 65

Implementation of service catalogs. 65
Defining a service catalog . 66
Creating a technology services catalog . 66
Adding a service catalog item . 67
Service catalog reports . 69

Using Workflows . 71
Define a Policy Framework with HOPEX IT Architecture . 71

Defining a Business Policy with HOPEX IT Architecture . 71
Defining an Architecture Principle . 72

Defining Data Categories . 73
Defining Methodological Domains . 73
Importing components with HOPEX IT Architecture . 74

Structure of the import/export Excel templates of HOPEX IT Architecture 74
Importing computing devices or technologies with Excel . 75

Using Tools of Conversion towards HOPEX Aquila . 77
About This Guide .79

Guide Structure . 79
Additional Resources . 79
Conventions used in the guide . 80

Contents

5

Modeling Applications and System Architectures . 83

HOPEX IT Architecture Concepts Overview . 84
Application .84
Application System .84

Describing an Application with HOPEX IT Architecture . 86
Creating an Application with HOPEX IT Architecture .86
The properties of an application with HOPEX IT Architecture .87
Defining Application Functional Scope. .88
Describing structure and services of an application. .89
Describing an Application Environment with HOPEX IT Architecture89

Describing an Application Environment. 89
Accessing the List of Application Environments .90
Creating an application environment .90
Application environment properties .90
Application Environment Diagram presentation . 91

Specifying the Risks associated with an Application .92
Describing System architecture . 93

Describing an Application System. .93
Creating an Application System .93
Application System Properties .94
Creating an application system structure diagram .95
Using a Scenario of Application System Flows .97
Describing an Application System Environment with HOPEX IT Architecture 99

Accessing the list of application system environments .99
Creating an application system environment .99
Application system environment properties. .99
Application system environment diagrams .99

Modeling application architectures . 103

Describing data flows . 104
Defining a data flow and its usages . 104

Flow qualification . 104
Associating a Service Interface Used to a flow. 104

Using a Scenario of Application Flows Diagram . 105
Creating a Scenario of Application Flows diagram . 106
Adding an IT service to the scenario of application flows . 106
Creating an Application Flow . 107
Accessing Application Flow Properties. 108
Accessing a flow properties . 108
Creating an application flow channel . 109
Creating a System Triggering Event . 110
Adding an application data store to the scenario of application system flows. 110
Creating an application data channel . 111

Using communication systems . 111
Accessing the list of communication systems . 111
Communication System Properties. 111

6 HOPEX IT Architecture

Contents

Using Software Communication Chains . 112
Using a flow scenario sequence diagram . 114

 Creating a flow scenario sequence diagram . 115
Instances of applications, IT services or interfaces . 115
Message instance . 116

Describing the structure and services of an application. .117
Application structure diagram. 117

Creating an Application Structure Diagram . 117
The components of an Application Structure Diagram . 118
Adding an IT Service to an application structure diagram . 118

Describing an IT Service with HOPEX IT Architecture. 118
IT Service diagrams . 119
Accessing the list of IT services . 119
IT Service properties. 119
 Using IT Service Structure Diagram . 120

Describing a microservice with HOPEX IT Architecture . 120
Microservice diagrams. 121
Accessing the list of microservices . 121
Microservice properties with HOPEX IT Architecture . 121
Using a Microservice Structure Diagram . 122

Creating an application Use Case Diagram . 122
Describing System Processes .124

Managing System Processes with HOPEX IT Architecture . 124
Accessing system processes . 125
Creating a system process diagram . 125

Specifying the behavior of a task in a System Process . 127
Les comportements . 128
Type de tâche . 128

Modeling Tasks of a System Process . 129
Functional Modeling Example . 129
Display the diagram describing a step in the system process in detail: 129

Modeling Tasks of an IT Service . 131
Managing Data .132

Using Data Stores . 132
Introduction to the data store concept . 132
Usage contexts . 133
Creating a local data store. 133
Creating a external data store . 134
Describing access to a data store . 134

Access Data Stores supports . 135
Accessing to data areas with HOPEX IT Architecture . 135
Accessing the list of file structures with HOPEX IT Architecture 135
Accessing to NoSQL data domains with HOPEX IT Architecture. 136
Accessing the list of relational schemes with HOPEX IT Architecture 136

Modeling technical architectures . 137

Describing an Application Deployment Architecture .138
Accessing the application deployment architectures . 138

Contents

7

Describing an Application Deployment Architecture and its diagram 138
Creating an Application Deployment Architecture. 139

 Using an application deployment architecture diagram. 140
Adding a deployable application package in an application deployment architecture diagram
140
Adding technical ports . 141
Describing package connections . 141

Describing a Deployable Application Package. 142
Describing an Application Deployment Environment . 143

Accessing the list of application deployment environments . 143
Describing an Application Deployment Environment . 143

Creating an Application Deployment Environment . 144
Using an Application Deployment Environment Diagram . 144

Describing an Application System Deployment Architecture . 145
Accessing the list of application system deployment architectures 145
Describing an Application System Deployment Architecture. 145
Properties of an application system deployment architecture . 146

Deployment Architecture Templates . 149
Accessing the list of deployment architecture templates . 149
Describing an Application Deployment Template . 149

Components of an Application Deployment Template . 149
Creating an Application Deployment Template. 150

Presentation of standard Deployment Architecture Templates . 150
“3 Tiers Architecture (RDBMS)” Application deployment template 151
“Mobile Application Architecture” Application deployment template 151
“Standard Web Application Architecture” Application deployment template 152

Using an Application Deployment Template . 152
Describing Software Technologies . 154

Describing a Software Technology . 154
Accessing the list of software technologies . 154
The properties of a software technology . 154

Describing a Technology Stack. 155
Accessing the list of technology stacks . 155
Properties of a software technology stack . 155

 Using Cloud Services . 156
Accessing the list of Cloud Services . 156
Cloud Service properties. 157

Aligning IT and Business . 159

Describing Logical Application Architecture. 160
Describing a Logical Application System with HOPEX IT Architecture 160

Accessing the list of logical application systems with HOPEX IT Architecture 160
Creating a Logical Application System . 160
Logical Application System Properties. 161
Describing a logical application system structure . 161

Describing Logical Applications with HOPEX IT Architecture . 163
Accessing the list of logical applications with HOPEX IT Architecture 163
Creating a logical application. 163

8 HOPEX IT Architecture

Contents

Logical Application Properties. 164
Logical Application System Environment Description . 164

Example of logical application system environment. 165
Accessing the list of logical application system environments. 165
Creating a logical application system environment . 165
Logical application system environment properties . 166
Using the Logical Application System Environment Diagram 166

Describing Business Capabilities with HOPEX IT Architecture167
Business capabilities examples with HOPEX IT Architecture . 167
Using the Business Capability Maps with HOPEX IT Architecture 168

Accessing the list of business capability maps . 168
Creating a business capability map . 168
The properties of a business capability map. 168
Creating a business capability map diagram . 169

Using Business Capabilities with HOPEX IT Architecture . 169
Accessing the list of business capabilities with HOPEX IT Architecture 169
Creating a business capability . 170
Describing a business capability . 170
Defining the functionalities associated with Business Capabilities 171

Using Functionalities with HOPEX IT Architecture. .172
Describing a Functionality Map with HOPEX IT Architecture . 172

Accessing the list of functionality maps with HOPEX IT Architecture 172
Creating a functionality map . 173
Creating a functionality map diagram . 173
The properties of a functionality map . 173

Describing functionalities with HOPEX IT Architecture . 174
Creating a Functionality Diagram with HOPEX IT Architecture 174

Describing a Technology Capability Map with HOPEX IT Architecture 174
Accessing the list of technology capability maps with HOPEX IT Architecture 174
Describing a technology capability . 175
Describing a hardware capability . 175

Using fulfillment mechanisms. .176
Describing Fulfillment of a Business Capability . 176

Creating Fulfillment of a Business capability. 176
Analyzing enterprise capability implementation . 177

Describing the fulfillment of a Functionality . 177
Creating Fulfillment of a Functionality . 177
Identifying the applications associated with functionalities. 178

Access to implementations from a service point . 178

Modeling IT Infrastructures. 179

Describing Resource Architectures .180
Describing Resource Architectures . 180

Creating a Resource Architecture Assembly Diagram: . 180
Using a Resource Architecture Assembly Diagram . 180

Describing a Resource Architecture Environment . 183
Creating a resource architecture environment . 183
The properties of a resource architecture environment . 184

Contents

9

To create a resource architecture environment diagram . 184
Describing a resource architecture environment diagram . 184

Describing a resource configuration . 185
Creating a resource configuration . 186
Creating a resource configuration diagram . 186
Using a Resource Configuration Diagram . 186

Describing an Hardware . 187
Creating an Hardware . 187
Creating a Hardware Assembly Structure Diagram. 187
Using a hardware assembly structure diagram . 188

 Describing IT Infrastructures . 189
Describing an IT infrastructure. 189

Creating an IT infrastructure . 189
Creating an Infrastructure Assembly Structure Diagram . 189
Using an infrastructure assembly structure diagram. 189

Describing an IT network . 190
Creating an IT network. 190
Creating an IT network. 190

Describing a Facility . 191
Creating a facility. 191
To create a resource configuration diagram from a facility . 191

Describing the Computing Devices. 192
Describing a Computing Device . 192

Accessing the list of computing devices . 192
Creating an Computer Device . 192
Creating a Computing Device Assembly Diagram. 193

Describing a Computer Network Device . 194
Accessing the list of computer network devices . 194
Creating a Computer Network Device . 194

Describing communications in an IT Infrastructure . 195
Describing the services communications . 195

Service interactions . 195
Service points . 196
Request points . 196

Describing technical communications . 197
Communication ports . 197
Network channels . 197
Network communication protocols . 197

Connecting a Service Interaction to a Network Channel . 198

Accessing the Software Design . 199

UML modeling of data. 200
UML package . 200
Data models . 201
Data areas . 202

Describing Batch Processing . 204
Defining a Batch Process . 204
Building a Batch Planning Structure Diagram . 204

10 HOPEX IT Architecture

Contents

Creating a batch planning structure diagram . 205
Adding a call for batch processing in the diagram. 205
Defining batch sequencing. 206

Creating a Batch Program Structure Diagram . 206
Creating a batch program structure diagram . 206
Adding a programming call to the diagram . 206

Using system process batch realizations . 207
Defining User Interfaces .208

Creating a user interface . 208
Building a User Interface Diagram . 208
Drawing the Interface Diagram . 209

User interface element . 209
User interface event . 210

Describing information exchanges . 213

Managing Service Interactions .214
Creating a Service interaction . 215
Describing Service and Request Points . 215

Service points . 215
Request points . 216
Creating a Service Point or a Request Point . 217

Describing a service interface. .218
Examples of Service Interface Diagrams (BPMN) . 218

Example of Service Interface Diagram (BPMN). 219
Example of an advanced service interface communication . 220

Accessing the list of service interfaces . 220
 Creating a service interface. 221

Creating a service interface in standard mode from a diagram. 221
Building a Service Interface Diagram (BPMN) . 221

Creating a Service Interface Diagram (BPMN) . 221
Defining a Service operation or a Service interface . 222

Describing a Service Operation. .223
Accessing the list of service operations . 224
Creating a service operation. 224
Describing a Service Operation . 224

Creating a Service Operation Diagram (BPMN). 224
Creating a message flow with content . 225
Managing events, gateways and sequence flows . 225

Using a Service Interface Template .226
Presentation of standard service interface Templates . 226

The service interface template “One way communication” . 226
The service interface template “Request-Response” . 227
The service interface template “Publish-Subscribe”. 228

Accessing the list of service interface templates . 228
Creating a service interface from a service interface template . 228
Creating a Service Interface Template . 229
Creating a Service Operation Template . 230

Contents

11

HOPEX IT Architecture Reports . 231

Application Architecture Reports . 232
Technical Architecture Matrix. 232
Application Exchange Density . 233
Exchange Consistency Structure Scenario . 233
Content Consistency (Structure) . 234
Content Consistency (Scenario) . 235
External Contents Matrix (Structure) . 236
External Contents Matrix (Scenario) . 237
External Service Interface Matrix . 238
Graph of Flows between Agents . 239
Graph Flows of an Agent . 240
Flow Process Rationalization . 242
Graph of Service Interactions between Agents. 242
Graph of Service Interactions of an Agent . 243

Reports on the Architecture Functional Coverage . 245
Building Block Breakdown report . 245
Overlapping Applications . 248
Business Capability Breakdown Report . 249

Infrastructures Reports . 252
Infrastructure Description Report . 252
Application Technology Requirements x IT Infrastructure Provided Technologies Matrix . . . 253
Network Channel x Service Interactions . 254
Network Channel x Package Connection Matrix . 254

Deployment Architecture Reports . 256
Deployment Architecture Report . 256
Deployment architecture matrix. 256
Package Connection x Service Interactions Matrix . 257
Package Connection x Resource Flow Matrix . 258

About UML implementation . 263

Overview. 264
Analyzing use cases . 264
Identifying objects . 264
Describing behaviors . 264
Representing interactions between objects . 264
Dividing classes between packages . 265
Defining interfaces . 265
Specifying deployment . 265

Organization of UML Diagrams. 266
General organization . 266
Detailed specification . 266
Technical specification and deployment . 267
UML diagram entry points . 267

12 HOPEX IT Architecture

Contents

Use Case Diagram . 269

Creating a Use Case Diagram .270
Creating a Package . 270
Creating the Use Case Diagram of a Package . 270

Use Case Diagram Elements .271
Actors . 271
Use Cases . 271

Zooming in on a use case . 272
Packages . 272
Participations . 273

Examples of participation . 274
Creating participations . 274
Multiplicities of a participation . 275

Use Case Associations: Extensions and Uses . 275
Inclusion relationship . 275
Extend Relation . 276

Generalizations. 278
Interfaces . 279

Creating an Interface . 279
Connecting an interface to a use case . 279

The Class Diagram . 281

Presentation of the Class Diagram .282
The Class Diagram: summary . 282

Creating a Class Diagram . 282
Classes .283

Definition: Class . 283
Creating a Class . 283

Finding an existing class . 284
Class Properties . 284

Class characteristics page. 284
Other properties pages . 285

Class Stereotype . 286
Stereotype display option . 287

Attributes .288
Definition: Attribute . 288
Specifying Class Attributes . 288

Creating a standard attribute . 288
Creating a computed attribute . 289
Inherited attributes. 289

Attribute Properties . 290
Attribute type . 290

Operations. .292
Definition of an Operation . 292
Specifying Class Operations . 292

Inherited operations . 292

Contents

13

Operation Properties . 292
Operation or Signal Signatures . 293

Signature syntax . 294
Operation Parameters . 294
Operation Methods (opaque behavior) . 295
Operation Conditions . 295

Operation Exceptions . 296
Displaying Class Attributes and Operations . 296

Signals . 297
Defining a Signal . 297
Specifying Class Signals . 297

Creating a sent or received signal . 297
Signal Properties . 297
Signal parameters . 298

Associations . 299
Creating an Association . 300
Roles (or Association Ends) . 300
Multiplicity of a Role . 301

Specifying role multiplicity . 302
Association End Navigability . 302

Specifying navigability for a role . 303
Association End Aggregation . 303

Specifying role aggregation. 303
Association End Composition . 304
Role Changeability . 304
Role Order . 305
Role Static Property . 305
Role Qualifier . 305
Overloading a Role . 306
Association Classes . 306
Displaying an N-ary Association . 307
Reflexive Associations . 307

Creating a reflexive association . 308
The Parts . 309

Creating a Part between two Classes . 309
Defining the Identifier of a Class via a Part . 309
Multiplicities of the Associated Classes . 310

Multiplicity of the class referenced by the part. 310
Multiplicity of the owner class of the part . 311

Aggregation and Composition Relationships . 311
Associated multiplicities . 312

Generalizations. 313
What is a Generalization? . 313

Example . 314
Multiple Subclasses - Generalization . 314
Advantages of Subclasses - Generalization . 315
Multiple Inheritance - Generalization . 316
Creating a generalization . 316
Discriminator - Generalization . 316

Specifying Interfaces . 318
Creating an Interface . 318

Connecting an interface to a class . 318

14 HOPEX IT Architecture

Contents

Specifying Dependencies .319
Specifying Parameterized Classes .320
Constraints .321
Object Diagram .322

Objects . 322
Creating an object (instance) . 322
Instance properties. 323
Value of an attribute . 323

Links . 324
Creating a link . 324
Link properties . 324
Role properties. 324

Structure and Deployment Diagrams. 327

The Package Diagram .328
Creating a Package Diagram . 328
Defining Packages . 329
Defining Classes . 329
Specifying Dependencies in a Package Diagram . 329

The Component Diagram. .331
Creating a Component Diagram . 331
Components . 332
Interfaces . 332

Creating component interfaces. 332
Linking interfaces to other objects . 332
Connecting interfaces . 333

Ports . 333
Connectors . 333

Delegate connector. 334
Assembly connector . 334

Composite Structure Diagram. .335
Creating a Composite Structure Diagram . 335
Parts . 336
Collaborations . 336

Collaboration use . 337
Collaboration use example. 337

Dependency links . 337

State Machine Diagram . 339

Presentation of the State Machine Diagram .340
Creating a State Machine Diagram . 340

States .342
Creating a State . 342

State types . 342

Contents

15

Pseudo-states . 343
Detailing Behavior of a State . 344
State Properties . 344

State Transitions . 346
Creating a Transition . 346
Transition Types . 346

External transition . 346
Internal transition . 346
Local transition . 347

Transition Effects . 347
Transition Effect Display . 347

Transition Triggering Event . 347

Activity Diagram. 349

Activity Diagram . 350
Creating an Activity Diagram . 350

Partitions . 351
Creating a Partition . 351
Partition Properties . 351

Nodes . 353
Object nodes . 353

Creating an Action . 353
Modifying the Action Type. 353

Parameter nodes . 353
Control nodes . 353

Control node types. 354
Object nodes: Input, Output and Exchange Pins . 355

Input pin . 355
Output pin . 355
Exchange pin . 355

Flows . 355
Control flow . 355
Object flows . 355

Interaction Diagrams . 357

Interactions . 358
Creating an Interaction . 358
Creating an Interaction Diagram . 358

Sequence Diagram . 359
Creating a Sequence Diagram . 360
Lifelines . 360

Creating a lifeline. 360
Lifeline properties . 360

Messages . 360

16 HOPEX IT Architecture

Contents

Examples of exchanged messages . 361
Creating a message . 361
Message types . 362

Execution Specification . 362
Creating an execution specification . 362

Occurrence specification . 362
Calculating sequence numbers . 363

Combined Fragment . 364
Creating a combined fragment . 365
Interaction operator type . 366
Interaction operands. 368

Interaction Use . 368
Gate . 369
Continuation . 370

Communication Diagram. .371
Example . 371
Diagram objects . 372

Interaction Overview Diagram .373

The deployment diagram . 375

Presentation of the Deployment Diagram. .376
Creating a Deployment Diagram . 376
Deployment Diagram Objects . 377

Node. 377
Communication path. 377
Component . 377
Artifact . 377
Manifestation . 377
Deployment specification. 378
Configuration . 378

Attribute type. 379

Primitive Types .380
Prerequisite: Importing the Primitive Types . 380
Defining a Primitive Type . 380

Packages and Primitive Types. .382
Packages . 382

Defining New Primitive Types .385
Compound Primitive Type . 386

17

Introduction

INTRODUCTION

Hopex IT Architecture allows IT managers to formalize business needs in order to define the
architecture of the information system that meets them, from the logical architecture to the
technical infrastructure.

Hopex IT Architecture offers facilities for different analysis perspectives:

 Information System management and upgrading: a description of service
and city planning architectures are two approaches that simplify IS upgrading by
providing a frame of reference for planning your systems and analyzing your
upgrading scenarios.

 Application mapping: a description of application architecture that offers a
detailed view of information exchanges between applications, services, databases
and organizational units.

 Application deployment: a description of the information system technical
infrastructure to monitor application deployment on the different enterprise sites.
The technical infrastructure takes account of the main hardware of your
organization such as networks, servers, workstations, printers, firewalls and
concentrators.

 The representation of resource architectures: a description of complex
systems involving different types of IT resources.

In addition to Hopex IT Architecture, Hopex IT Business Management allows organizations to
manage their information system transformation by offering possibilities to define steps and to
manage assessments for each of the steps.

Hopex IT Architecture also offers a tool used to import configuration elements from CMDB
(Configuration Management DataBase) and align them with modeling objects described in Hopex
IT Architecture. For more information, see the "CMDB Import" documentation.

The purpose of this guide is therefore to present how to make best use of these functionalities for
the successful evolution of your information system.

The following points are covered in Hopex IT Architecture:

 Modeling Applications and System Architectures.
 Modeling application architectures.
 Modeling technical architectures.
 Aligning IT and Business.
 Modeling IT Infrastructures.
 Accessing the Software Design.
 Describing information exchanges.
 About UML implementation.

18

PRESENTATION OF HOPEX IT ARCHITECTURE

Combined with the products of the Hopex suite, Hopex IT Architecture supports
a methodology and the tools used to describe, analyze and plan your information
system transformation.

The Scope Covered by Hopex IT Architecture
The modules offered in standard mode are used to follow a top-down approach,
beginning with a review of the business capabilities of the enterprise and its
strategy, and ending with a precise definition of the components of the existing or
future information system.

Each module addresses specific user profiles. Standard reports are offered to
simplify analysis of the subjects handled.

The method described in this guide is represented by the modules described below.
 The order of use of these modules is given by way of information.

Describing and analyzing flows: this step is based on scenario diagrams that
represent the flows between the components of your information system.

 For more details, see Describing flow scenarios.

Analyzing the functional coverage of the technical architecture: during this
step the reports proposed by Hopex IT Architecture are used to analyze the links
between the components of the described application architecture and the expected
functionalities.

 For more details on modeling applications and services, see
Describing Application Architecture and Describing Applications.

Describing the upgrade strategy of the information system and
architecture: this step consists in describing what the information system is able
to deliver, through business capabilities, and how it plans to deliver them using the
architectures.

 For more details, see Analyzing the functional coverage of the
architecture implemented and Building the Logical Architecture.

Describing the application environment: this step consists in describing the
deployment architecture and all the elements that compose it.

 For more details, see Defining the Deployment Architecture of an
Application.

Describing the technical infrastructure: this module allows to manage
deployment constraints and to associate adapted solutions to them.

 For more details, see Defining the technical infrastructure.

Using UML formalism: furthermore, you can use the UML (Unified Modeling
Language) modeling lnaguage to model your IS.

 For more details, see About UML implementation.

19

Introduction
Presentation of Hopex IT Architecture

Summary of Activities and Deliverables of Hopex IT Architecture
Activities are associated with each of the modules of the method we recommend for
managing the evolution of your information system.

The Hopex IT Architecture solution offers the tools to carry out these activities,
which are materialized by deliverables.

Presentation of the Hopex IT Architecture deliverables

Structure and positioning of the Hopex IT Architecture solution
Hopex IT Architecture can be used with other products in the Hopex suite.

Hopex IT Business Management

Hopex IT Business Management Solution provides Hopex IT Architecture with
method and tools for business transformation planning. Both solutions share the
mapping functionality for business capabilities.

Hopex Business Process Analysis

In addition to Hopex IT Business Management, Hopex Business Process
Analysissolution provides the possibility to describe the organizations and
processes that implement the business capabilities identified in Hopex IT
Architecture;

Activities Main deliverables

Defining the logical architecture Logical architecture structure diagrams, see Describing
Logical Application Architecture.

Building the application architecture Application architecture structure diagrams and flow sce-
nario diagrams, see Describing an Application with Hopex
IT Architecture.

Analyzing the functional coverage of the
application architecture

Assessing the functional coverage by software resources,
see Describing the fulfillment of a Functionality.
Assessing the coverage of technical functionalities by
technical resources, see Describing the fulfillment of a
Functionality.

Defining the deployment architecture Description of the technical requirements for the applica-
tion deployment, see Modeling technical architectures.

Defining the infrastructure Description of the technical requirements for the applica-
tion deployment, see Modeling IT Infrastructures.

Managing service catalogs Description of service catalogs and recommended solu-
tions, see Using service catalogs.

20

Hopex IT Architecture Profiles
In Hopex IT Architecture,there are profiles associated to specific activities.

Presentation of the solution interface depends on the profile selected by the user on
connection to the application; the tree of menus and functions varies from one
business role to another.

 For more details on the Desktops connected to each of the profiles,
see Hopex IT Architecture Desktop Presentation.

Profiles Tasks

Solution Architecture Functional
Administrator

In addition to the Solution Architect’s functional rights, the
Solution Architecture Functional Administrator has rights over
all objects, methods, projects and workflows.
He/she prepares the work environment and creates the ele-
ments required to manage the modeled elements.
He/she manages the environment objects (application environ-
ments, infrastructures, reports, etc.),
For more details, see Presenting the Solution Architecture
Functional Administrator workspace menus.

Solution Architect The Solution Architect has rights over all objects, methods,
projects and assessments.
The IT architect is responsible for building architecture models
for the applications, IT technologies and IT infrastructures
assigned to him/her. He/she can manage transformation proj-
ects.
The Solution Architect is in charge of detailing the system spec-
ifications and designing UML diagrams.
For more details, see Presentation of the Solution Architect
workspace.

Application contributor The Application contributor is in charge of validating the design
of the applications assigned to them.
For more details, see Presentation of the Application Designer
workspace.

Application Viewer The Application Viewer has read-only rights over the repository
objects.
For more details, see Presenting the Application Viewer work-
space.

21

Introduction
Presentation of Hopex IT Architecture

Business Roles of Hopex IT Architecture
In Hopex IT Architecture, there are, by default, business roles that can be
assigned to certain users. These roles are:

• Software Designer: used to assign a user to software elements. The
software designer is responsible for designing the software assigned to
him/her.

• Data Designer , who is responsible for managing data.
• Local Application Owner used to assign a user to applications. The

Local Application Owner is responsible for the following tasks:
• Identifying risks
• Responding to Questionnaires
• Defining and implementing action plans,
• Validating the modifications made by the architect in the context of

object review workflows.
• The Business Owner specifies the characteristics for the software

installations and applications they are in charge of at the business level.
• The IT Owner specifies the characteristics of the IT resources they are

in charge of.

22

THE HOPEX IT ARCHITECTURE METHOD

The method described in this paragraph is given by way of information. Depending
on your work context, you can sequence differently the described steps.

Describing Application Architecture
Hopex IT Architecture offers the means to represent different levels of application
architectures: from the description of the application environment to the technical
components to be implemented.

These representations make it possible to define the software and hardware
components and to identify in a consistent way the data exchanged between them.

 For more information about the use of an application architecture,
see Modeling Applications and System Architectures.

The description of application systems can be done according to a top-down
approach, starting by describing the company's main application systems, or
according to a unitary approach by describing only certain application systems.

 An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

Application system environment description
If you use a unitary approach, you must describe the application system
environment to provide a context to the used application system and its service
interactions with external components.

 An application system environment allows presenting the other
application systems, applications or microservices with which this
application system can interact.
 For more details on application system environments, see
Describing an Application System Environment with Hopex IT
Architecture.

In addition to a precise description of the application architecture to be
implemented, this step covers the following points:

• Identify precisely the exchanges between the different software and
hardware components, and formalize them through service interfaces.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).
 For further details about service interfaces, see Describing
information exchanges.

• Verify that the application architecture covers the functional
requirements identified in the business capability maps.

 For more details on the functional analysis, see Analyzing the
functional coverage of the architecture implemented.

23

Introduction
The Hopex IT Architecture Method

Describing application systems
In a top-down approach, the main application system structure diagram is the entry
point for the description of the existing or planned application system.

 For more details on application systems, see Describing an
Application System.

The following diagram describes the application system
corresponding to purchasing requests processing.

The following diagram describes the application system corresponding to purchasing requests processing.

Purchasing requests can be formulated by external customers
via an Internet purchasing application or indirectly via a
call center. Internal users have to call a “Sales assistant”
who uses the “Office Supplies Purchasing Management”
application.

The application subsystems can then be described hierarchically by showing at each
level the points of exchange with the outside world.

The data stores are used to represent the data that will be stored in databases.
 A data store provides a mechanism to update or consult data that
will persist beyond the scope of the current process. It enables storage

24

of input message flows, and their retransmission via one or several
output message flows.
 For more information on data stores, see Managing Data.

Describing Applications
With Hopex IT Architecture an application is described by:

• The information flows it processes and transports, see Describing flow
scenarios,

• The elements that provide the services associated with the
functionalities it covers, see Describing the structure of an application
and its services.

These complementary approaches help to draw up an exhaustive list of the
components of an application (services and APIs) and the components of its
environment interacting with it.

Describing flow scenarios
Hopex IT Architecture offers flow scenario facilities to describe precisely data
exchanged.

At each level of the application architecture, it is possible to define flow scenarios
between system components in specific contexts.

The objective of flow scenarios is to verify that content is correctly conveyed
between components.

The scenario of application flow diagram below describes
the "Purchase request management" application.

Example of a Scenario of Application Flows for "Managing Purchase Orders".

 For more details on flow scenarios, see Creating a flow scenario
sequence diagram.

25

Introduction
The Hopex IT Architecture Method

Describing the structure of an application and its services
Structure diagrams use service interactions to describe the data exchanged
between the components.

“Purchasing Request Management" application structure diagram

The “Purchase Request Management” application uses two IT
Services: “Display purchase request list” and “Assign and
handle purchase request”. The IT Service “Assign and handle
DA” uses the Excel microservice.

Defining the Deployment Architecture of an Application
An application deployment architecture allows to represent Deployable Application
Packages and Deployable Data Packages as well as the Technical Communication
Lines necessary for their exchanges.

 A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/… or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

 A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/PaaS cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).

 A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

26

Several viewpoints are proposed in Hopex IT Architecture:
• The Application Deployment Environment used to represent of the

deployments of partner applications as well as microservices identified
around the subject application, see Describing an Application
Deployment Environment.

• The Application System Deployment Architecture used to represent the
set of Application Deployment Architectures that must be coordinated to
cover required dependencies between them, see Describing an
Application System Deployment Architecture.

• The Application Deployment Architecture used to represent the
deployment packages list and the module lines, see Describing an
Application Deployment Architecture.

Application Deployment Architecture Diagram

To facilitate the creation of your application deployment architecture, Hopex IT
Architecture provides standard deployment architecture diagrams.

 For more details, see Deployment Architecture Templates.

Building the Logical Architecture
Hopex IT Architecture provides ways to define logical application architectures
that represent ideal architectures. These representations make it possible to design
logical structures for application architectures, to rationalize exchanges between
these structures and to identify the data used. Logical application architectures can
then be compared with the implemented architectures to detect gaps between the
real and the ideal.

 For more details on use of a logical application system, see
Describing Logical Application Architecture.

27

Introduction
The Hopex IT Architecture Method

Logical application systems can be described using a top-down approach, starting
with a description of the company's main application systems, or a unitary
approach, describing only some logical application systems.

 A logical application system is an assembly of other application
architectures, logical applications and end users, interacting with
application components to implement one or several functions.

If you use a unitary approach, you must describe the Application Logical System
Environement to provide a context to the use of the logical system and its service
interactions with exeternal, logical components.

 A logical application system environment presents a logical
application system use context. It describes the service interactions
between the logical application system and its external partners, which
allows it to fulfill its mission and ensure the expected functionalities.

At this level of the method, this step, which is not mandatory, covers the following
points:

• Identify the exchanges between the logical components and formalize
them through service interfaces.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).
 For further details about service interfaces, see Describing
information exchanges.

• Verify that the logical architecture covers the functional requirements
identified in the business capability maps.

28

Structure diagram of the logical application system
The logical application system components are described in a diagram featuring:

• the services offered or required;
• the processes handled, the components and their interactions service;
• the end users interacting with the application components.

The following diagram describes the structure of the
logical application system "Purchase request processing"
offered to customers.

“ Purchase Request Processing” Logical application system structure diagram

“Internet Purchase Requests" are offered to customers
either directly or through a "Call Center".

Requests made by customers are processed by a "Internet
Purchase Requests" logical application system.

The logical application system structure diagram, for
managing “Purchasing Requests”, presents different logical
applications, access to a logical database as well as

29

Introduction
The Hopex IT Architecture Method

service and request points for “Internal request service"
or "Order".

“ Purchasing request Management” Logical application system structure diagram

 For more details on use of a logical application system, see
Describing a Logical Application System with Hopex IT Architecture.

Logical application system environment diagram
 A logical application system environment presents a logical
application system use context. It describes the service interactions
between the logical application system and its external partners, which
allows it to fulfill its mission and ensure the expected functionalities.

30

The components of a logical application system environment are presented in an
application system environment diagram that describes the internal logical
application systems as well as the partner logical application systems.
s

Logical application system environment diagram

Purchasing requests are formulated by users in conditions
specified by Sales service and also the Finance service
which are external to the described environment.

 For more details on use of a logical application environment
system, see Logical Application System Environment Description.

Analyzing the functional coverage of the architecture implemented
The goal of this step, on a strategic level, is to check the suitability between the
business capabilities of the enterprise, the functionalities required and the
applications that deliver them.

Describing Business Capabilities
 For more details on managing business capabilities with Hopex IT
Architecture, see Describing Business Capabilities with Hopex IT
Architecture.

A business capability defines an expected skill.
 A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.

31

Introduction
The Hopex IT Architecture Method

A business capability map describes what the enterprise is capable of producing for
its internal needs or for meeting the needs of its clients. It is thus based on the main
business capabilities of its activity at a given moment.

 A business capability map is a set of business capabilities with their
dependencies which define a framework for an enterprise stage.

For example, the standard ability to manage "Operational
Activities" is based on the business capabilities to
process "Supply", "Sales" and "Complaints", "Order
Management" and "Customer Management".

Example of a business capability map

 For more details on managing a business capability map, see
Describing Business Capabilities with Hopex IT Architecture.

Identifying the technological capabilities associated to business capabilities
The aim here is to connect technological capabilities – corresponding to what is
expected to achieve a goal – to the actual means of production, i.e. Applications or
Application Systems on a conceptual level.

 An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

By constructing the functionality map on the one hand and the application system
environment on the other hand, you can check that the functionalities are
implemented by application components.

 For more details on the logical applications associated with business
capabilities, see Describing the fulfillment of a Functionality.

Hopex IT Architecture provides a report that presents the result of the
implementation of business capabilities by applications or application systems
physical or logical.

 For more details on implementation of business capabilities, see
Business Capability Breakdown Report.

32

A technological capability defines the expected capacity of an equipment.
 A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.

A functionality map describes all the functionalities the enterprise is able to cover
for its internal needs or for meeting the needs of its clients.

 A technology capability map is a set of technology capabilities and
their dependencies that, together, defines the scope of a hardware or
software architecture.

Example of a functionality map

 For more details on managing a functionality map, see Describing a
Functionality Map with Hopex IT Architecture.

The description of business capabilities and functionalities is particularly interesting
if business capabilities are associated with the functionalities that fulfill them.

 For more details on this analysis, see Describing Fulfillment of a
Business Capability.

Identifying the applications associated with functionalities
Applications cover functionalities associated with business capabilities. In Hopex IT
Architecture, a report allows to check the functional coverage of your applications.

 For more details on this functional coverage, see Describing
Fulfillment of a Business Capability.

Defining the technical infrastructure
Describing the technical infrastructure helps to design deployable application and
data packages to prepare their deployment.

Technical infrastructure elements are identified and characterized by technologies
and hosted IT services.

33

Introduction
The Hopex IT Architecture Method

With Hopex IT Architecture the infrastructure can be described in a bottom-up
approach, from the most detailed to the most conceptual, or top-down, from the
most conceptual to the most detailed. Presentation of these functionalities is based
on the example of a call center.

Resource Architecture Environment Diagram
 A business architecture environment represents the relationships of
a business functional area with its partners.

The following diagram describes the environment of a support center.

The call center responds to customer requests. It is based
on an external service to fulfill any purchasing requests.

 For more details, see Describing IT Infrastructures.

Describing Resource Architectures
The Resource Architecture Assembly Diagram describes the hardware and
organizational resources required for handling service requests.

 For more details, see Describing Resource Architectures.

34

In the call center example, we consider only the operator and the IT infrastructure
that represents its equipment.

A team of operators handles all requests, whatever their
nature, by telephone or by e-mail.

The operator identifies the caller, records the request,
applies a first filter (in case of error) and if necessary
records a purchasing request via request points.

This diagram contains a Request Point from which the operators make purchasing
requests.

 A request point is a point of exchange by which an agent requests a
service from potential suppliers.

IT infrastructure assembly structure diagram
This diagram presents an IT infrastructure. It contains Infrastructure IT component
such as: computers or IT equipments.

 For more details, see Describing IT Infrastructures.

35

Introduction
The Hopex IT Architecture Method

The basic hardware architecture of a call center includes
two link points to the outside: a telephone link, a link to
a private network that enables the HTTP link for the
purchasing request.

Note that the used communication protocols are mentioned on the network
channels.

 A communication protocol is a set of standardized rules for
transmission of information (voice, data, images) on a communication
channel. The different layers of protocols can handle the detection and
processing of errors, authentication of correspondents, management of
routing.

36

Computing Device Assembly Diagram
The computing device assembly diagram presented below describes the software
technologies, the deployable application packages and the IT devices installed on a
standard PC.

 For more details, see Describing the Computing Devices.

Computing device assembly diagram of a standard PC.

A standard PC is equipped with office system applications
and electronic mail applications.

A standard PC also has an HTTP connection to access Web
applications to manage purchase requests.

Designing applications
Hopex IT Architecture offers the tools to assist architects in specifying updates to
their IT system.

 To access this UML feature, you must sign-in as an IT Application
Designer or a Solution Architecture Functional Administrator.

Using UML formalism
Hopex IT Architecture provides the tools required to model logical data via class
diagrams and data models.

 For more details on UML main concepts, see UML modeling of data.

37

Introduction
The Hopex IT Architecture Method

Describing batch processing
The sequencing of automated processes can be described in a batch planning
structure diagram.

 For more details on describing batch processing, see Describing
Batch Processing.

Describing the list of services and interfaces
It is possible to describe interfaces connecting services or operations with the
exterior. This description is carried out in a user interface diagram.

38

An interface diagram is used to describe the planned interfaces.

 For more details on describing interfaces, see Defining User
Interfaces.

Describing application processes
Hopex IT Architecture offers the possibility to check that the processes performed
by the application system are correctly covered by describing Application processes.

 A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which
the tasks follow each other, the information flows exchanged with the
participants.
 For more details on system processes, see Describing System
Processes.

39

Introduction
The Hopex IT Architecture Method

Application process diagram

Managing service catalogs

 A service catalog contains a list of key service offers for which
solutions are recommended.

A service catalog describes the list of services provided to an Enterprise. These
services are defined by their functional coverage (the capacity they provide), the
solutions that can be implemented to deliver the service (the available agents) and
the status of each agent within the catalog (this solution is norm, accepted,
tolerated, prohibited, etc.).

Defining a service catalog requires defining the functional scope covered via a
reference capability map.

40

Capabilities (or functionalities) associated to services are implemented by one or
several technical elements that are considered as solutions. The solution status
helps the user to select the better solution for his context.

Presentation of a Business service catalog

This presentation of a business service catalog enables the
identification of the business capabilities associated with
the services, the technical solutions that implement the
capabilities, and the status of these solutions in the
context of the catalog's use

Hopex IT Architecture offers the following service catalogs:
• business service catalogs,

 A business service catalog provides a centralized information
source for the business services offered by the service provider
organization. It contains a customer-oriented view of the services
associated to business capabilities, how they are supposed to be used,
the processes that they support as well as the expected service quality
level. The business service catalog presents the list of functionalities
mentioned as well as implementation recommendations.

• Cloud services catalogs,

 An information service catalog provides a centralized information
source for the information services offered by the service provider
organization. It contains a customer-oriented view of the information
services used, how they are supposed to be used, the processes that
they support as well as the expected service quality level. The
information service catalog presents the list of functionalities mentioned
as well as implementation recommendations.

• Technology service catalogs,

 A technology service catalog provides a centralized information
source for the technology services offered by the service provider
organization. It contains a customer-facing view of the technology
services in use, how they are intended to be used, the process they
enable, and the levels and quality of service the customer can expect
from each service. The technology service catalog provides the list of

41

Introduction
The Hopex IT Architecture Method

reference technology capabilities and their recommended
implementation.

• information service catalogs,

 An information service catalog provides a centralized information
source for the information services offered by the service provider
organization. It contains a customer-oriented view of the information
services used, how they are supposed to be used, the processes that
they support as well as the expected service quality level. The
information service catalog presents the list of functionalities mentioned
as well as implementation recommendations.

• hardware service catalogs.

 A hardware service catalog provides a centralized information
source for the hardware services offered by the service provider
organization. It contains a customer-oriented view of the hardware
used, how they are supposed to be used, the processes that they
support as well as the expected service quality level. The hardware
service catalog presents the list of hardware functionalities mentioned
as well as implementation recommendations.
 For more details on the use of service catalogs, see Using service
catalogs.

42

HOPEX IT ARCHITECTURE DESKTOP PRESENTATION

 Hopex IT Architecture is mainly intended for web users.
Desktops described in this guide are accessible only to Web desktop
users.

Connecting to the solution

To connect to Hopex IT Architecture, see Hopex Common Features, "Hopex
Desktop".

Hopex IT Architecture Desktop Presentation
The menus and commands available in Hopex IT Architecture depend on the
product licenses that you have and on the profile with which you are connected.

 For more details on the use of the HOPEX interface, see the chapter
“Interface Presentation” of the Hopex Common Features guide.

All users signed-in to the Hopex IT Architecture Solution dispose of the same
desktop containing several navigation menus.

43

Introduction
Hopex IT Architecture Desktop Presentation

Presentation of the Solution Architect workspace
Users connected to the Solution Architect profile can use several navigation
menus giving access to all the features provided in the Hopex IT Architecture
Solution.

The Applications menu

The Applications menu gives access to all the repository applications.
 For more information about the description of applications, see
Describing an Application with Hopex IT Architecture.

The Application Systems menu

The Application Systems menu gives access to all the repository application
systems.

 For more information about the description of applications, see
Describing System architecture.

44

The Capabilities menu

The Capabilities menu gives access to the following subjects.
• Business capability, to describe business capabilities and business

capability maps.
 For more details on logical architectures, see Describing Business
Capabilities with Hopex IT Architecture.

• Functionalities, to describe the functionality maps of the information
system.

 For more details on functionalities, see Using Functionalities with
Hopex IT Architecture.

The Infrastructure menu

The Infrastructure menu gives access to subjects related to infrastructures.
 For more details on infrastructures, see Modeling IT
Infrastructures.

• IT infrastructure, to describe the IT infrastructure elements.
 For more details on infrastructures elements, see Describing IT
Infrastructures.

• Resource architecture, to describe the elements constituting a
resource architecture.

 For more details on resource architectures, see Describing
Resource Architectures.

• Resource configuration, to describe the server and network technical
elements.

 For more details on resource configuration, see Describing a
resource configuration.

The Inventories menu

The Inventories menu gives access to the following subjects.
• Software theme, giving access to the following elements:

• Application services,

 An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.
 For more details on applications services, see Describing an IT
Service with Hopex IT Architecture.

• Microservices,

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.
 For more details on microservices, see Describing a microservice
with Hopex IT Architecture.

• System processes,

 A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which

45

Introduction
Hopex IT Architecture Desktop Presentation

the tasks follow each other, the information flows exchanged with the
participants.
 For more details on system processes, see Describing System
Processes.

• Business Service Catalogs to describe the services provided by the
businesses to the users.

 For more details on service catalogs, see Using service catalogs.

• Communication systems

 A communication system helps to identify and describe the main
integration processes using several Software Communication Chains as
well as communication services.
 For more details on communication systems, see Using
communication systems.

• Logical software architecture, to describe the elements contained
in the information system logical architecture.

 For more details on logical architecture, see Describing Logical
Application Architecture.

• Deployment to describe the elements linked to the deployment of an
information system.
• Technology Capabilities

 A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.
 For more information on the use of technology capabilities, see
Describing a technology capability.

• Software Technologies to describe the technical elements of the
information system.

 For more details on software technologies, see Describing Software
Technologies.

• Cloud service catalogues
 For more details on Cloud service catalogues, see Using Cloud
Services.

• Technology service catalogues
 For more details on technology services catalogs, see Using Cloud
Services.

• Infrastructure theme, giving access to the following themes:
• Facilities,

 A facility is a model of site of interest for the enterprise. Examples:
Data Center, Factory or Outlet
 For more details on facilities, see Describing a Facility.

• Computing Networks,

 An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between

46

computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.
 for more details on computing networks, see Describing an IT
network.

• Computing Devices

 An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.
 For more details on computing devices, see Describing a Computing
Device.

• Network Devices,

 An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.
 for more details on computing networks, see Describing a
Computer Network Device.

• Data, to describe the business data.
 For more details on business data management, see Managing
Data.

• Business dictionaries
 A business dictionary collects and structures a set of concepts that
expresses the knowledge of a particular area.
 For more details on business dictionaries, see the Hopex Data
Governance guide.

• Data Dictionaries

 A data dictionary describe all the elements defining your logical
data architecture.
 For more details on data dictionaries, see the Hopex Data
Governance guide.

• Information Service Catalogs to describe the user services offered
by the information system.

 For more details on service catalogs, see Using service catalogs.

• Hardware to describe all hardware elements of the information system.
• Hardware Capabilities, to access the functionalities related to

hardware elements.
 A hardware capability is the ability to deliver a physical outcome
which is required by an organizational resource in order to perform its
work. This hardware capability is generally necessary within a
computing process in order to execute a specific operation.
 For more information on the use of technology capabilities, see
Describing a hardware capability.

• Hardware,

 Non-IT Hardware can embed computers. Together with their
embedded computers, they provide information and IS services.
Examples: Connected Truck with Delivery Calendar Application and
connected Drone with Online Payment Application. Hardware device can
also provide hardware functionalities. Example: Connected fridge

47

Introduction
Hopex IT Architecture Desktop Presentation

providing ordering functionalities and of course a freezing hardware
functionality and connected drones fly and provide Online Payment.
 for more details on computing networks, see Describing an
Hardware.

• Hardware services Catalogs.
 For more details on hardware services catalogs, see Using Cloud
Services.

• All Sketches, to access all the skectches of your repository.
 For more details on the use of sketches with Hopex IT
Architecture, see Creating a Sketching diagram with Hopex IT
Architecture.

The Design (UML) menu

The Design (UML) menu gives access to the following submenus:
• OO Implementation (UML), to design you IS using the UML

formalism.
 For more details on the use of UML concepts, see About UML
implementation.

Depending on the options selected, two submenus are also available:
 To see these submenus, open the Options window and check that
IT Architecture > User Interface and Batch Features (ADES) is
selected.

• Submenu Batch and Program Implementation,
 For more details, see Describing Batch Processing.

• Submenu User Interfaces.
 For more details on describing user interfaces, see the Defining
User Interfaces.

The Reports menu

The Reports menu gives access to all the reports contained in each Solution.


 For more details on the use of these reports, see "Generating
Reports” chapter in Hopex Common Features guide.
 For more information on Hopex IT Architecture reports, see
HOPEX IT Architecture Reports.

48

The Governance menu

Governance gives access to the following submenus.
• Policy framework, to access the frameworks that define the company

policy.
 For more details on Policy Frameworks, see Define a Policy
Framework with Hopex IT Architecture

• EA Projects, to access the project management features.
 For more details on project management, see “The Enterprise
Architecture (EA) Projects in Hopex“ in the Hopex Common Features
guide.

• Action Plans, to describe and manage the action plans linked to the
transformation of the information system.

 For more details on managing action plans, see “Using Action
plans” in Hopex Common Features guide.

The Environment menu

The Environment menu gives access to the following submenus:
• Containers, to access the Libraries and Enterprises management

features.
 For more details on Containers and Organization, see Defining
the Work Environment.

• Organization, to access the main objects handled in the Hopex IT
Architecture Solution.
• Business Lines,

 A business line is a high level classification of main enterprise
activities. It corresponds for example to major product segments or to
distribution channels. It enables classification of enterprise processes,
organizational units or applications that serve a specific product and/or
specific market.

• Process Categories,

 A process category defines a group of processes. It is linked to a
Process Map or higher level Process Category. It regroups several
processes and/or other categorized elements (e.g. Value Streams,
Applications). It serves as an intermediate categorization level in the
process hierarchy, so as to provide a guided and progressive access to
finer grained processes.

• Processes

 A process is a set of operations performed by org-units within a
company or organization, to produce a result. It is depicted as a
sequence of operations, controlled by events and conditions. In the
BPMN notation, the process represents a sub-process from the
organizational point of view.

• Sites

 A site is a geographical location of an enterprise. Examples: Boston
subsidiary, Seattle plant, and more generally the headquarters,
subsidiaries, plants, warehouses, etc.

• Org-Units.

 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level

49

Introduction
Hopex IT Architecture Desktop Presentation

depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.
 For more details on the use of Org-units, see Using Org-units.

• My RFC’s
• Ideas, to access the features of library and environment management.

If you own the associated license, Ideas provides access to idea
management facilities.

 For more details ideas management, see «Submitting and
evaluating ideas» chapter in the Hopex Common Features guide .




• Common, to access to following objects:
• Tags

 A tag is a classifying description used to characterize objects.

 For more details on the use of tags, see Platform - Common
Features > Collaboration Tools > Communicating in HOPEX.

• Report DataSets
 A Report DataSet is a set of data extracted from the HOPEX
repository and used as a data source in reports.
 For more information, see Platform - Common Features >
Documentation > Generating Documentation > Managing Report
DataSets.

• All Sketches, to access all the skectches of your repository.

 A sketching diagram is a drawing that enables you to exchange
with your coworkers without an issue of methodology or formalism.
 For more details on the use of sketches with Hopex IT
Architecture, see Creating a Sketching diagram with Hopex IT
Architecture.

Administration Menu

The Administration menu gives access to the following submenus:
• Templates giving access to templates associated with the following

components:
• Service Interfaces, see Using a Service Interface Template.
• Service Operations, see Using a Service Interface Template.
• Contents, see Using a Service Interface Template
• Deployment Architecture, see Deployment Architecture Templates.

• Categorization Schemas, see Defining Data Categories.
• Methodological Domains, see Defining Methodological Domains.

50

Presenting the Solution Architecture Functional Administrator workspace
menus

The activities offered only to users connected with the Solution Architecture
Functional Administrator profile are:

• Administration, via the Administration menu,
• the creation of objects from the Environement menu, see The

Environment menu

Presentation of the Application Designer workspace
The menus offered when using the Application Designer profile are similar to the
ones of the Solution Architect profile.

However, the users signed-in as an Application Designer can modify object
properties but can not modify diagrams.

Presenting the Application Viewer workspace
The navigations menus available for the users signed-in as Application Viewer are
identical to the menus available in the Solution Architect profile.

However, users signed-in as Application Viewer can only access objects in read-
only mode.

Switching between Profiles
Using the Hopex IT Architecture desktop, you can access to any Hopex solution
desktop, without logging out, just by switching to another profile.

For example, you can switch to a specific profile:
1. Select Main Menu > Switch Profile.
2. Select the profile with which you want to connect.
3. (If you made modifications in your private workspace) Click:

• Yes, to save your modifications in the repository.
• No, if you do not want to save in the repository the modifications you

made since your last dispatch. Modifications to your desktop are also
lost.

The desktop associated with the selected profile is displayed.
 Click Cancel to stay in your private workspace.

51

Introduction
Before starting with Hopex IT Architecture

BEFORE STARTING WITH HOPEX IT ARCHITECTURE

Defining the Work Environment
In the context of the Hopex IT Architecture solution, a library can hold all the
elements of your project: processes and org-units, for example.

 Libraries are collections of objects used to split repository content
into several independent parts. They allow creation of virtual partitions
of the repository. In particular, two objects owned by different libraries
can have the same name.

Using Enterprise enables preparation of a transformation project.
 An Enterprise is a purposeful undertaking, conducted by one or
more organizations, aiming at delivering goods and services, in
accordance with the enterprise mission in its changing environment.
During its development over time, an enterprise has to adapt to its
environment and sets up transformation goals and objectives along with
course of action to achieve these objectives. The design and realization
of the resulting transformation stages may transcend organizational
boundaries and consequently require an integrated team working under
the direction of a governing body to involve stakeholders in
transformation initiatives. This requires the implementation of an
integrated team, under the responsibility of a governing body, to
involve the stakeholders in the transformation.
 For more details on managing containers, see the "Enterprises and
Libraries" chapter in the Hopex Common Features guide.

Accessing the list of libraries with Hopex IT Architecture
To access the list of libraries from the Environment navigation menu:

� Select Containers > Libraries.
The library tree appears.

Accessing the list of enterprises with Hopex IT Architecture
To access the list of enterprises from the Environment navigation menu:

� Select Containers > Enterprises.
The list of enterprises is displayed.

In the context of Hopex IT Architecture solution, Enterprise characteristics are
simplified as related to Hopex IT Business Management solution.

 For more details on using Enterprise in a transformation context,
see “The strategic elements of a transformation phase” chapter of
Hopex IT Business Management guide.

52

Using Org-units
Org-Units are used in several diagrams. The main points concerning this object type
are reminded in this section.

 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

Creating an org-unit
To create an org-unit from the Environement navigation menu:

1. Select Organizations > Org-Units.
The list of org-units displays in alphabetical order.

2. Select the Org-unit file and click New.
3. In the wizard window, select Org-units.
4. In the Creation of an Org-Unit window, enter the name of the org-unit

you want to create.
5. Click OK.

The org-unit appears in the list.

Internal org-unit/external entity
During creation, org-units are considered as elements internal to the company.

To specify that an org-unit is not part of the company, you must modify the org-unit
properties and enter the "External" status.

To assign the "External" characteristic to the org-unit:
1. Right-click the org-unit and select Properties.
2. Open the Characteristics property page of the org-unit.
3. In the Identification section, select the External org-unit field.

This characteristic is represented graphically and is automatically
displayed in the diagrams.

Using IT architecture diagrams
 For more details on the use of diagrams, see user diagrams”
chapter in the Hopex Common Features guide.

With Hopex IT Architecture, an application object may be described by different
diagrams. Each diagram type corresponds to a specific view of the object: internal
architecture, deployment architecture, flows exchanged inside the object and flows

53

Introduction
Before starting with Hopex IT Architecture

exchanged outside depending on the context of use of the object. Depending on the
described object, each representation is associated to a diagram type.

• External data flows are represented in an Environment Diagram. This
diagram type contains the described application object and the
application flows exchanged with partners (other application systems,
applications, data stores, org-units or
position type).

• The internal architecture is described by a structure diagram
representing the object components their exchanges. A structure
diagram can be designed for an application, an application environment,
an application system, an application system environment, a logical
application system, a logical application, an application service or a
microservice.

• The deployment architecture is described by a diagram representing
the deployable application packages, the microservices and the
deployable data package used as well as the required communication
techniques.

• The Internal Data Flows are represented in a scenario of flow diagram
describing the messages exchanged between the object components.
With Hopex IT Architecture, you can design two types of scenario of
flow diagram:
• The Scenario of flows diagrams that describe the flows exchanged in

different use scenarios of the object described.
• Scenario of sequence diagrams that describe the chronology of the

flows exchanged in different use scenarios of the object described.
 To use Scenario of Application Flows Diagrams, open the Options
window and check that IT Architecture > Activate Flow Scenario
Sequence Diagrams option is activated.

• The external interactions are represented in a Scenario of Flow
Diagram describing the external service interactions of an application
object in a specific environment. This diagram contains the described
object and the service interactions with partners (other systems).

54

Creating a structure diagram
To create a, Application system structure diagram, for example:

1. Open the Diagrams property page of the application system and click
Create a diagram.

Representation List of involved diagrams

Internal Architecture • Application structure diagram
• Architecture
• Application System Structure Diagram
• IT Service Structure Diagram
• Microservice structure diagram
• Application System Structure Diagram
• Logical application structure diagram
• Structure diagram of the logical application system
• Deployable Application Package Diagram
• Resource Architecture Assembly Diagram
• Hardware Assembly Diagram
• IoT Device Assembly Diagram

Internal Data Flows • Scenario of Application Flow Diagram
• Scenario of Application System Flows Diagram
• Scenario of IT Service Flow Diagram
• Scenario of Microsystem Flows Diagram
• Scenario of Logical Application System Flows Diagram
• Scenario of Application Flows Sequence Diagram (UML)
• Scenario of Application System Flows Sequence Diagram (UML)

External Data Flows • Scenario of Application Environment Flows Diagram
• Scenario of Application System Environment Flows Diagram
• Scenario of Logical Application System Environment Flows

Diagram
• Scenario of Application Environment Flows Sequence Diagram

(UML)
• Scenario of Application System Flows Sequence Diagram (UML)

External Interactions • Application Environment Diagram
• Application system environment diagram
• Logical application system environment diagram
• Resource Architecture Environment Diagram

Deployment Architec-
ture

• Application Deployment Architecture Diagram
• Application System Deployment Architecture Diagram
• Microservice Deployment Architecture Diagram

55

Introduction
Before starting with Hopex IT Architecture

2. In the choice window, select Structured diagram > Internal
Architecture.
The diagram opens in the edit area. You are now in the Hopex graphic
editor. The frame of the described object appears in the diagram.

Example of an application system structured diagram

By default, the diagram is initialized with the described object, represented by a
frame; the components of the described object are positioned at the top of the
diagram.

If the described object is represented in a higher level diagram, the new diagram is
initialized taking into account participants and flows that are represented in the
higher level diagram.

Diagram commands with Hopex IT Architecture
Depending on their type, Hopex IT Architecture diagrams propose specific
commands.

56

Auto Layout in architecture diagrams
If the environment contains components and interactions between components,
each new diagram is initialized with these components displayed at the top left of
the frame of the described environment.

The Auto Layout button allows you to reorganize the diagram elements taking into
account the exchanged flows.

The Diagram compression/dilatation coefficient enables the specification of
the distance to be expected between elements.

When you use the Auto Layout function, the previous presentation of your diagram
is lost.

Icon Description

Refresh channels
Allows to update the content of the channels described in a scenario of
flows. See Creating an application flow channel.

Reinitialize components
Add, in the diagram, the components of the first level of the described
object.

Auto Layout
Enables to organize automatically the described object components in
the diagram. See Auto Layout in architecture diagrams.

Add Items
Enables to complete the current diagram with the elements defined in
other diagrams. See Environment diagram initialization.
Available only for application environment and application system
environment diagrams.

57

Introduction
Before starting with Hopex IT Architecture

The auto layout facility is proposed for the following diagrams:
• Application Environment

• Application Environment Diagram
• Scenario of Application Environment Flows Diagram

• Application
• Scenario of Application Flows Diagram
• Application Structure Diagram
• Application Deployment Environment Diagram

• Application System Environment
• Scenario of Application System Environment Flows
• Application System Environment Diagram

• Application System
• Scenario of Application System Flows
• Application System Structure Diagram

• IT Service
• Scenario of IT Service Flow Diagram
• IT Service Structure Diagram

• Logical Application
• Scenario of Logical Application Flows Diagram
• Logical application structure diagramme
• Logical Application Deployment Environment Diagram

• Logical Application System Environment
• Logical Application System Environment Diagram
• Scenario of Application System Environment

• Logical application system
• Structure diagram of the logical application system
• Scenario of Logical Application System

• Resource Architecture Environment
• Resource Architecture Environment Diagram

Environment diagram initialization
An environment diagram represents a use context of an application or an application
system.

 An application environment is used to represent a use context of an
application. An application environment allows presenting the other
application systems, applications, microservices or actors with which
this application can interact.

 An application system environment allows presenting the other
application systems, applications or microservices with which this
application system can interact.

In order to simplify the description of a specific use context of an application system,
for example, Add Items button provides the list of components with which the
application system interacts and helps you to select the objects you wish to add in
your diagram.

58

The Sub-Elements selection and Expand selected elements buttons help you
in your selection.

Creating a Sketching diagram with Hopex IT Architecture
A sketching diagram is a drawing that enables you to exchange with your coworkers
without an issue of methodology or formalism.

Sketching diagrams can then be reworked and transformed into diagrams
recognized by an Hopex Solution.

 For more details ont the use of skecthing diagrams, see “Use a
sketching diagram” in the Hopex Common Features guide.

To create a sketching diagram for an application, for example, with Hopex IT
Architecture:

1. From the Applications navigation menu, select the application of
interest to you and click Create a diagram.

2. In the wizard window, select Sketching diagram.
The diagram opens in the edit area. You are now in the Hopex graphic
editor.

59

Introduction
Before starting with Hopex IT Architecture

Creating an ArchiMate@ diagram with Hopex IT Architecture
Hopex for the ArchiMate® Framework product provides facilities to use the set
of concepts defined by the Open Group for ArchiMate®. ArchiMate® concepts are
mapped with Hopex Enterprise Architecture building blocks so as to manage
compatibility and continuity with other models.

You can associate a diagram based on ArchiMate@ formalism to an application, for
example.

 For more details, see “Using ArchiMate Diagrams in an Enterprise
Architecture solution“ chapter of the Hopex IT Business
Management guide.

Using diagram comparison
The comparison of diagrams of an application system or architecture of an
application system deployment enables to compare different versions of the same
object.

 For more details on the use of a diagram comparison, see
“Comparing diagrams” chapter in the Hopex Common Features
guide.

Hopex IT Architecture properties pages content
Hopex IT Architecture provides properties pages available for each object type.



 For more details on the access to property pages , see the chapter
“Handling an object properties” in the Hopex Common Features
guide.
 Using the facilities described in the Hopex Power Studio guide,
you can customizing the properties pages of your solution.

60

The pages below are common to main Hopex IT Architecture objects.
• the Components page gives access to the list of the described object

components defined in the different diagram types.
• the Data Store section gives access to the described object specific

data stores.
 For more information on data stores, see Managing Data.

• the Internal components section gives access to the list of object
components defined in the workflow scenario.

• the Boundary Components section gives access to the list of
components in the structure diagrams of the described object.

 For more details an application object components, see Application
structure diagram.

• the Scenario of flows page displays the representations of the
described object internal flows.

 For more details on flow scenarios, see Describing data flows.

• the Environments page displays the described object contexts of
usage.

 For more details on environments, see Describing an Application
Environment with Hopex IT Architecture.

• The Deployment Architecture property page provides access to the
list of components required for the architecture deployment.

 For more information on the components of a deployment
architecture diagram, see Using an application deployment architecture
diagram.

• the Usage page displays information related to the described object
context of usage in the different taypes of diagrams.
• the Scenario section displays the list of elements containing the

described object in the scenarios of flows.
 For more information on a scenario of flow, see Using a Scenario of
Application Flows Diagram.

• the Structure section displays the list of elements having the
described object in their environment.

 For more information on the components of an application structure
diagram, see Application structure diagram.

• the Qualification page provides access to the category of the described
object.

 For more details on categories, see Defining Data Categories.

• the Executed process page provides access to the application
processes executed by the described object.

 For more details on system processes, see Describing System
Processes.

• The Gouvernance page enabling to enter the architecture Decisions
specific the application.



 For more information on Decisions, see “Drawing up an Application
Inventory > Recording Architecture Decisions” chapter of the Hopex IT
Portfolio Management guide.

The page also displays the list of Enterprise policies the described object
must comply to.

61

Introduction
Before starting with Hopex IT Architecture

 For more details on business policies management with Hopex IT
Architecture, see Define a Policy Framework with Hopex IT Architecture.

• the Reports page provides access to the reports available for the
described object.

 For more information on Hopex IT Architecture reports, see
HOPEX IT Architecture Reports.

• the Diagrams page displays the described object diagrams and enables
to create new diagrams.

 For more information on diagram types proposed by Hopex IT
Architecture,see Using IT architecture diagrams.

Using duplication with Hopex IT Architecture
Hopex IT Architecture solution provides facilities for specific building blocks
duplication such as applications, application systems or deployment architectures.

To duplicate an application system, for example:
1. Right-click the application system you want to duplicate to open its pop-

up menu.
2. Select Manage > Duplicate.

A dialog box opens to display the list of elements connected to the object
to be duplicate.

Hopex IT Architecture duplication dialog box

3. Select the new building block owner.

62

4. For each component, the Duplication Mode column proposes the
following options:
• Create a New copy of the selected component. In this case, the name

of the new component appears in the New name for created object.
• Keep the component that will be owned by the source and the target

building blocks.
• Ignore the component that will not be duplicated or referenced.

5. Click Launch Duplication to validate your choices.
The new building block can be accessed from its owner.

Using duplication with Hopex IT Architecture in batch mode
A building block and the connected objects defined in the MetaModel, can be
duplicated in batch mode.

The SmartDuplicate function provide the reference to the created building block.

The parameters of the SmartDuplicate function are defined in the sOptions string
as follows:

• The function SmartDuplicate(ByVal sOptions As String) As
MegaObject

• sOptions is definied with the following format “K1=V1,K2=V2, ...”, the
proposed value are:
• Root=[NewCopy] - Default: NewCopy
ORoot relates to the duplicated building block
• Components=[Keep|NewCopy|Ignore] - Default: Keep
Components relate to the components of the building block which is
duplicated.Components relate to the components of the building block
which is duplicated.
• Boundaries=[Keep|Ignore] - Default: Keep
Boundaries relate to the components of the building block which is
duplicated.Boundaries relate to the components of the building block
which is duplicated.
• Scenarios=[Keep|Ignore] - Default: Keep
Scenarios relate to the components of the building block which is
duplicated.Scenarios relate to the components of the building block
which is duplicated.
• Environments=[Keep|Ignore] - Default: Keep
Environments relate to the components of the building block which is
duplicated.Environments relate to the components of the building block
which is duplicated.

Example of use:
Set newObject=

myApplication.SmartDuplicate("Root=NewCopy,Components=Keep,
Environments=Ignore")

63

Introduction
Before starting with Hopex IT Architecture

Using service catalogs

Implementation of service catalogs
In Hopex IT Architecture, a service catalog is made of service catalog item. For
example, a hardware services catalog is made up of several hardware service
catalog items.

 A hardware service catalog provides a centralized information
source for the hardware services offered by the service provider
organization. It contains a customer-oriented view of the hardware
used, how they are supposed to be used, the processes that they
support as well as the expected service quality level. The hardware
service catalog presents the list of hardware functionalities mentioned
as well as implementation recommendations.

 A hardware service catalog item defines which hardware
functionality is in the catalog and which hardware artifacts provide the
hardware functionality.

A Service catalog item represents a service which is associated with a capability or
a functionality, depending on the type of catalog. The capabilities associated to the
services of a service catalog are connected to a capability map (or a functionality
map) which is associated to the service catalog.

With Hopex IT Architecture, the technical solution providing a service is
represented by an Implementation.

 An implementation describes the relationship between a logical
entity and a physical entity that implements it. The physical entity gives
the list of logical entities that it implements.

The table below draws up the summary of objects that implement the service
catalog items according to their category.

Type of service cata-
log

Type of service ele-
ments

Type of service solutions

Business function Business capability All types of technical and functional objects
that implement a business capability with
Hopex IT Architecture. For more details,
see Describing Fulfillment of a Business
Capability.

Cloud Technology Capability Map Cloud Services, see Using Cloud Services.

Technical Technology Capabilities Software technologies, see Describing a
Software Technology.

Hardware Hardware capabilities Hardware and IoT Device, see Using Cloud
Services.

64

Defining a service catalog
The management principle of a service catalog is identical for all types of service
catalogs. The types of service catalogs offered are:

• business service catalogs,

 A business service catalog provides a centralized information
source for the business services offered by the service provider
organization. It contains a customer-oriented view of the services
associated to business capabilities, how they are supposed to be used,
the processes that they support as well as the expected service quality
level. The business service catalog presents the list of functionalities
mentioned as well as implementation recommendations.

• Cloud services catalogs,

 An information service catalog provides a centralized information
source for the information services offered by the service provider
organization. It contains a customer-oriented view of the information
services used, how they are supposed to be used, the processes that
they support as well as the expected service quality level. The
information service catalog presents the list of functionalities mentioned
as well as implementation recommendations.

• Technology service catalogs,

 A technology service catalog provides a centralized information
source for the technology services offered by the service provider
organization. It contains a customer-facing view of the technology
services in use, how they are intended to be used, the process they
enable, and the levels and quality of service the customer can expect
from each service. The technology service catalog provides the list of
reference technology capabilities and their recommended
implementation.

• hardware service catalogs.

 A hardware service catalog provides a centralized information
source for the hardware services offered by the service provider
organization. It contains a customer-oriented view of the hardware
used, how they are supposed to be used, the processes that they
support as well as the expected service quality level. The hardware
service catalog presents the list of hardware functionalities mentioned
as well as implementation recommendations.

This chapter is based on the example of an technology service catalog.

Creating a technology services catalog
To create a Technology service catalog:

1. From the Inventories navigation menu, select Deployment >
Technology Service Catalogs.
The service catalogs access page opens.

2. Click on the arrow to the left of the Business service catalog field and
select New.
A creation dialog box opens.

3. Enter the Name of your catalog and its Owner.
4. Select the Technology capability map associated to the service

catalog and click OK.
A new service catalog appears in the edit area.

 Likewise, you can create a business service catalog or a hardware
service catalog.

65

Introduction
Before starting with Hopex IT Architecture

Adding a service catalog item
The Characteristics page of a service catalog provides access to:

• its Name,
• its Owner, by default, during creation of the logical application system,

the current library.
• To access the list of service catalog items owned:

To add a Business service catalog item:
1. From the Inventories navigation menu, select Software > Business

Service Catalogs.
The service catalogs access page opens.

2. From the drop-down list of the Business Service Catalog field, select
the Business Service Catalog that interests you.
The list of service catalog items is displayed in the form of a tree that
presents the capabilities associated to the services already declared as
well as technical objects that represent the implemented solutions.

3. In the New column of a business service catalog, click the Add button.
A business service catalog item creation window opens.

66

4. Expand the tree branches to find the business capability that interests
you.

5. Select the object that implement the capability in the context of your
business catalog.

 For more details on implementation creation, see Using fulfillment
mechanisms.

67

Introduction
Before starting with Hopex IT Architecture

6. Click Next.
A new page opens to specify the status of the object that represents the
solution in the context of the service catalog.
• Norm: first choice, this choice is mandatory.
• Accepted: other choice accepted when it is not possible to use the

Norm (please justify).
• Tolerated: tolerated for existing installations but for new uses.
• Prohibited: no installation should use this solution (existing or

future).
• Emergent: for a solution currently under study.
• To be defined: for a solution to be defined.

7. Select a status and click OK.
The catalog item pops up in the list with the associated technology
capability.

Service catalog reports
The Services Coverage Matrix is a report presenting a list of service catalogs, the
list of capabilities (or functionalities) covered, and for each of them, the
implementation means.

68

Report parameters

This consists of defining report input data.

Accessing a service catalog report

To access a service catalog report:
1. Open the Reports page of a service catalog.
2. Select the Services coverage matrices report.
3. In the Parameters section, select the service catalogs that you want to

present in your report.
4. Click Refresh the Report.

The new report appears.

Using Workflows
With Hopex IT Architecture you can use standard workflows to manage:

• Validation requests;
 For more details on validation requests workflows, see “Using
validation requests” in Hopex Common Features guide.

• Review requests.
 For more details on the review process, see Process Validation
Workflow.

Define a Policy Framework with Hopex IT Architecture

 A business policy is a directive whose purpose is to govern or to
guide the enterprise.

 A policy framework consists of a number of business policies. It is
composed of sections and sub-sections that represent categories of
business policies. Under these sections you can define the business
policies, the assets constrained by the policies in question and their
implementation.
 For more details on Policy Frameworks, see Hopex Data
Governance guide.

You can import in your Hopex repository some Policy Frameworks.
 The Policy Frameworks are provided by your administrator in a
package. For more details, see “Importing a module in Hopex” chapter
in the HOPEX Administration guide.

Settings Parameter type Constraints

List of service
catalogs

All types of service
catalogs:
- Business,
- information,
- technical,
- hardware.

A mandatory catalog.

69

Introduction
Before starting with Hopex IT Architecture

Defining a Business Policy with Hopex IT Architecture
 A business policy is a directive whose purpose is to govern or to
guide the enterprise.

Accessing Business Policies with Hopex IT Architecture

To access the list of Business Policies:
1. From the Governance navigation menu, select Policy Framework.

The Policy Framework tree appears.
2. Expand the folders to see Business Policies.

Creating a business policy

To create a Business Policy:
1. From the Governance navigation menu, select Policy Framework.

The Policy Framework tree appears.
2. Expand the folder of the Policy Frameworks that interests you.
3. Select the Policy Framework Section that interests you and click New >

Business Policy.
The new Business Policy appears in the tree.

Connect a business policy to an application

To identify the Business Policies that your applications needs to comply with:
1. Open the Governance property page of the application that interests

you.
2. In the Policy to comply with section, click Connect.

A window opens providing a tree of policy frameworks and the associated
business policies.

3. Select the business policies that interest you and click Connect.
The selected business policies appear in the Policy to comply section.

Assessing an application compliance with a business policy

The last compliance assessment result appears at the top of the application
Governance property page.

Possible results are the following:
• Full Compliance: if all the business policies connected to the

application are compliant.
• No Compliance: if all the business policies connected to the

application are not compliant.
• Partial Compliance: if all the business policies connected to the

application are assessed at different compliance levels.

To assess the compliance level of an application with a business policy:
1. Open the Governance property page of the application that interests

you.
2. In the Policy to comply with section, select business policies you want

assess.

70

3. In the Policy Compliance Assessment section, click Evaluate.
A Governance Assessment window opens providing a tree of policy
frameworks and the associated business policies to be assessed.

4. Specify the Measure Date.
5. In the Compliance column, select the compliance level you wish to

assign to the application.
6. Click OK.

The compliance level appears at the top of the property page.

Defining an Architecture Principle
 An Architecture Principle is a general guideline that informs,
supports and constrains the way in which an organization will design
and construct architectures.

Accessing to Architecture Principles

To access the list of Architecture Principles:
1. From the Governance navigation menu, select Policy Framework.

The Policy Framework tree appears.
2. Expand the folders to see the list of Architecture Principle Categories.

 An Architecture Principle Category enables a grouping of
Architecture Principles for ease of management.

Creating an Architecture Principle

An Architecture Principle is owned by an Architecture Principle Category.

To create an Architecture Principle:
1. From the Governance navigation menu, select Policy Framework.

The Policy Framework tree appears.
2. Expand the folder of the Policy Frameworks that interests you.
3. Select the Architecture Principle Category that interests you and click

New > Architecture Principle.
The new Architecture Principle appears in the tree.

Defining an architecture principle scope

To define the scope of an Architecture Principle:
1. Open the Characteristics property page of the architecture principle

that interests you.
2. In the Scope section, click New.

A Creation of Regulatory Requirement window opens.
3. Select the Object Type that interests you, for example Application

Deployment Architecture.
4. Select the Element Subject to Regulation and click Add.

A new fulfillment of architecture principle element is created.

71

Introduction
Before starting with Hopex IT Architecture

Defining Data Categories
Hopex IT Architecture Solution enables data classification using Data Categories.

 For more information on Data Categories see the Hopex Data
Governance guide.

To access the list of data categories from the Administration navigation menu:
� Select Categorization Schemas > Data Categories.

The list of Categorization Schemas appears.


 For more information on Categorization Schemas, see “Defining
Categorization Schemas” chapter in the Hopex IT Business
Management guide.

Defining Methodological Domains
Each Hopex Solution offers its own methodological domains defining all Solution
users’ common goals.

The methodological domains available in Hopex IT Architecture concern:
• The use of Cloud Services,
• Transition to a modern architecture,
• Reducing the IT carbon print.

Importing components with Hopex IT Architecture
Hopex IT Architecture uses Excel data exchange wizards to export import and
export existing architecture components.

 For more details on Excel data exchange wizards, see the
“Exchanging Data with Excel” chapter in the Hopex Common Features
guide.

Two Excel templates are proposed:
• Hardware_Functionalities_Template.xlsx for infrastructure

elements import/export : computing devices connected to the
breakdown of hardware functionalities they implement.

• Technical_Functionalities_Template.xlsx for technology elements
import/export : technologies connected on one side to vendors, and on
the other side to the breakdown of technical functionalities they
implement.

72

Structure of the import/export Excel templates of Hopex IT Architecture
Hopex IT Architecture Exel templates that enable import of harware or technical
elements are dentically presented.

• At the level hardware, the elements are as follows: Hardware, IoT
Device, Server and It Device.

 An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight
history management
 For more details on hardware elements, see Describing a
Computing Device.

• At the level of technologies, the elements are as follows: Vendor (Org-
Unit) andSoftware technology.

 A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.
 For more details on technologies, see Describing a Software
Technology.

• At the level of hardware of technical Capabilities, the elements are as
follows:
• Hardware or technical Capabilities

 A hardware capability is the ability to deliver a physical outcome
which is required by an organizational resource in order to perform its
work. This hardware capability is generally necessary within a
computing process in order to execute a specific operation.

• Hardware or Technical Capabilities maps,

 A technology capability map is a set of technology capabilities and
their dependencies that, together, defines the scope of a hardware or
software architecture.

• Sub-functionalities, which define the link between a functionality and
the functionality map (or the functionality) in which it is referenced.

 For more details on functionalities, see Using Functionalities with
Hopex IT Architecture.

• Functionality fulfillments, which define the link between a functionality
and the hardware or technical object that implements it.

73

Introduction
Before starting with Hopex IT Architecture

The list of information provided for in the Excel template delivered with Hopex IT
Architecture is presented in the following order:

• For elements of type: Hardware or technical Capability map, Computing
device (IoT device, Server, It device):
• Short Name : name of the object concerned.
• Comment : object comment.

• For elements of type Technology:
• Short Name : name of the object concerned.
• Technology Code.
• Comment : object comment.
• Vendor.

• For elements of type Org Unit :
• Short Name : name of the object concerned.
• Internal/External.
• Org-Unit Type.
• Comment : object comment.

• For each element of Functionality Composition type:
• Name of the composite object: functionality map or functionality,
• Name of the owned functionality.

• For each element of Functionality Implementation type:
• Fulfilled Hardware/Technical Functionality: name of the

implemented functionality.
• Name of the object (computing device or technology) that implements

the functionality.

Importing computing devices or technologies with Excel
 For more information on the structure of the Excel template, see
Importing components with Hopex IT Architecture.

If you want to export computing devices or technologies or functionality maps that
exist in another repository than your current one, for example, you can use the
Excel template of Hopex IT Architecture.

Several steps must be followed in order for the Excel import of a business capability
breakdown to be performed correctly:

1. (optional) Specifying the current library,
2. Exporting data from your repository with Hopex IT Architecture,
3. Completing the import file for Hopex IT Architecture,
4. Import your new file into your repository.

 For more details on Excel data exchange wizards, see the
“Exchanging Data with Excel” chapter in the Hopex Common Features
guide.

Specifying the current library

This optional stage enables to connect imported objects to the current library.

A library and an enterprise are used to represent a unique work context.
 Libraries are collections of objects used to split repository content
into several independent parts. They allow creation of virtual partitions
of the repository. In particular, two objects owned by different libraries
can have the same name.

74

In order for the data you import with Excel to be linked to a specific container, you
must specify the current library.

 For more details, see Defining the Work Environment.

Exporting data from your repository with Hopex IT Architecture

If you want to export technical or hardware functionality maps that exist in another
repository than your current one, for example, you can use the Excel template of
Hopex IT Architecture.

 For more details on Excel data exchange wizards, see the
“Exchanging Data with Excel” chapter in the Hopex Common Features
guide.

When the Excel file is filled with the names of the objects you want to import, you
must complete the necessary information for import into Hopex IT Architecture.

 For more details, see Completing the import file for Hopex IT
Architecture.

Completing the import file for Hopex IT Architecture

To get a correct import/export file, you must have specified the following elements:
• For each element of type hardware or technical capability map, hardware

or technical functionality map, Vendor, Technology, (IT, Server,
connected device) Computing device, you must enter the name of each
object.

• For each breakdown (Technical Function_Composion or
Functionality Composition Excel sheet), you must indicate:
• The name of the composite object: functionality map or functionality,
• The name of the owned functionality.

• To specify that a technology implements a functionality for example, you
must indicate in the Technical Function_Fulfillment sheet:
• the name of the functionality implemented in the Fulfilled

Hardware/Technical Functionality column.
• Name of the object (computing device or technology) that implements

the functionality.
 The first two lines of each Excel worksheet are reserved for
file configuration; ensure that the first two lines of the imported
file remain identical to those obtained after an export.

 For more information on the structure of the Excel template, see
Structure of the import/export Excel templates of Hopex IT
Architecture.

Using Tools of Conversion towards Hopex Aquila
If you use Hopex Aquila and if your administrator had carried out the conversion
of Business Person instances coming from a repository previous to Hopex V5 into
Person (System) instances, you must make sure that assignments have been
created between the new Person (System) instances and the objects that was
under Business Person instances responsibility.

 For more information on repository conversion, consult the
technical note How to migrate to HOPEX .

75

Introduction
Before starting with Hopex IT Architecture

The conversion tool “Mega Repository - Convert Person and ARC Responsibility into
Person (System) and Assignment” must be activated by your administrator using
the Environment automatic update facility.

The principle of this Hopex IT Architecture conversion tool is as follows:
1. A new Person (System) instance must be created for each Business

Person instance with a Responsibility link with an Application, a
Database, a Network, a Node, a Server, a IT Service or a
Workstation.

2. For each Responsibility link between an asset and a previous Business
Person instance, an assignment is created between the asset and the
new Person (System) instance for each case described in the table of
responsibilities to be replaced by assignments.

 The Business Roles table used for assignments(below) specify the
assignment to be created between a new Person (System) instance
and an asset depending on the type of Responsibility link betwwen the
converted Business Person instance and the asset type. If no business
role is specified, no assignment is created and the Business Person
instance is not converted.

Table of business roles used for created assignments

Asset Type IT Manager Process
manager

Quality Man-
ager

Risk Manager
or Provider

Application Local Application
Owner

Business User - -

Database Data owner - Data Quality Man-
ager

-

Network - - - -

Node - - - -

Server - - - -

IT service Local Application
Owner

- - -

Workstation - - - -

76

ABOUT THIS GUIDE

This guide explains how to make best use of Hopex IT Architecture to ensure
efficient management of IT Architecture.

Guide Structure
The first part of the Hopex IT Architecture guide is composed of following
chapters:

• Modeling Applications and System Architectures ; presents the
functionalities offered by Hopex IT Architecture to describe the IT
components of your enterprise.

• Aligning IT and Business ; explains how Hopex IT Architecture helps
you in analyzing your Logical Architecture.

• Modeling technical architectures; explains how to prepare the
deployment of your IS components.

• Modeling IT Infrastructures; describes the fonctionalities proposed by
Hopex IT Architecture to take into account systems using resources
other than software.

The second part of the Hopex IT Architecture guide comprises the chapters
dedicated to UML.

Additional Resources
This guide is supplemented by:

• the Hopex Common Features guide describes the Web interface and
tools specific to Hopex solutions.

 It can be useful to consult this guide for a general presentation of
the interface.

• The Hopex Business Process Analysis guide, which describes the
functionalities proposed to manage processes;

• The Hopex IT Portfolio Management guide, which describes
functions proposed to manage all your applications;

• The Hopex IT Business Management guide, which describes
functionalities proposed to manage your architecture transformation
projects;

• the Hopex Power Supervisor administration guide.

77

Introduction
About This Guide

Conventions used in the guide

 Remark on the preceding points.

 Definition of terms used.

 A tip that may simplify things.

 Compatibility with previous versions.

 Things you must not do.

Commands are presented as seen here: File > Open.

Names of products and technical modules are presented in bold as seen here:
Hopex.

Very important remark to avoid errors during an operation.

78

81

Architecture Specification

82 HOPEX IT Architecture

83

MODELING APPLICATIONS AND SYSTEM
ARCHITECTURES

Hopex IT Architecture enables representation and documentation of IT architectures according
to a service-oriented architecture.

Modeling an architecture according to a service-oriented approach facilitates the analysis of
communications between architectures. Thus, the description of architectures is based on concepts
that enable a more generic use of the tool.

Les points traités ici sont les suivants :

 Hopex IT Architecture Concepts Overview ;
 Describing an Application with Hopex IT Architecture ;
 Describing System architecture.

84

HOPEX IT ARCHITECTURE CONCEPTS OVERVIEW

The information system can be broken down according to two levels of detail: the
application and the application system.

Application

An application is a set of software components constituting a coherent whole
regarding deployment, functional coverage and IT techniques used.

The application is the management and deployment unit of a set of software
components. An application can be deployed on one or several machines. An
application meets:

• business requirements

Examples: billing, accounting, equipment management, load/
capacity calculation.

• technical requirements

Examples: specific communication interface, access control.

• transverse requirements

Examples: electronic mail, directories, office system
applications.

For the creation of applications, see Describing an Application with Hopex IT
Architecture.

Application System

An application system is an assembly of applications responding to a coherent set
of functionalities, implemented by the applications making up the system.

An application system can comprise a suite of applications
grouped for commercial reasons (integrated management
software packages such as SAP, Oracle Applications,
Siebel…).

An application system can also correspond to a group of
applications that have the same functional objectives
(accounts and financial management system integrating all
accounting applications: general, suppliers, analyses, as
well as financial and budgetary analysis modules, human
resources management systems integrating salaries, time
management, career management, etc.).

The application system, like an application, can be the subject of specific
developments (carried out internally or bought-in/sub-contracted) or they can be
proprietary market products (software packages).

The logical organization and structure of application systems and applications,
together with description of their exchanges, constitutes the foundations of the
application architecture. Thus, the representation of flows in an application system

85

Modeling Applications and System Architectures
Hopex IT Architecture Concepts Overview

enables identification of the impact of the retirement of an application on the entire
system.

For the creation of an application system, see Describing System architecture.

86

DESCRIBING AN APPLICATION WITH HOPEX IT

ARCHITECTURE

A project for describing the functional architecture of an information system is used
to inventory the existing applications and their interactions.

 An application is a software component that can be deployed and
provides users with a set of functionalities.

Creating an Application with Hopex IT Architecture

To create an application:
1. Click the Applications navigation menu.

The list of applications appears in the edit area.
2. Click New.
3. The Creation of Application dialog box appears.
4. Enter the Name of your application.
5. (Optional) Select the Owner.
6. Click OK.

The new application appears in the list.

87

Modeling Applications and System Architectures
Describing an Application with Hopex IT Architecture

The properties of an application with Hopex IT Architecture

The Characteristics property page of an application provides access to different
sections.

• The Identification section provides access to the following information:
• the Name
• its Owner, by default during creation of the application, the current

library.
• the text of its Description.
• the internal Code.
• the Version number.
• the Application Type.
• the Cloud Computing.
• Description.

• the Service Level Agreement provides the Maximum Tolerable
Downtime (MTD) as welle as the SLA Level of the application, from
the following informations:
• Recovery Point Objective (RPO),
• Recovery Time Objective (RTO),
• Work Recovery Time (WRT).

• the Functional scope section of the application, see Defining
Application Functional Scope.

• Specifications section, see Creating an application Use Case Diagram.
• the Responsibility: it relates to the person(s) responsible for the

application.
• Local Application Owner,
• IT Owner,
• Business Owner.

 For more details on these roles, see Business Roles of Hopex IT
Architecture..

• the Technologies section provides access to the list of Software
Technology and the list of Software Technology Stacks used by the
application.

 A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software

88

components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

 A software technology stack is a set of software technologies.

 For more details on software technologies, see Describing Software
Technologies.

• the Exchange section describes the application flows emitted and
received by the application. See Using a Scenario of Application Flows
Diagram.

• for more details on Data section, see Managing Data.
• the Risks section presents the risks associated with the application, see

Describing an Application Environment with Hopex IT Architecture.
• associated Attachments.

 For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

With Hopex IT Architecture an application is described by other property pages,
see Hopex IT Architecture properties pages content.

Defining Application Functional Scope

To indicate the objects that define application functional coverage:
1. Open the Characteristics property page of the application.
2. Expand the Functional Scope section.

The types of data that define functional coverage of the application are:
• Process Categories using the application

 A process category defines a group of processes. It is linked to a
Process Map or higher level Process Category. It regroups several
processes and/or other categorized elements (e.g. Value Streams,
Applications). It serves as an intermediate categorization level in the
process hierarchy, so as to provide a guided and progressive access to
finer grained processes.

• Business capabilities covered by the application

 A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.
 For more details on business capabilities, see Describing Business
Capabilities with Hopex IT Architecture.
 A report covers distribution of applications in business capabilities,
see Reports on the Architecture Functional Coverage .

• The Implemented Functionalities fulfilled by the application.

 A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute
a specific operation. If it is a software functionality, it can be provided
by an application.
 For more details on functionalities, see Describing a Functionality
Map with Hopex IT Architecture.
 For more details on fulfillments, see Using fulfillment mechanisms.

• Logical Fulfillments of the application are the logicial application or logical
application systems fulfilled by the application.

 For more details on fulfillments, see Using fulfillment mechanisms.

89

Modeling Applications and System Architectures
Describing an Application with Hopex IT Architecture

Describing structure and services of an application

At first, an application can be described from a logical point of view, see Describing
Logical Application Architecture.

However, and from a concrete point of view, an application is described by several
types of diagram;

• an application structure diagram is used to represent the service
interactions between the application components using service
interfaces.

 For more details, see Application structure diagram.

• A Scenario of application flows describes the flows exchanged between
the IT services or the microservices used by the application. A scenarios
can represent a particular application use case or more globally all the
flows exchanged within this application.

 For more details, see Using a Scenario of Application Flows
Diagram.

• Scenario of sequence of flows presents the agents necessary for the
scenario (IT services, microservices, data stores) and exchanged
sequenced application flows.

 For more details, see Creating a flow scenario sequence diagram.

• an application deployment architecture used to represent technical
elements that support the application.

 For more details, see Describing an Application Deployment
Architecture.

• A Use Case Diagram used to represent the exchanges between the
application and actors, according an UML approach.

 For more details, see Creating an application Use Case Diagram.

For more details on modeling applications with Hopex IT Architecture, see
Modeling application architectures.

Describing an Application Environment with Hopex IT Architecture

 An application environment is used to represent a use context of an
application. An application environment allows presenting the other
application systems, applications, microservices or actors with which
this application can interact.

Describing an Application Environment
 An application environment is used to represent a use context of an
application. An application environment allows presenting the other
application systems, applications, microservices or actors with which
this application can interact.

90

An application environment is described by several types of diagrams:
• An Application Environment diagram describes the exchanges between

the subject application and its partners in a specific context.
 For more details, see Application Environment Diagram
presentation.

• a scenario of application environment flows describes the flows
exchanged between the described application and its partners:
applications, application systems, IT services or microservices used by
the described application in a specific context.

 For more details, see Using a Scenario of Application Flows
Diagram.

• a scenario of sequences of flows presents the agents necessary for the
scenario (application, IT services, microservices, data stores) and
sequence application flows exchanged.

 For more details, see Using a flow scenario sequence diagram.

Accessing the List of Application Environments

To access the list of application environments from the Applications navigation
menu:

 Open the Environments page from the application of you interest.
The list of application environments appears in the edit area.

Creating an application environment

To create an Application environment::
1. Open the Environments page from the application of you interest.

The list of application environments appears in the edit area.
2. Click New.

The new application environment appears in the list under the name
“Environment” followed by the name of the application.

Application environment properties

The Characteristics properties page of an application environment provides access
to:

• its Owner, by default during creation of an application system
environment, the current library.

• its Name,
• the text of its Description.

 For more details on other property pages of the application
environment, see Hopex IT Architecture properties pages content.

91

Modeling Applications and System Architectures
Describing an Application with Hopex IT Architecture

The Components property page of the application environment provides access to
partners elements:

• Applications
• Microservice,
• IT Services,
• System users.

 For more information on the components of an application
environment diagram, see Application Environment Diagram
presentation.

Application Environment Diagram presentation

With Hopex IT Architecture, an application environment is entirely described by
a an application environment diagram that is used to describe the service
interactions between the environment applications described, its users and the
external applications.

An application environment diagram includes:
• applications that represent the environment described.

In the example, this concerns the applications used for
buying spare parts.

 An application is a software component that can be deployed and
provides users with a set of functionalities.

• applications, application services or microservice partners that represent
the external elements used in the described environment.

This example concerns automated Web services.

 An IT service is a component of an application made available to
the end user of the application in the context of his/her work.

• org-units or type positions that represent the users or the suppliers of
the environment described.

This example concerns local participants.

 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

• Service interactions between components.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

• request and service points

92

Specifying the Risks associated with an Application

Hopex IT Architecture is used to identify the risks associated with an application,
and to retrieve the evaluations defined in the Hopex Enterprise Risk
Management solution. You can define a new risk using the application or connect
a previously defined risk.

To connect a risk to an application:
1. Open the Characteristics property pages of the application.
2. Expand the Risk section.
3. Click Connect.

The query dialog box appears.
4. Find and select the risk required and click OK.

For more details on risks and their evaluation, see Hopex Enterprise Risk
Management.

93

Modeling Applications and System Architectures
Describing System architecture

DESCRIBING SYSTEM ARCHITECTURE

Describing an Application System

A project for describing the functional architecture of an information system is also
used to inventory the existing application systems and their interactions.

 An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

An application system is described by several types of diagrams:
• An application structure diagram is used to represent the service

interactions between the application components using service
interfaces.

 For more details, see Creating an application system structure
diagram.

• An Application System Deployment Architecture. used to represent the
technical architecture chosen for the deployment of each component that
support the application system as well as the techniques used for their
communications .

 For more details, see Describing an Application System Deployment
Architecture.

• A scenario of application system flows presents the flows exchanged
between the application systems, the applications or the microservices
used by this application system. A scenario can represent a particular
use case of the application system or more globally all the flows
exchanged within this application system.

 For more details, see Using a Scenario of Application System Flows.

• Scenario of sequence of flows presents the agents necessary for the
scenario (IT services, microservices, data stores) and exchanged
sequenced application flows.

 For more details, see Using a flow scenario sequence diagram.

Creating an Application System

To create an application system:
1. Click Application Systems navigation menu.

The list of application systems appears.
2. Click New.

The Creation of Application System dialog box appears.
3. Enter the Name of your application system and click OK.

The new application system appears in the list.

94

Application System Properties

The Characteristics property page for an application system provides access to
several sections.

• The Identification section provides access to the following information:
• the Name,
• its Owner, by default during creation of the application system, the

current library.
• the text of its Description
• the internal Code,
• the Version number,
• Description.

• About the Functional Scope section of the application system, see
Defining Application Functional Scope.

• the Use Cases section, see Creating an application Use Case Diagram.
• The Responsibility section relates to the person(s) responsible for the

application system.
• Software Designer
• Local Application Owner

 For more details on these roles, see Business Roles of Hopex IT
Architecture..

• The Attachments section is limited to associated attachments.
 For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

With Hopex IT Architecture an application system is described by other property
pages. See Hopex IT Architecture properties pages content.

95

Modeling Applications and System Architectures
Describing System architecture

Creating an application system structure diagram

This diagram describes the internal structure of an application system:
• services offered or required,
• the application components and their interactions; these are application

systems service, applications and microservices,
• the end users interacting with the application components.

The following diagram describes the application system
corresponding to purchasing requests processing.

The following diagram describes the application system corresponding to purchasing requests processing.

To create an application system structure diagram:
1. Open the Diagrams page of the application system of your choice and

click Create a diagram.
2. Select Structured diagram > Internal Architecture.

The application system structure diagram appears.

96

Adding an application system to an application system structure
diagram

To describe an application system that implements another application system, you
can add an application system of the application system structure diagram.

For example, the purchasing requests processing system uses
the "Purchasing Management Platform" and "Payment
Management" application system services.

To add an Application System:
1. In the objects toolbar of the application system structure diagram, click

 Application System.
2. Click in the frame of the described application system.

An addition window box prompts you to choose the application system
implemented (for example "Payment management").

3. Select an application system.
4. Click OK.

The application system appears in the diagram.

Adding an end user to an application system structure diagram

To specify that an application system, such as purchasing request processing, is
activated by internal or external org-units, you will add an associated end user.

 The end user represents an organizational unit interacting at the
boundaries of an application system or a logical application system.

To add an end user:

1. In the application system structure diagram objects toolbar, click
End User and click in the frame of the diagram.
An addition window prompts you to choose the Object Type that you
wish to use: Org-Unit or Position type.

2. For example, select the Org-unit object type.
 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

 A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

3. Select the org-unit that interests you and click OK.
The actor appears in the diagram.

97

Modeling Applications and System Architectures
Describing System architecture

Using a Scenario of Application System Flows

 For more details on the use of a scenario of flows, see Using a
Scenario of Application Flows Diagram.

A scenario of application system flows represents the flows exchanged between
certain elements of the application system in a given context. The elements
represented are:

• application systems,
• applications,
• Microservices
• organization org-units,
• internal or external local application data stores,
• input or output application ports.

The interactions offered between these elements:
• flows that carry a content,
• flow channels that group a number of application flows on a single link,
• application data channels that represent the interactions between the

application data stores.
The scenario of application system flows below describes
the interactions between a client and the eCommerce
application.

Example of scenario of application system flows for "Purchasing Requests Processing".

To create a scenario of application system flows diagram:
1. Open the Diagrams page of the application system of your choice and

click Create a diagram.
2. Select Structured Diagram > External Data Flows.

The Scenario of application system flows diagram appears.

98

Adding an org-unit to the Scenario of Application System Flows

An org-unit is represented by an Org-Unit or by a Position type.
 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

 A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

To add an organization unit:
1. In the scenario of application system flows object toolbar, Org Unit.
2. Click in the frame of the described application system.

An addition window prompts you to choose the org-unit name you wish to
use:

3. Select the org-unit that interests you and click OK.
The actor appears in the diagram.

 To create a new org-unit, enter his name and click OK.

Adding a scenario of application system flows
 An application is a software component that can be deployed and
provides users with a set of functionalities.

To add an application:
1. In the scenario of application system flows object toolbar, click

Application.
2. Click in the frame of the described application system.

An addition dialog box prompts you to choose the application that you
want to use (for example "eCommerce purchase").

3. Select the application and click OK.
The application appears in the diagram.

In the same way you can add:
• an application system

 An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

• a microservice.

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

If the component we have added in the scenario of application system flows is
already described by a scenario of flows, a new section is created in the
Characteristics property page of the component.

For more details, see Reinitializing components in a scenario of flows.

99

Modeling Applications and System Architectures
Describing System architecture

Describing an Application System Environment with Hopex IT
Architecture

 An application system environment allows presenting the other
application systems, applications or microservices with which this
application system can interact.

Accessing the list of application system environments

To access the list of application system environments from System the Application
Systems navigation menu:

 Open the Environments page of the application system of your choice.
The list of application system environments appears in the edit area.

Creating an application system environment

To create an Application System Environment from the Application Systems
navigation menu:

1. Open the Environments page of the application system of your choice.
The list of application system environments appears in the edit area.

2. Click New.
The new application system environment appears in the list, it has the
name of the application system followed by "Environment".

Application system environment properties

The Characteristics properties page for an application system environment
provides access to:

• its Owner, by default during creation of an application system
environment, the current library.

• its Name,
• the text of its Description.

With Hopex IT Architecture an application system environment is described by
other property pages. See Hopex IT Architecture properties pages content.

Application system environment diagrams

An application system environment is described by several types of diagram:
• an Application System Environment diagram describes the exchanges

between the subject application system and its partners in a specific
context.

 For more details, see Describing an application system environment
diagram.

• a scenario of application system environment flows presents the flows
exchanged between the application services or the microservices used by
the described application system in a specific context.

 For more details, see Describing a Scenario of Application System
Environment Flows.

100

Describing an application system environment diagram

An application system environment is described by an application system
environment diagram that describes the service interactions between the internal
application systems, its users and the partner application systems.

 For more details on use of a structure diagram, see Application
structure diagram

Application system environment diagram for the Purchasing Requests

Purchase requests are formulated by clients or employed
using the "Purchasing Management Platform".

The "Purchasing Management Platform” application system
uses an internal application system for the “Payment
management” and a partner application system for the
“Delivery”.

The elements of an application system environment diagram are:
• the main application system principal described by the environment.

 An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

• partner application systems that represent the other application system
with which the main application system described by the environment
interacts.

In this example, this concerns two loan services offered to
individuals and companies.

 A partner application system is an application system external to
the environment of the described application service. The partner

101

Modeling Applications and System Architectures
Describing System architecture

application system can be a service supplier or a service consumer with
respect to application system users.

• The categories of users of services provided by the environment are
represented either by an Org-Unit or by a Position Type.

 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

 A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

This concerns two user categories: individuals and
companies.

• Service interactions between components

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Describing a Scenario of Application System Environment Flows

A scenario of application system environment represents the flows exchanged
between the components of the application system environment.

 For more details on use of a scenario of flows, see Using a Scenario
of Application Flows Diagram

The elements of a scenario of application system environment are:
• the main application system principal described by the environment.

 An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

• partner application systems that represent the other application system
with which the main application system described by the environment
interacts.

 A partner application system is an application system external to
the environment of the described application service. The partner
application system can be a service supplier or a service consumer with
respect to application system users.

• End User Participants that represent the categories of users of
application system provided by the environment.

• The categories of users of services provided by the environment are
represented either by an Org-Unit or by a Position Type.

 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external

102

org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

 A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

• Service interactions between components

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

103

MODELING APPLICATION ARCHITECTURES

With Hopex IT Architecture, an application is described by the application flows processed, the
components (services and API) providing the functionalities expected by the business and the
environment components interacting with it.

After describing the functionalities requested by an application to meet business requirements, this
chapter describes how to describe the flows and the structure of applications.

The following points are covered here:

 Describing data flows.
 Describing the structure and services of an application;
 Describing System Processes;
 Managing Data.

104

DESCRIBING DATA FLOWS

Defining a data flow and its usages

 A flow represents the circulation of information between two agents
in the Information System (for example, two applications, an application
and an actor, etc.). This flow is defined by a sender, a receiver, and
exchanged content, symbolizing the data being transported. A flow is
defined in absolute terms.

 An application flow represents the use of a flow between two
agents (e.g., applications) in a usage context (represented by a
scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.

A scenario of flows represents a context in which an agent is used: an application
or an IT system, for example. An application flow describes the exchange of data in
a unique usage context. However, the same exchange of data can be described in
another usage context by another application flow.

An application flow is owned by a single flow scenario and refers to a single flow.

A flow enables the representation of data exchanges common to several contexts,
i.e., several flow scenarios. A flow can be connected to several application flows.

Flow qualification
Measure Schemes Categorization enable the definition of parameters that
characterize the flows.

To qualify a flow from a Flow measure:
1. Open the Qualification page of the flow that interests you.
2. In the Flow Qualification section, click the Connect button.

A selection dialog box opens displaying the tree of existing Measure
Schemes Categorizations.

3. Select the flow measures that interests you and click Add.
 To access the list of Application Flow Categories: using the
Administration navigation menu, select Categorization and unfold
the Measure schemes Categorization. The list of Application Flow
Categories appears.
 For more details on the Application Flow category concept, see
Defining Data Categories.

Associating a Service Interface Used to a flow
 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

 A service interface use is associated to a service interface. It
enables representation of complex exchanges.
 For more details on service interfaces, see Describing a service
interface.

105

Modeling application architectures
Describing data flows

A service interface can be connected to a flow. This enables the identification of the
API used in a flow context, for example.

There are two ways to use a service interface within a flow:
• The flow triggers the service interface (API). It is then of Call/Request

type.
• The flow is the result of the service interface (API). It is then of Result/

Provision type.

To associate a service interface to a flow:
1. Open the Service Interface Used page of the application flow that

interests you.
2. Click New.

A dialog box opens proposing a list of service interfaces used whose
content is a request point or a result.

Using a Scenario of Application Flows Diagram
The scenario of flows diagram describes the flows exchanged between the system
elements represented.

Two types of diagrams are proposed:
• The Scenario of flows diagrams that describe the flows exchanged in

different use scenarios of the object described.
• Scenario of sequence diagrams that describe the chronology of the flows

exchanged in different use scenarios of the object described.
 To use Scenario of Application Flows Diagrams, open the Options
window and check that IT Architecture > Activate Flow Scenario
Sequence Diagrams option is activated.

A Scenario of Application Flows Diagram can be built for an application environment,
an application, an application system, an IT service or a microservice. This diagram
is used to describe the exchanges inside the described object in a specific context.

106

The scenario of application flow diagram below describes the "Purchase request
management" application.

Example of a Scenario of Application Flows for "Managing Purchase Orders".

In a scenario of application flows diagram, the elements represented are:
• IT Services,services, see Describing an IT Service with Hopex IT

Architecture,
• Microservices, see Describing a microservice with Hopex IT Architecture,
• internal or external local application data stores, see Using Data Stores,
• System Triggering Events and System Triggered Events, see Creating a

System Triggering Event.

The interactions offered between these elements:
• application flows connected to flows,
• application flow channels that group a number of application flows on a

single link,
• application data channels that represent the interactions between the

application data stores.

Creating a Scenario of Application Flows diagram
To create a scenario of application flows from the Applications navigation menu:

1. Right-click the application that interests you and click Create Diagram.
2. In the Create a diagram window, select Structured diagram >

Internal Architecture.
The Scenario of Application Flows Diagram appears.

Adding an IT service to the scenario of application flows
 An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

107

Modeling application architectures
Describing data flows

To add an IT service:
1. In the objects toolbar of the scenario of application flows, click IT

Service.
2. Click in the described application frame.

An addition window box prompts you to choose the IT Service
implemented (for example "Customer management").

3. Select the IT Service required and click OK.
The IT Service appears in the diagram.

You can add a micoservice in the same way.
 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

Creating an Application Flow
 An application flow represents the use of a flow between two
agents (e.g., applications) in a usage context (represented by a
scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.

The application flows exchanged between IT services, microservices, or application
ports in a scenario of application flows are associated with a flow, which is itself
associated to a communication system and a content.

 A flow represents the circulation of information between two agents
in the Information System (for example, two applications, an application
and an actor, etc.). This flow is defined by a sender, a receiver, and
exchanged content, symbolizing the data being transported. A flow is
defined in absolute terms.

 The content designates the content of a message or an event,
independent of its structure. This structure is represented by an XML
schema linked to the content. A content may be used by several
messages, since it is not associated with a sender and a destination.
There can be only one content per message or event, but the same
content can be used by several messages or events.

When creating an application flow, you must associate it with a communication
system and a content.

To create an application flow:
1. In the objects toolbar of the scenario of application flows, click

Application flow and select the Type of application flow that
interests you.
• Result/Provision associated to a service result,
• Call/Request associated to a service request,
• Signal associated to an information exchange.

 For more details, see Associating a Service Interface Used to a flow.
2. Click the first object representing the sender of the flow and, holding the

mouse button pressed, draw a link to the object receiving the flow.
The Application Flow Creation dialog box opens.

3. Select the communication system that will be associated to the flow.
 For more details on communication systems, see Using
communication systems.

108

4. From the Content field, select the content you wish to associate with the
message flow.

5. Click OK.
If it doesn’t exist yet, a flow is created.
The application flow, represented by an arrow between the sender and the
receiver, is displayed in the diagram. By default, the name of the flow is
displayed on the link.

 To display the Content and the Flow on the application flow link,
click the application flow to display its contextual menu and select
Shapes and Details. From the Flow folder, check the Short Name
Content box.

Accessing Application Flow Properties
 An application flow represents the use of a flow between two
agents (e.g., applications) in a usage context (represented by a
scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.

To access an Application Flow properties from a scenario of application flows
diagram:

1. Select the link connected to the application flow that interests you:
The application flow properties open to the right of the diagram.

2. In the Characteristics page, the Flow field enables the access to the
associated Flow properties.

3. In the Diagrams page, enables the access or the creation of a
Communication Chain diagram associated to the Flow.

 For more details on communication chain, see, Using Software
Communication Chains.

Accessing a flow properties
You can access a flow properties from the application flow that references it or from
a scenario of flow diagram.

 A flow represents the circulation of information between two agents
in the Information System (for example, two applications, an application
and an actor, etc.). This flow is defined by a sender, a receiver, and
exchanged content, symbolizing the data being transported. A flow is
defined in absolute terms.

109

Modeling application architectures
Describing data flows

To access a flow from a scenario of application flows diagram:
� From the link of the application flow, click the flow name that interests

you.
The flow properties open to the right of the diagram.

• The Characteristics page provides access to the following sections:
• Identification, presenting the Name of the flow, its Description,

the Application flow type and the flow Code.
• Implementing software, presenting the Communication system

owned by the flow as well as the application communication chain.
 A flow can be linked to several application communication chains.

• Qualification, presenting the Flow Measures defined for the flow.
 For more details on flow qualification, see Flow qualification.

• The Usage page provides the list of application flows connected to the
flow.

• The Service Interface used page provides access to the interfaces and
operation services used by flows.

 For more details, see Associating a Service Interface Used to a flow.

• The Diagrams page enables the access or the creation of a
Communication Chain diagram associated to the Flow.

 For more details on communication chain, see, Creating a software
communication chain from a scenario of flow.

Creating an application flow channel
 An application flow channel is used to graphically group a number
of application flows into a single flow.

To create an application flow channel, you must first create the channel and then
link the application flows that it groups.

To create an application flow channel:
1. In the objects toolbar of the scenario of application flows, click

Application Flow Channel.
2. Click the first object in communication and, holding the mouse button

pressed, draw a link to the other object.
The application flow channel appears in the diagram.

To connect the application flows to the application flow channel:
1. Open the Characteristics page of the application flow channel.
2. In the Grouped Flow section, click Connect.

A selection dialog box opens and presents the list of the application flows
of the scenario of application system flows.

3. Select the flows that you want to group and click OK.
The content of the selected flows is displayed in the Grouped Flow list.

4. Click the Refresh Channels button.
The application flows grouped in the channel disappears and the
corresponding content is displayed around the channel.

 If you remove the channel, only the application flows created from
the Grouped Flows are removed. The connected application flows are
displayed if you click the Refresh Channels button.

110

Creating a System Triggering Event
The creation process for a Creating a System Triggering Event and a Creating a
System Triggered Event is the same.

To create a System Triggering Event:
1. In the diagram insert toolbar, click the System Triggering Event

button.
2. Position the object at the edge of the frame of the described object.

A creation dialog box opens.
3. Click the arrow at the right of the Referenced Content field and select

the content that interests you.
4. Click Add.

The System Triggering Event appears in the diagram.

Any application flow whose origin is the System Triggering Event is connected to the
same content.

To create an application flow from a System Triggering Event:
1. In the diagram insert toolbar, click Event Participation.
2. Click the event and, holding the mouse button pressed, draw a link to the

object receiving the flow.
The application flow is displayed with its content associated to the event.

 Reinitializing components in a scenario of flows

If you insert in a scenario of flows diagram a component that is already described
by a scenario of flows, you can note that a new section is created in the
Characteristics page of the component you have added. This section allows you to
specify which scenario of flows of the component corresponds to the context of the
current application system scenario of flow.

In the component scenario of flows diagram, the Reinitialize components button
allows you to insert components coming from the upper level scenario of flow.

Adding an application data store to the scenario of application system flows
 An application data store materializes the usage of data in the
context of a software component (for instance an application). An
application data store provides a mechanism to retrieve or update
information stored outside of the current software component.

A data store can be local or external to the application.

To add, for example, a local application data store to an scenario of application flows
1. In the scenario objects toolbar, click Local Application Data Store.
2. Click in the described application frame.

An addition window prompts you to choose the Object Type that
represents the physical structure that will concretely support the
application data store.

 For more information on managing data stores, see Managing Data.
3. Depending on the Object type, select then the object that interests you.
4. Click OK.

The local application data store appears in the diagram with the name of
the physical data domain selected.

111

Modeling application architectures
Describing data flows

Creating an application data channel
The applications, the application systems and the microservices can have read or
write access to a local or external application data store.

To create an application data channel that represents a reading access:
1. In the diagram objects toolbar, click Application Data Channel.
2. Draw a link between the application data store and the object that reads

the data.
An application data channel appears in the Diagram.

 To create a link with write access, you must draw a link between
the object that reads and the application data store.

Using communication systems

 A communication system helps to identify and describe the main
integration processes using several Software Communication Chains as
well as communication services.

This communication system has its own internal agents (communication services)
that enable the definition of communication chains that describe all the steps
involved in a flow behavior.

Those chains may be described using the Enterprise Integration Pattern
notation (http://www.enterpriseintegrationpatterns.com).

This representation allows the modeling of application flows integration process
represented in scenario of flows in Hopex.

 For more details on scenario of flows, see Using a Scenario of
Application Flows Diagram.
 For more details on how associating a communication system with
a flow, see Creating an Application Flow.

Accessing the list of communication systems
To access the list of communication systems from the Inventories navigation
menu:

� SelectSoftware > Communication systems.
The list of communication systems appears.

Communication System Properties
The complete description of a communication system is accessed in its property
pages.

112

The Characteristics page for a communicate system provides access to:
• its Name,
• Its Owner, by default the application specified when it was created.
• the text of its description.
• the Software Communication Chain section which provides access to

the list of components of the described communication system.
 A software communication chain describes the mechanism by which
a content is transfered from a sender system to a receiver system.This
includes, routing, channeling and message translation.

• the Communication Service section which provides access to the list of
objects of the software communication chain.
Three services types can be proposed:
• Message Channel,

 A channel is used to identify the enterprise resources used by a
persona to achieve a step. For example, a channel can be a phone or
internet connexion.

• Message Router,

 A message router is a communication step that identifies which
route should be used for next message step.

• Message Translater,

 A message translator is a communication step that translates a
message from a format to another. It can be used for trans-codification,
data type conversion.
 For more details on components of a communication chain, see
Describing a Software Communication Chain

The Implementing Software properties provides the liste of Applications et
Application Systems representing the communication system execution.

The Managed Flow properties provides access to the list of Flows connected to the
communication system. For more details, see Creating an Application Flow.

The Reporting page enables access the Flow rationalization report. For more
details, see Flow Process Rationalization.

Using Software Communication Chains

Describing a Software Communication Chain
 A Software Communication Chain Diagram describes the
mechanism by which a content is transfered from a sender system to a

113

Modeling application architectures
Describing data flows

receiver system. This description includes the routing, the channeling
and the messages translation.

A software communication chain diagram includes:
• A Communication Start Event and a Communication End Event that

designate the starting and the ending points of the described integration
process.

• The Communication Sequences to describe the steps sequence.
• The Communication Services to describe the successive processing of

flows. For more details the specification of softwares that implement the
communication services, see Describing implementation of a
communication service
The Communication Service types are:
• Message Channel that designate the place where an application can

read or write informations.
 A channel is used to identify the enterprise resources used by a
persona to achieve a step. For example, a channel can be a phone or
internet connexion.

• Message Router to identify the destination channel to use for the next
transport step.

 A message router is a communication step that identifies which
route should be used for next message step.

• Message Translater to translate a message from a format to another

 A message translator is a communication step that translates a
message from a format to another. It can be used for trans-codification,
data type conversion.

Creating a software communication chain from a scenario of flow

You can create new communication chains from flows or application flows owned by
a scenario of flows.

 For more details on scenario of flows, see Using a Scenario of
Application Flows Diagram.

To create a software communication chain from a flow:
1. Open the flow scenario diagram that contains the flow that interests you.
2. Select the flow that interests you to open its Diagrams properties.

114

3. Click Create a diagram.
The diagram creation dialog box appears.

4. Select Software Communication Chain Diagram.
The software communication chain is created as well as its diagram.

5. You can modify the Name of the software communication chain from its
diagram.

 Several software communication chains can be connected to the
same flow.

Describing implementation of a communication service

A communication service can be processed by an application, a microservice or an
application service.

To specify the software that implements a communication service; a router, for
example:

1. Open the Characteristic property page the Router you are interested in.
2. Expand the Implemented Software section.
3. Click Connect.
4. In the search window, select the software that represents the execution

of the service associated with the router.
5. Click OK.

The software appears in the list.

Using a flow scenario sequence diagram
 To use Scenario of Application Flows Diagrams, open the Options
window and check that IT Architecture > Activate Flow Scenario
Sequence Diagrams option is activated.

This type of diagram can be built for an application system, an application
environment, an application, an application, an IT service or a microservice.

For each use context, you create flow scenario sequence diagrams. A flow scenario
sequence diagram presents the same exchanges between system elements,
highlighting their chronology. The elements in the sequence scenario are
represented in the diagram by lines.

115

Modeling application architectures
Describing data flows

A flow scenario sequence diagram contains:
• Lines which define service interaction participants: instances of

applications, services or interfaces.
• Different types of messages exchanged between participants.
• Advanced functions that enable concise description of several execution

sequences.

This diagram describes the operation of the "Order
Unreferenced Parts" use case :

When a purchase request is entered in the user interface,
the name of the part is received by the "Find Suppliers"
service, which draws up the list of suppliers offering the
requested part.

The "Compare Prices" service looks for the lowest-priced
product and sends information to the "Order Amount
Calculation" service.

When the order amount has been established, a final "Issue
Purchase Order" service sends the order via the interface.

 Creating a flow scenario sequence diagram
To create an application environment scenario sequence:

1. Open the Diagram page of the application environment that interests
you and click New.

2. In the dialog box, select Scenario of Application Environment Flows
- Application Environment Scenario Sequence Diagram.

Instances of applications, IT services or interfaces
Depending on whether the diagram describes a user interface, an application or an
IT service, the service interaction scenario diagram describes messages exchanged
between application instances, IT service instances and user interface instances.

 A Human-Machine Interface enables definition of a screen of an
application or an IT service.

 An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

116

To create an IT Service instance for example:
1. Click the IT Service button in the toolbar.
2. Click in the diagram.

The Add IT Service dialog box appears.
3. Click the arrow to the right of the Name field and select Connect IT

Service in the drop-down list.
The list of IT Services accessible from the current library appears.

4. Select the IT service you require.
5. Click OK.

The IT Service instance appears in the diagram.

Message instance
Message instances define the data exchanged between application instances, IT
Services and the interfaces. The sequence described in the flow scenario sequence
diagram indicates the message sending order.

Message instances displayed in sequence scenario diagram correspond to messages
owned by the application that have been previously defined in another diagram.

To create a message instance:
1. Click the reel in the toolbar.
2. Click the dotted line under the first object and, holding the mouse button

down, draw a line to the second object.
3. Release the mouse button.

The message instance exchanged between the two objects is drawn.

117

Modeling application architectures
Describing the structure and services of an application

DESCRIBING THE STRUCTURE AND SERVICES OF AN

APPLICATION

Application structure diagram

 An application structure diagram graphically shows first level
components of an application, the access points (service point and
request point) and the connections between components.

The “Purchase Request Management” application uses two IT
Services: “Display purchase request list” and “Assign and
handle purchase request”. The IT Service “Assign and handle
DA” uses the Excel microservice.

Creating an Application Structure Diagram
To create an Application Structure Diagram, for example:

1. Select the Application that interests you and click Create Diagram.
2. In the Create a diagram window, select Structured diagram >

Internal Architecture.
The internal architecture diagram appears. The frame of the Application
described appears in the diagram.

118

The components of an Application Structure Diagram
An Application Structure Diagram includes:

• IT services which represent the IT services used and deployed with the
application.

In the example, it relates to “Display purchase request
list” and “Assign and handle purchase request” services.

 An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

• Microservices which represent the services used independent from the
application.

In the example, it relates to the Excel application.

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

• request and service points
 For more details, see Describing Service and Request Points.

• Service interactions between components.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

• physical data stores used by the application.
 For more details, see Managing Data.

Adding an IT Service to an application structure diagram
To describe that an application uses an IT Service, go to:

1. In the object toolbar of the application structure diagram, select IT
Service and click in the frame of the application described.
An addition dialog box asks you to select the existing IT Service Name.

2. Select an existing IT service.
3. Click OK.

The IT Service appears in the diagram.

Describing an IT Service with Hopex IT Architecture

 An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

119

Modeling application architectures
Describing the structure and services of an application

IT Service diagrams
An IT Service is described by several types of diagrams:

• an IT Service structure diagram is used to represent the service
interactions between the IT Service components under the form of
service interfaces.

 For more details, see Using IT Service Structure Diagram.

• a scenario of IT Service Flows presents the application flows exchanged
between the described IT services or microservices used by this IT
Service. A scenario can represent a particular use case of the IT service
or more globally all the flows exchanged within this IT service.

 For more details, see Using a Scenario of Application Flows
Diagram.

Accessing the list of IT services
To access the list of IT Services from the Inventories navigation menu:

� Select Software > IT Services.
The list of IT services appears in the edit area.

IT Service properties
The complete description of an IT Service is accessed from its properties pages.

The Characteristics properties page for an IT Service provides access to:
• its Owner, by default during creation of the IT service, the current

library.
• its Name,
• the Type,
• the Visibility,
• the Review Status,
• the text of its Description
• The Functional scope section is used to describe:

• The business capabilities covered by the IT Service,

 A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.
 For more details on business capabilities, see Describing Business
Capabilities with Hopex IT Architecture.

• The Implemented Functionalities that are fulfilled by the IT service.

 A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute

120

a specific operation. If it is a software functionality, it can be provided
by an application.
 For more details on functionalities, see Describing a Functionality
Map with Hopex IT Architecture.
 For more details on fulfillments, see Using fulfillment mechanisms.

• the Use Cases section, see Creating an application Use Case Diagram.
• The Responsibility section relates the person(s) responsible for the IT

service
• Software Designer
• Local Application Owner

 For more details on these roles, see Business Roles of Hopex IT
Architecture..

• the Technologies section provides access to the list of Software
Technologies used by the IT Service.

 A technology is a definition or format that has been approved by a
standards organization, or is accepted as a standard by the industry.
 For more details on software technologies, see Describing a
Software Technology.

• the Risks section presents the risks associated with the application, see
Describing an Application Environment with Hopex IT Architecture.

With Hopex IT Architecture an IT service is described by other property pages,
see Hopex IT Architecture properties pages content

 Using IT Service Structure Diagram
 For more details on use of a structure diagram, see Application
structure diagram

With Hopex IT Architecture, the components of an IT Service can be described
by an IT Service structure diagram.

An IT Service Structure Diagram includes:
• IT services,
• Microservices
• Physical data stores; see Managing Data.
• access, request and service points; Creating a Service Point or a Request

Point.
• Service interactions between components

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Describing a microservice with Hopex IT Architecture

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application

121

Modeling application architectures
Describing the structure and services of an application

systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

Microservice diagrams
A microservice is described by several types of diagram:

• A microservice structure diagram is used to represent the interactions
between microservice components based on service interfaces
formalism.

 For more details, see Using a Microservice Structure Diagram.

• A microservice flow scenario presents the flows exchanged between the
microservice elements in a given context.

 For more details, see Using a Scenario of Application Flows
Diagram.

• A microservice deployment architecture used to represent technical
elements that support the microservice.

 For more details, see Describing an Application Deployment
Architecture.

Accessing the list of microservices
To access the list of microservices from the Inventories navigation menu:

� Select Software > MicroServices.
The list of microservices appears in the edit area.

Microservice properties with Hopex IT Architecture
A Microservice can be described from its properties pages.

The Characteristics property page of a microservice provides access to:
• Its Owner which is the current library by default,
• its Name,
• the Review Status,
• the text of its Description
• The Functional scope section is used to describe:

• The Business capabilities covered by the microservice,

 A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.
 For more details on business capabilities, see Describing Business
Capabilities with Hopex IT Architecture.

• The Implemented Functionalities that are fulfilled by the microservice.

 A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute

122

a specific operation. If it is a software functionality, it can be provided
by an application.
 For more details on functionalities, see Describing a Functionality
Map with Hopex IT Architecture.
 For more details on fulfillments, see Using fulfillment mechanisms.

• the Use Cases section, see Creating an application Use Case Diagram.
• The Responsibility section relates the person(s) responsible for the IT

service
• Software Designer
• Local Application Owner

 For more details on these roles, see Business Roles of Hopex IT
Architecture..

• The Technologies section provides access to the list of Software
Technologies used by the microservices.

 A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.
 For more details on software technologies, see Describing a
Software Technology.

• the Risks section presents the risks associated with the application, see
Describing an Application Environment with Hopex IT Architecture.

With Hopex IT Architecture a microservice is described by other property pages,
see Hopex IT Architecture properties pages content

Using a Microservice Structure Diagram
 For more details on use of a structure diagram, see Application
structure diagram

With Hopex IT Architecture, the components of a microservice can be described
by a microservice structure diagram.

A Microservice Structure Diagram includes:
• IT services,
•
• Physical data stores; see Managing Data.
• access, request and service points; Creating a Service Point or a Request

Point.
• Service interactions between components

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Creating an application Use Case Diagram
 To access UML functions, you must be connected with the Solution
Architect profile or the Solution Architecture Functional
Administrator profile.

123

Modeling application architectures
Describing the structure and services of an application

A use case diagram enables description of service interactions between a system
and actors of the organization.

 A use case is a series of actions leading to an observable result for
a given actor. Scenarios illustrate use cases for example.

The system is used to consult parts in stock and to order
new spare parts.

Consultation of parts in stock is carried out by the local
on-site purchasing assistant. Following consultation, the
assistant can make an availability request.

Two order types are possible, one for parts already
referenced, the other for parts as yet unreferenced. In both
cases, an order form should be completed.

Order follow-up is assured by the local purchasing
assistant and the boat repairer.

 For more details on use case diagrams, see Use Case Diagram.

To create a use case diagram from an application, for example:
1. Open the Characteristics page of the appropriate object and expand

the Use Case section.
2. Open the Diagrams property page of the use case you are interested in.
3. Click Create a diagram and select Use Case Diagram.

The diagram appears in the edit area.

124

DESCRIBING SYSTEM PROCESSES

In detailed specification phase, the progress of tasks implemented in an IT service
can also be modeled by a system process. More generally, operation of an
architecture element can be described by a system process modeling, for example,
sequence flow of screens presented to the user.

System process diagram example

The diagram below represents purchase request processing.
• A product search is carried out from the referenced products repository.
• If the product is new, search for a supplier and comparative study of

prices is carried out. An order is then sent and the process ends.
• If the product is referenced, stock is analyzed.
• If stock is sufficient, a "Make available" request is activated and the

process ends.
• If stock is less than minimum stock, an order is sent to the supplier and

the process ends.

Managing System Processes with Hopex IT Architecture

 A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which

125

Modeling application architectures
Describing System Processes

the tasks follow each other, the information flows exchanged with the
participants.
 For more details on creating system process diagrams, see the
Hopex Business Process Analysis guide, paragraph "Managing
System Processes".


Accessing system processes
To access the list of system processes from the Inventories navigation menu:

� Select Software > System processes.
The list of system processes appears.

Creating a system process diagram
The system process diagram uses notation proposed by BPMN standard. The system
process algorithm can be expressed by sequencing of tasks and decisions.

A system process diagram can be created and updated in tabular input mode.


 For more information on using tabular entry, see the “Diagrams in
Tabular Entry Mode" in the Hopex Common Features guide.

To create a system process diagram:
1. Select the system process that interests you and click Create Diagram.

The Diagram type selection dialog box opens.
2. Click System process diagram.

The diagram opens in the edit area. The frame of the system process
described appears in the diagram.

Creating a Task

Tasks correspond to process steps.
 A task is an elementary step that is included within a system
process. A task is used when the work in the system process is not
broken down to a finer level of the process. Generally, an end-user and/
or an IT service are used to perform the task when it is executed.

To create a task:
1. In the diagram insert toolbar, click the Task button then click in the

diagram.
2. Enter the task name and click OK.

The task appears in the diagram.

Message flows

Message flows represent exchanges between the system process and the exterior.
 An application flow represents the use of a flow between two
agents (e.g., applications) in a usage context (represented by a

126

scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.

 A message flow can be linked to an event of message type.

Sequence flows

Organization of tasks in the system process is represented by sequence flows
between tasks.

 A sequence flow is used to show the order in which steps of an
service contract will be performed. A sequence flow has only one source
and only one target.



 For more information on managing sequence flows, see “Describing
Operations Sequence” chapter in the Hopex Business Process Analysis
guide.

Events

Events represent facts occurring during process execution.
 An event represents a fact or an action occurring in the system,
such as updating client information. It is managed by a broker. An
application indicates that it can produce the event by declaring that it
publishes it. If an application is interested in an event, it declares that it
subscribes to the event.

An example is the start or end of the system process.

Start

Final

The event can also be sending or receiving a message flow.

127

Modeling application architectures
Describing System Processes

Gateways
 Gateways are modeling elements that are used to control how
sequence flows interact as they converge and diverge within a process.


 For more information on managing gateways, see “Using gateways”
chapter in guide Hopex Business Process Analysis.

Creating a participant in a System Process Diagram

In a system process diagram, a participant enables grouping of tasks assigned to
an application or service.

To create a participant:
1. In the diagram insert toolbar, click the arrow at the right of the

Participant (Application) button.
2. In the list proposed, select for example Application Participant and

click in the diagram.
The participant creation dialog box appears.

3. Click the down arrow of the Application field and select the applications
that interest you.

4. Click OK.
The participant created appears in the diagram with a header containing
the name of an assigned application.

 To place a participant with assignment as yet unknown, select the
Participant icon.

To assign a task to a participant:
� place the task within the frame of the participant.

Specifying the behavior of a task in a System Process
Conformément à la norme BPMN, un processus peut avoir des comportements
différents.

Avec Hopex Business Process Analysis, ces comportements sont disponibles
pour les processus, les opérations, les processus applicatifs et les tâches.

128

Les comportements
Les comportements proposés sont :

• Transaction : une transaction est un ensemble d'activités coordonnées
entre elles en vue d'obtenir un résultat cohérent et vérifiable.

• Boucle : une boucle est une étape d'un processus qui est répétée tant
qu'une condition est vérifiée.
• “Faire tant que” : la condition est évaluée avant la première exécution.
• “Faire jusqu'à ce que” : la condition est évaluée après la première

exécution. Dans ce cas, le processus est toujours réalisé au moins une
fois.

Le prédicat permet de spécifier la condition d’exécution de la boucle.
• Ad hoc : les étapes d'un processus de ce type ne sont pas contrôlées, ni

ordonnées. L’ordre de réalisation est déterminé par les participants qui
exécutent le processus.

• Multiple : le processus est répété un nombre prédéfini de fois qui est
évalué avant sa première exécution. Il est possible de spécifier le type
d’exécution :
• “Parallèle” : toutes les exécutions sont réalisées en même temps
• “Séquentielle” : les exécutions sont réalisées les unes après les

autres.
• Compensation : une compensation définit l'ensemble des activités qui

sont réalisées après l'annulation d'une transaction pour compenser les
activités réalisées durant le déroulement normal du processus.

Pour décrire, par exemple, qu’un processus est exécuté en boucle :
1. Ouvrez la page de propriétés Caractéristiques du processus.
2. Dans la section Détails, à droite du champ Boucle, sélectionnez le type

de boucle correspondant au comportement du processus et ajoutez le
texte de la condition.
La forme du processus est modifiée pour faire apparaître le symbole de la
boucle.

Type de tâche
Pour préciser le type d'une tâche :

1. Ouvrez la page de propriétés Caractéristiques du processus.

129

Modeling application architectures
Describing System Processes

2. Dans la section Détails, cliquez sur la flèche à droite du champ Type de
tâche.
La liste des types de tâche s’affiche.
• Réception : tâche élémentaire qui attend l'arrivée d'un message en

provenance d'un participant externe au processus. Quand le message
a été reçu, la tâche est terminée.

• Emission : tâche qui envoie un message à un participant externe au
processus. Quand le message a été envoyé, la tâche est terminée.

• Manuelle : tâche réalisée sans l'aide d'un moteur d'exécution
automatique d’un processus ou d'une application informatique.

• Règle métier : tâche d'exécution d'une règle métier qui dispose d’un
moteur de règles qui traite les données en entrée et retourne en sortie
les résultats du calcul effectué.

• Script : tâche réalisée par un moteur d'exécution de processus. Le
concepteur définit un script dans un langage que le moteur est
capable d'interpréter. Quand la tâche est prête à démarrer, le moteur
exécute le script. La tâche est terminée quand l'exécution du script est
terminée.

 La forme du processus est modifiée pour faire apparaître le
symbole associé au type de tâche.

Modeling Tasks of a System Process
The functional analysis phase describes the system processes implemented in the
different use cases of an application or service.

A system process diagram specifies the sequence flow of tasks to be executed so
that the user can check that the application satisfies its requirement.

Functional Modeling Example
The system processes used for a project functional analysis are stored in a package.

In the example of the purchase request processing automation project, system
processes are stored in the "Urgent Purchase Requests" package .

 A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which
the tasks follow each other, the information flows exchanged with the
participants.

Display the diagram describing a step in the system process in detail:
To open the diagram describing in detail a step in the system process:

1. Right-click the system process, for example "Consult Stock Levels" to
open its pop-up menu.

130

2. Select System Process Diagram.
The diagram associated with the process opens.

Consulting stock levels begins by display of a screen
enabling identification of the required part. The list of
parts found in the catalog is presented in the next screen.

When the user has selected the required part, information on
details is displayed. From this screen, it is possible to
obtain information on another part, make an availability
request for the part, or indeed order the part.

131

Modeling application architectures
Describing System Processes

Modeling Tasks of an IT Service
The phase of detailed analysis of system components impacted by the project
consists of detailed modeling of the operation of IT services.

In the context of the urgent order request processing
automation example, the service for comparing prices is
represented by a system process.

This diagram describes the algorithm of the "Compare
Prices" service, which should return the reference of the
lowest-priced part.

The list of suppliers of the required part is given at
input. The part proposed by the first supplier in this list
becomes the reference part. Assuming the supplier list is
not empty, data concerning the required part is then
analyzed. If the price of the current part is lower than the
price of the reference part, the reference part becomes the
current part.

When the complete list of suppliers has been analyzed,
information concerning the reference part is sent to the
"Order Amount Calculation" service.

132

MANAGING DATA

Data stores are used in architecture diagrams to represent data that must be stored
to be share between components.

 A data store provides a mechanism to update or consult data that
will persist beyond the scope of the current process. It enables storage
of input message flows, and their retransmission via one or several
output message flows.

A Data store can be supported by different object types:
• A data domain

 A data area represents a restricted data structure dedicated to the
description of a software Data Store. It is made of classes and/or data
views and can be described in a Data Area Diagram.

• a file structure

 A file structure represents a file folder or a single file used in the
technical architecture of an application.

• A NOSQL data domain

 NoSQL data domain represents a set of data stored in a NOSQL
database management system and used in the technical architecture of
an application.

• A Relational Schema

 Relational schema represents a set schema stored in a database
management system and used in the technical architecture of an
application.

Using Data Stores
A data store references, in a process or an application system, persistent data
defined in a data area.

 A data store provides a mechanism to update or consult data that
will persist beyond the scope of the current process. It enables storage
of input message flows, and their retransmission via one or several
output message flows.

Introduction to the data store concept
If you describe a logical application system, only logical data stores can be used.

 A logical data store represents the use of data via application
systems without considering how their access will be concretely
implemented.

If you describe an application system, only physical data stores can be used.
 A physical data store represents the implementation of a logical
data store.

133

Modeling application architectures
Managing Data

If you describe scenario of sequences or a scenario of flows, only application data
stores can be used.

 An application data store materializes the usage of data in the
context of a software component (for instance an application). An
application data store provides a mechanism to retrieve or update
information stored outside of the current software component.

 The Scenario of flows diagrams that describe the flows exchanged
in different use scenarios of the object described.

 Sequences scenario that describe the chronology of the flows
exchanged in different usage scenarios of the described object.

Last but not least, you can also distinguish data stores local to a system from
external data stores that are positioned on the border of diagrams.

 A local data store represents a data store used only inside the
system described.

 An external data store represents a data store used inside and
outside of the system described.

Usage contexts
The table below presents the list of diagrams that use the different types of data
stores.

Logical data store Logical application system structure diagrams

Physical data store Structure diagrams
- of application,
- of application system,
- IT service,
- microservices.

Application data stores Scenario sequence diagrams
- of application,
- of application system,
- IT service,
- microservices,
Scenario of flows diagrams
- of application,
- of application system,
- IT service,
- microservices.

Creating a local data store
 A local data store represents a data store used only inside the
system described.

To create, for example, a local physical data store from an application system
structure diagram:

1. Open the diagram that interests you.

Data store type Diagrams

134

2. In the diagram objects toolbar, click Local physical Data Store and
select the Object Type that supports the data store you describe.

 For more information on proposed object types see Access Data
Stores supports.

3. Click in the frame of the described application system.
4. Depending on the Object type, select then the object that interests you.
5. Click OK.

The local physical data store appears in the diagram with the name of the
associated object.

Creating a external data store
 An external data store represents a data store used inside and
outside of the system described.

To create, for example, an external physical data store from an application system
structure diagram:

1. Open the diagram that interests you.
2. In the diagram objects toolbar, click external physical Data Store and

select the Object Type that supports the data store you describe.
 For more information on proposed object types see Access Data
Stores supports.

3. Click at the edge of the frame of the described application system.
4. Depending on the Object type, select then the object that interests you.
5. Click OK.

The local physical data store appears in the diagram with the name of the
associated object.

Describing access to a data store
To create a read access to the data store:

1. In the diagram insert toolbar, click Link.
2. Draw a link between the data store and the entity that reads the data

(component or application system use).
A Read-only access to data storage is automatically created with the
link from the data store to the entity.

 To create a link with write access, you must draw a link between
this entity and the data store to which it has write access. A Write
access to data storage is then automatically created.

135

Modeling application architectures
Managing Data

Access Data Stores supports
A Data store can be supported by different object types:

• A data domain

 A data area represents a restricted data structure dedicated to the
description of a software Data Store. It is made of classes and/or data
views and can be described in a Data Area Diagram.

• a file structure

 A file structure represents a file folder or a single file used in the
technical architecture of an application.

• A NOSQL data domain

 NoSQL data domain represents a set of data stored in a NOSQL
database management system and used in the technical architecture of
an application.

• A Relational Schema

 Relational schema represents a set schema stored in a database
management system and used in the technical architecture of an
application.

Accessing to data areas with Hopex IT Architecture
 A data area represents a restricted data structure dedicated to the
description of a software Data Store. It is made of classes and/or data
views and can be described in a Data Area Diagram.
 For more information on data areas, see Hopex Data
Architecture guide.

To access the list of data domains from the Inventories navigation menu:
1. Select Data > Data Dictionaries.

The tree of data dictionaries appears.
2. Expand the Package folder.
3. Expand the folder of the package that interests you.
4. Expand the Data Dictionaries folder.

The list of package data domains appears.

Accessing the list of file structures with Hopex IT Architecture
 A file structure represents a file folder or a single file used in the
technical architecture of an application.

To access the list of file structures from the Inventories navigation menu:
1. Select Data > Data Dictionaries.

The tree of data dictionaries appears.
2. Expand the NoSQL Building Block Catalog folder.

The list of File Structures appears.

136

Accessing to NoSQL data domains with Hopex IT Architecture
 NoSQL data domain represents a set of data stored in a NOSQL
database management system and used in the technical architecture of
an application.

To access the list of NoSQL data domains from the Inventories navigation menu:
1. Select Data > Data Dictionaries.

The tree of data dictionaries appears.
2. Expand the NoSQL Building Block Catalog folder.

The list NoSQL data domains appears.

Accessing the list of relational schemes with Hopex IT Architecture
 Relational schema represents a set schema stored in a database
management system and used in the technical architecture of an
application.

To access the list of relational schemes from the Inventories navigation menu:
1. Select Data > Data Dictionaries.

The tree of data dictionaries appears.
2. Expand the Database folder.
3. Expand the folder of the database that interests you.
4. Expand the RDB Physical Structure folder.

The list of relational schemes of the database appears.

137

MODELING TECHNICAL ARCHITECTURES

A deployment architecture allows you to describe the overview elements that must be deployed to
implement architecture an application: Application Deployment Architecture, Deployable Data
Package as well as Package connections used for data exchange.

Several viewpoints are proposed in Hopex IT Architecture:

 The Application Deployment Environment used to represent of the deployments of
partner applications as well as microservices identified around the subject
application

 The Application System Deployment Architecture used to represent the set of
Application Deployment Architectures that must be coordinated to cover required
dependencies between them.

 The Application Deployment Architecture used to represent the deployment
packages list and the communication lines.

The following points are covered here:

 Describing an Application Deployment Environment.
 Describing an Application System Deployment Architecture.
 Describing an Application Deployment Architecture.
 Deployment Architecture Templates
 Describing Software Technologies.
 Using Cloud Services.

138

DESCRIBING AN APPLICATION DEPLOYMENT

ARCHITECTURE

 An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and
identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An
application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)

Accessing the application deployment architectures

To access the list of application deployment architectures from the Applications
navigation menu:

 Open the Application Deployment page of the concerned application.
The list of application deployment architectures appears.

Describing an Application Deployment Architecture and its
diagram

An application deployment architecture allows you to describe the overview
elements that must be deployed to implement an application architecture:
Deployable Application modules, Deployable Data Modules as well as Package
connections used for data exchange.

139

Modeling technical architectures
Describing an Application Deployment Architecture

An deployment architecture diagram includes the following elements:
• Deployable Application Packages,

 A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/… or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

• Deployable Data Packages,

 A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/PaaS cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).
 For more details on deployable data packages, see Adding a
deployable application package in an application deployment
architecture diagram.

• microservices,

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

• Technical Server Port and Technical Client Port,

 A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

 A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).
 For more details on technical ports, see Adding technical ports.

• Package Connections.

 A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.
 You can create a Application Deployment Architecture by creating
an Application Deployment Architecture diagram directly from the
application that interests you.
 For more details on technical communications, see Describing
package connections.

Creating an Application Deployment Architecture

To create an application deployment architecture from the Applications navigation
menu:

1. Open the Application Deployment page of the concerned application.
The list of application deployment architectures appears.

140

2. Click New.
A dialog box opens to select an application deployment architectures
template.

 For more details on application deployment templates, see
Deployment Architecture Templates.

3. Select Empty application deployment architectures template and
click OK.

 For more details on application deployment templates, see
Deployment Architecture Templates.

A new application deployment architectures is created with its diagram.
 You can also create a Application Deployment Architecture by
creating an Application Deployment Architecture diagram directly from
the application that interests you.

 Using an application deployment architecture diagram

To create an application deployment architecture diagram from an existing
application deployment architecture diagram:

1. Open the Application Deployment page of the concerned application.
2. Right-click the application deployment architecture that interests you

and select Create diagram.
3. In the dialog box, select Deployment Architecture.

The diagram opens in the edit area. The described deployment
architecture components appears in the diagram.

 When an application deployment architecture is created, an
application deployment architecture diagram automatically created.

Adding a deployable application package in an application deployment
architecture diagram

Adding a deployable application package
 A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/… or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

To add a deployable application package:
1. In the objects toolbar of the application deployment architecture, click

Deployable Application Package button.
2. Click in the described application frame.

A dialog box prompts you to choose the Deployable Application
Package that you wish to use.

3. Then, create the deployable application package and click OK.
The deployable application package appears in the diagram.

 For more details on the description of a deployable application
package, see Describing a Deployable Application Package.

141

Modeling technical architectures
Describing an Application Deployment Architecture

Adding a deployable data package

You add a deployable data package like a deployable application package.
 A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/PaaS cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).

Adding technical ports

Technical ports assure physical transfer of information exchanged between the
deployment architecture components.

 A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

 A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).

Communication ports comply with network application protocols.
 Network application protocols supported by a communication port
must be compatible with the protocols supported by communication
ports to which they are connected.

To create a technical client port:
1. In the diagram objects toolbar, click the Technical Client Port button
2. Click on the frame of the described deployment architecture.
3. In the technical port creation dialog box, select Network application

protocols and the Network application connection.
4. Click Add.

The technical port appears in the diagram. The protocol name appears
above the technical port.

Describing package connections

The communications between the deployable application packages and the
deployable data packages can be described by package connections. A package
connection supports the network application protocol defined to create the
communication.

 A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

To create a package connection, you must first create the line and then specify
network application protocols that are used.

To create a package connection:
1. In the diagram objects toolbar, click package connection.
2. Draw a line between the two communicating objects.
3. In the package connection creation dialog box, select Network

application protocol and the Connection Type.

142

4. Click the New button.
The package connection appears in the architecture. The protocol name
appears along the line.

 In a package connection Characteristics page, the Used
Communication Format field specifies the Communication Format.
The selected format appears in the diagram in addition to the protocol
name.

Describing a Deployable Application Package

 A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/… or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

Defining the software technologies used by a deployable
application package

 A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

To specify the software technologies required for a Deployable Application
Package:

1. Open the Characteristics property page of the Deployable
Application Package that interests you.

2. In the Required Software Technologies section, click Connect.
In the selection dialog box, select the Software Technology that you
want to use.
The software technologies selected appear in the icon of the deployable
application package.

Defining a deployable data package components

To specify, for example, that a Cloud Service is used by a deployable application
package:

1. Open the Characteristics property page of the Deployable
Application Package that interests you.

2. Unfold the Deployable Application Component section.
3. In the Prescribed Computing Device field, click Connect.

In the dialog box, select the Cloud Service that you want to use.
 For more details on Cloud Services, see Using Cloud Services.

143

Modeling technical architectures
Describing an Application Deployment Environment

DESCRIBING AN APPLICATION DEPLOYMENT ENVIRONMENT

The Application Deployment Environment is considered as the center of the
integration and all required deployments of partner applications or microservices.

 An application deployment environment diagram represents the
subject deployment application architectures, the partner deployment
application architectures and the partners microservices, as well as the
techniques used for their communications.

Accessing the list of application deployment environments

To access the list of application deployment environments from the Application
navigation menu:

1. Open the Deployment Architecture page of the concerned application.
The list of application deployment architectures appears.

2. Open the Environment page of the concerned architecture deployment
application.
The list of application deployment environments appears.

Describing an Application Deployment Environment

An application deployment environment is described by an application deployment
environment diagram.

An application deployment environment diagram includes the following elements:
• Subject application deployment architectures and Partner application

deployment architectures,
 An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and
identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An

144

application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)

• des microservices partenaires,

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

• Package Connections.

 A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

Creating an Application Deployment Environment

To create an Application Deployment Environment from Application navigation
menu:

1. Open the Deployment Architecture page of the concerned application.
The list of application deployment architectures appears.

2. Open the Environment page of the concerned architecture deployment
application.

3. Click New button.
The new application deployment environment appears in the list.

Using an Application Deployment Environment Diagram

To create an Application Deployment Environment Diagram from Application
navigation menu:

1. Open the Deployment Architecture page of the concerned application.
The list of application deployment architectures appears.

2. Open the Environment page of the concerned architecture deployment
application.

3. Select the application deployment environment that interests you and
click Create Diagram button.

4. In the dialog box, select Application Deployment Architecture
Diagram.
The application deployment environment diagram opens in the edit area.
The Subject application deployment architecture is placed in the center of
the frame.

145

Modeling technical architectures
Describing an Application System Deployment Architecture

DESCRIBING AN APPLICATION SYSTEM DEPLOYMENT

ARCHITECTURE

The Application System Deployment Architecture consists of the set of Application
Deployment Architectures that must be coordinated to cover required dependencies
between them.

 An application system deployment architecture describes one of the
configurations possible for deploying an application system. It contains
the deployment architectures of application components and specifies
the communication protocols (and port numbers) they use to
communicate with each other.

Accessing the list of application system deployment architectures

To access the list of application system deployment architectures from the
Application Systems navigation menu:

 Open the Deployment Architecture page of the concerned application
system.
The list of application system deployment architectures appears.

Describing an Application System Deployment Architecture

An application system deployment architecture is described by an application
system deployment architecture diagram composed of the following elements:

An application system deployment architecture diagram includes the following
elements:

• Application Deployment Architecture,

 An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and

146

identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An
application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)
 For more details on application deployment architectures, see
Describing an Application Deployment Architecture.

• Application System Deployment Architectures,

 An application system deployment architecture describes one of the
configurations possible for deploying an application system. It contains
the deployment architectures of application components and specifies
the communication protocols (and port numbers) they use to
communicate with each other.
 For more details on application system deployment architectures,
see Describing an Application System Deployment Architecture.

• microservices,

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

• Deployable Data Packages,

 A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/PaaS cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).
 For more details on deployable data packages, see Describing an
Application System Deployment Architecture.

• Package Connections.

 A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

• Technical Server Port and Technical Client Port,

 A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

 A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).
 You can create an application system deployment architecture
diagram is the same way than an application deployment architecture
diagram. For further details, see .For further details, see Using an
application deployment architecture diagram.

Properties of an application system deployment architecture

The complete description of an application system deployment architecture can be
accessed from its property pages.

147

Modeling technical architectures
Describing an Application System Deployment Architecture

The Components property page of an application system deployment architecture
provides access to:

• its Name,
• Its Owner, by default the application specified when it was created.
• the text of its description.

With Hopex IT Architecture an application system deployment architecture is
described by other property pages.

The Components page that enables access to the described architecture
components.

 For more information on the components of an application system
deployment architecture diagram, see Describing an Application System
Deployment Architecture.

• The Deployment Architecture enables access to the following tabs:
• Application System Deployment Architecture,

 An application system deployment architecture describes one of the
configurations possible for deploying an application system. It contains
the deployment architectures of application components and specifies
the communication protocols (and port numbers) they use to
communicate with each other.

• Deployment Architecture, to access to the list of application
deployment architectures,

 An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and
identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An
application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)
 For more details on application deployment architectures, see
Describing an Application Deployment Architecture.

• Owned Microservice Deployment, to access the list of microservices,

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

• The Data Packages section provides access to the list of Deployable
data packages,

 A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/PaaS cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).
 For more details on deployable data packages, see Adding a
deployable application package in an application deployment
architecture diagram.

• The Deployment Connections section provides access to the list of
connection packages.

 A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection

148

to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.
 For more details on connection packages, see Describing package
connections.

• The Technical Ports section enables access to the following tabs:
• Server Port

 A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

• Client Port
 A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).
 For more details on technical ports, see Adding technical ports.

The Reports page, used to access the different reports available on the described
application system deployment architecture.

149

Modeling technical architectures
Deployment Architecture Templates

DEPLOYMENT ARCHITECTURE TEMPLATES

Deployment architecture templates are used to simplify the creation of your
deployment architecture. The new application deployment architecture components
are automatically created using the deployment architecture template components.

Then, the new deployment architecture can be updated or modified.

Some deployment architecture templates are provided with the solution.

Accessing the list of deployment architecture templates

To access the list Deployment architecture templates of a repository:
 From the Administration navigation menu, select Templates >

Deployment Architectures.
The list of deployment architecture templates appears.

Describing an Application Deployment Template

Components of an Application Deployment Template

An application deployment template is described by an application deployment
template diagram composed of the following elements:

• Application Deployment Templates, used to create the deployable
application packages of a new application deployment architecture.

 A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/… or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).
 For more details on deployable Application packages, see Adding a
deployable application package in an application deployment
architecture diagram.

• Data Deployment Templates, used to create the deployable data
packages of a new application deployment architecture.

 A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/PaaS cloud service or IT server model). Architect can also

150

prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).
 For more details on deployable data packages, see Adding a
deployable application package in an application deployment
architecture diagram.

• microservices,

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.
 For more details on deployable microservices, see Describing a
microservice with Hopex IT Architecture,

• Technical Server Port and Technical Client Port,

 A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

 A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).
 For more details on technical ports, see Adding technical ports.

• Package Connections.

 A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.
 You can create a Application Deployment Architecture by creating
an Application Deployment Architecture diagram directly from the
application that interests you.
 For more details on Package Connections, see Describing package
connections.

Creating an Application Deployment Template

To access the list of the application deployment templates of a repository:
1. From the Administration navigation menu,, select Templates >

Deployment Architectures.
The list of application deployment Models is displayed.

2. Click New.
The application deployment template appears in the list.

 For more details on the creation of application deployment
diagrams, see Using an application deployment architecture diagram.

Presentation of standard Deployment Architecture Templates

Deployment architecture templates are provided to simplify the creation of your
application deployment architectures.

151

Modeling technical architectures
Deployment Architecture Templates

“3 Tiers Architecture (RDBMS)” Application deployment template

Diagram of the “3 Tiers Architecture (RDBMS)” Application deployment template

“Mobile Application Architecture” Application deployment template

Diagram of the “Mobile Application deployment” deployment architecture template

152

“Standard Web Application Architecture” Application deployment template

Diagram of the “Standard Web Application Architecture”” Application deployment template

Using an Application Deployment Template

To create an application deployment architecture from a deployment architecture
template:

1. Open the Deployment Architecture page of the concerned
application.

2. Select the Application Deployment Template.
 For more details on application deployment templates, see
Deployment Architecture Templates.

153

Modeling technical architectures
Deployment Architecture Templates

3. Click the Next button.
A dialog box displays the list of components of the new architecture.

4. (Option) In the Create/Reuse Template column, select the
components you want to reuse.

 Only components connected to another Application Deployment
Architecture of the same application can be reused.

5. Click OK.
The diagram opens and Then, you can modify the content of your new
application deployment architecture.

 For more details about the update of an Application deployment
templates, see Using an application deployment architecture diagram.

154

DESCRIBING SOFTWARE TECHNOLOGIES

This description is based on Software Technologies and Software technology Stacks.

Describing a Software Technology

 A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

Accessing the list of software technologies

To access the list of software technologies from the Inventories navigation menu:
 Select Deployment > Software Technologies.

The list of software technologies appears in the edit area.

The properties of a software technology

The complete description of a software technology is accessed from its properties
pages.

The Characteristics property page of a software technology provides access to:
• its Name,
• its Owner, by default during creation of the technology, the current

library.
• its Code,
• its Vendor,
• the Comment text.

The Characteristics property page provides access to the following sections:
• Technologies Types that defines the concerned software technology,
• Responsibility,
• Owned Realizations which represent the list of technology capabilities

covered by this software technology.
 For more details on functionalities, see Describing functionalities
with Hopex IT Architecture.
 For more details on realizations, see Describing the fulfillment of a
Functionality.

155

Modeling technical architectures
Describing Software Technologies

Describing a Technology Stack

 A software technology stack is a set of software technologies.

 A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

Accessing the list of technology stacks

To access the list of software technology stacks from the Inventories navigation
menu::

 Select Deployment > Software Technologies.
The list of software technology stacks appears in the edit area.

Properties of a software technology stack

The complete description of a software technology stack can be accessed from its
property pages.

The Characteristics property page of a software technology stack provides access
to:

• its Name,
• its Owner, by default, on creation of the software technology stack, the

current library.
• its Code,
• the Comment text.

The property page provides access to the following sections:
• Components which provides access to the list of concerned software

technologies,
• Responsibility,
• Owned Realizations which represent the list of technology capabilities

covered by this software technology stack.
 For more details on technology capabilities, see Describing
functionalities with Hopex IT Architecture.
 For more details on realizations, see Describing the fulfillment of a
Functionality.

156

 USING CLOUD SERVICES

 The Cloud Service (considered as an IoT device) can be used in a
deployment architecture. The Cloud service picture appears in the frame
of the corresponding deployable package.

You can import in your Hopex repository Cloud Services Catalogs such as: Amazon
(AWS), Microsoft (Azure) and Google (GCS). The imported files contain the name
and the pictures of the Cloud Services proposed by the editor.

 The Cloud Services are provided by your administrator using the
module import features. For more details, see Modules > Importing a
Module documentation.

Accessing the list of Cloud Services

To access the list of elements concerning the Cloud services from the Inventories
navigation menu::

1. Select Cloud Service Catalogs.
2. Unfold the Vendor Catalog folder.

The list of Cloud Service Catalogs appears in the edit area.
3. Expand the folder of a vendor catalog.

The following folders provide access to different elements:
• Service Cloud : provides access to the Cloud services of the catalog.
• Technology capability map: consolidates the set of technology

capability maps covered by the Cloud services of the catalog.
 For more details on functionalities, see Describing functionalities
with Hopex IT Architecture.

• Publishing Vendor: with Hopex, a vendor is represented by an org-
unit.

To view the functional coverage of the Cloud services connected to the technology
capability map:

1. Select the technical functionality map of the catalog that interests you.
2. Open the Reporting > Building Block Breakdown Report property

page.

157

Modeling technical architectures
Using Cloud Services

3. Select Cloud Service in the Show field.

Cloud Service properties

The Characteristics property page of a Cloud service provides access to:
• its Name,
• the Service Type,
• the Description text,
• The Fulfillments section that provides access to the technology

capabilities covered by the Cloud Service
 For more details on a component fulfillment, see Describing the
fulfillment of a Functionality.

• the Using Application Deployment Architecture section that
provides a tree of all the application architectures using the Cloud service
through a deployable application package component.

 For more details on the use of Cloud services by a deployable
application package, see Describing a Deployable Application Package.

158

159

Aligning IT and Business

ALIGNING IT AND BUSINESS

The goal of this step, on a strategic level, is to check the suitability between the business capabilities
of the enterprise and the logical architecture elements that deliver them.

This consists of the following tasks:

 Describing Logical Application Architecture
 Describing Business Capabilities with Hopex IT Architecture,
 Using Functionalities with Hopex IT Architecture,
 Using fulfillment mechanisms.

160

DESCRIBING LOGICAL APPLICATION ARCHITECTURE

Hopex IT Architecture provides ways to define logical application architectures
that represent ideal architectures. These representations make it possible to design
logical structures for application architectures, to rationalize exchanges between
these structures and to identify the data used. Logical application architectures can
then be compared with the implemented architectures to detect gaps between the
real and the ideal.

Describing a Logical Application System with Hopex IT
Architecture

A project for describing the logical architecture of an information system inventories
the existing logical application systems and their interactions.

 A logical application system is an assembly of other application
architectures, logical applications and end users, interacting with
application components to implement one or several functions.

A Logical Application System can be described by two types of diagram.
• an application system structure diagram that represents the different

components of the application system and their interactions.
 For more details on application system structure diagrams, see
Describing a logical application system structure.

• A scenario of logical application system flow diagram is used to describe
the exchanges inside the described logical application system in a
specific context.

 For more details on scenarios of flows diagrams, see Using a flow
scenario sequence diagram.

Accessing the list of logical application systems with Hopex IT Architecture

To access the list of logical application systems form Inventories navigation menu:
 Select Software > Logical Software Architecture in the navigation

menu.
The tree of logical application systems appears.

Creating a Logical Application System

To create a logical application system:
1. From the Inventories navigation menu, select Software > Logical

Software Architecture.
2. Click the New button.

The Creation of a Logical Application System dialog box appears.
3. Enter the Name of your logical application system as well as its Owner

and click OK.
The new logical application system appears in the list.

161

Aligning IT and Business
Describing Logical Application Architecture

Logical Application System Properties

The Characteristics properties page for a logical application system provides
access to:

• its Name,
• its Owner, by default, during creation of the logical application system,

the current library.
• the text of its Description.

With Hopex IT Architecture, a logical application system is described by the
following pages:

• the Properties page, used to specify the properties that appear in the
diagrams at the bottom of the described object frame.

• the Component page provides access to the list of application system
components described in its different diagrams as well as the
communications that exist between them.

 For more information on the components of a logical application
system, see Describing a logical application system structure.

• the Implementation page is used to specify the logical or physical
elements that implement the described logical application system.

 For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Describing a logical application system structure

With Hopex IT Architecture, the components of a logical application system and
their exchanges are described in a logical application system structure
diagram.

The logical application system structure diagram, for
managing "Internet Purchase Requests", presents different
logical applications, access to a logical database as well
as service and request points for "Book" or "Order".

“ Purchasing request Management” Logical application system structure diagram

162

A logical application system structure diagram includes the following elements:
• end users

 The end user represents an organizational unit interacting at the
boundaries of an application system or a logical application system.
 For more details on adding end users, see Adding an end user to
the logical application system structure diagram.

• Logical Application System Components and Logical Application
Components

 A logical application is a set of application functionalities that is
independent of a particular implementation. For example, the
classification of all purchase request processing applications
implemented in an enterprise.
 For more details on adding applications, see Adding a logical
application to a logical application system structure diagram.

• Service interactions between the components representing requests for
services

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.
 For more details on interaction services between logical application
system components, see Managing Service Interactions.

• service points

 A service point is a point of exchange by which an agent offers a
service to potential customers.

• request points

 A request point is a point of exchange by which an agent requests a
service from potential suppliers.
 For more information on access points, see Describing Service and
Request Points.

Adding an end user to the logical application system structure
diagram

To create an end user:
1. In the objects toolbar of the logical application system structure

diagram, click End User.
2. Click in the frame of the described logical application system.

An addition window prompts you to choose the Object Type that you
wish to use:

3. For example, select the Org-unit object type.
 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

163

Aligning IT and Business
Describing Logical Application Architecture

4. Select the org-unit that interests you and click OK.
The actor appears in the diagram.

Adding a logical application to a logical application system
structure diagram

To describe that a logical application system implements a logical application:
1. In the objects toolbar of the logical application system structure

diagram, click Logical Application component and click in the frame
of the logical application system described.
An addition dialog box prompts you to select the Logical Application
used.

2. Select an existing logical application.
3. Click OK.

The logical application appears in the diagram.

Describing Logical Applications with Hopex IT Architecture

 A logical application is a set of application functionalities that is
independent of a particular implementation. For example, the
classification of all purchase request processing applications
implemented in an enterprise.

Accessing the list of logical applications with Hopex IT Architecture

To access the list of logical application form Inventories navigation menu:
1. Select Software > Logical Software Architectures and unfold tje

dossier Logical Application System folder.
2. Unfold the logical application system tree that interests you and unfold

the Logical Application Component folder

Creating a logical application

To create a logical application from the Inventories navigation menu:
1. Select Software > Logical Software Architectures.

The list of logical application systems appears.
2. Open the Components property page of the application system of your

choice.
3. In the list of component types, select Logical Application Component

and click New.
The Create a Logical Application window appears.

4. Enter the Name of your logical application and click OK.
The new logical application appears in the list.

164

Logical Application Properties

The Characteristics properties page of the logical application provides access to:
• its Name,
• its Owner, by default during creation of a logical application, the current

library.
• the text of its Description.

With Hopex IT Architecture, a logical application is described by the following
pages:

• the Properties page, used to specify the properties that appear in the
diagrams at the bottom of the described object frame.

• the Implementation page is used to specify the logical or physical
elements that implement the logical application.

• The following pages are available: Components, Executed Processes
as well as Reports.

 For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Logical Application System Environment Description

 A logical application system environment presents a logical
application system use context. It describes the service interactions
between the logical application system and its external partners, which
allows it to fulfill its mission and ensure the expected functionalities.

A Logical Application System Environment can be described by two types of
diagram.

• A scenario of logical application system environment flow diagram is
used to describe the exchanges inside the described logical application
system environment in a specific context.

 For more details on scenarios of flows diagrams, see Using a flow
scenario sequence diagram.

• A logical application system environment diagram, used to represent the
service interactions between the internal logical application system, its
users and the partner logical systems.

 For more details on application system environment diagrams, see
Using the Logical Application System Environment Diagram.

165

Aligning IT and Business
Describing Logical Application Architecture

Example of logical application system environment

A logical application system environment diagram describes the service interactions
between the main internal components of the environment described and the
external components.

Purchase requests are formulated by users in conditions
specified by “Sales” and “Marketing” services.

The internal logical application system "Purchase request
processing" uses a logical "Delivery" application system
that is external to the described environment.

s

Logical application system environment diagram

Accessing the list of logical application system environments

To access the list of logical application systems environments form Inventories
navigation menu:

1. Select Software > Logical Software Architectures.
The list of logical application systems appears.

2. Open the Environment page of the logical application system of your
choice.
The list of logical application system environments appears.

Creating a logical application system environment

To create a logical application system environment:
1. From the Inventories navigation menu, select Software > Logical

Software Architecture.
2. Open the Environment page of the logical application system that

interests you and click New.
The Creation of Logical Application System Environment window
appears.

166

3. Enter the Name of your application system environment and click OK.
The new logical application system environment appears in the list.

Logical application system environment properties

The Characteristics properties page for a logical application system environment
provides access to:

• its Name,
• its Owner, by default during creation of a logical application system

environment, the current library.
• the text of its Description.

 For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Using the Logical Application System Environment Diagram

A logical application system environment is used to represent the service
interactions between the internal logical application systems, its users and the
partner logical application systems.

A logical application system environment diagram includes:
• logical application systems that represent the logical application systems

internal to the described environment.
In the example, this is the logical application system
"Purchasing Requests Processing".

 A logical application system is an assembly of other application
architectures, logical applications and end users, interacting with
application components to implement one or several functions.

• partner logical application systems that represent the logical application
systems external to the described environment.

In the example, this is the logical application system
"Delivery".

 A partner logical system is a logical application system external to
the environment of the described logical application system. The partner
logical system can be a service supplier or a service consumer with
respect to components of the logical application system.

• Org-Units and Position types that represent the user category of services
provided by the environment.

• Service interactions between the components representing requests for
services.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.
 For more details, see Creating a Service interaction.

167

Aligning IT and Business
Describing Business Capabilities with Hopex IT Architecture

DESCRIBING BUSINESS CAPABILITIES WITH HOPEX IT

ARCHITECTURE

The goal of this step, on a strategic level, is to check the suitability between the
business capabilities of the enterprise, the functionalities required and the
applications that deliver them.

Business capabilities examples with Hopex IT Architecture

A business capability defines an expected skill.
 A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.

For example, to respond to a customer satisfaction
objective, the organization must be able to provide
services conforming to contractual commitments.

A business capability map describes what the enterprise is capable of producing for
its internal needs or for meeting the needs of its clients. It is thus based on the main
business capabilities of its activity at a given moment.

 A business capability map is a set of business capabilities with their
dependencies which define a framework for an enterprise stage.

For example, the standard ability to manage "Operational
Activities" is based on the business capabilities to
process "Supply", "Sales" and "Complaints", "Order
Management" and "Customer Management".

 For more details on managing a business capability map, see the
"Describing a business capabilities map" chapter in the Hopex IT
Business Management guide.

168

The description of business capabilities and functionalities is particularly interesting
if business capabilities are associated with the functionalities that fulfill them.

Furthermore, if applications are connected to the functionalities they implement,
they are indirectly connected to business capabilities. In Hopex IT Business
Management , a report allows to check the functional coverage of your
applications.

 For more details on the business capabilities reports, see Building
Block Breakdown report.

Using the Business Capability Maps with Hopex IT Architecture

 A business capability map is a set of business capabilities with their
dependencies which define a framework for an enterprise stage.

Accessing the list of business capability maps

To access the list of business capability maps from Capabilities navigation menu:
 Select Capabilities > Business Capabilities.

The business capability map list appears

Creating a business capability map

To create a Business capability map from the Capabilities navigation menu:
1. Select Capabilities > Business Capabilities.

The business capability map list appears
2. Click the New button.

The Creation of Business Capability Map window appears.
3. Enter the Name of the new business capability map and click OK.

The new business capability map appears in the list.

The properties of a business capability map

The Characteristics property page of Capabilities map provides access to:
• its Owner, by default during creation of the object, the current

enterprise.
• its Name,
• the text of its Description.

169

Aligning IT and Business
Describing Business Capabilities with Hopex IT Architecture

With Hopex IT Architecture, a business capability map is described by the
following pages:

• the Structure page that specifies the list of business capability map
components owned and the dependencies between them.

 For more details on business capability map components, see
Creating a business capability map.

• the Fulfillment page, which provides access to the application
environments or logical application system that implement the capability
map.

 For more details on managing a business capability map fulfillment,
see Creating Fulfillment of a Business capability.
 For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Creating a business capability map diagram

A business capability map can be described by two types of diagram.
• A business capability decomposition tree is a diagram that describes the

tree structure of a business capability. Focusing on a particular business
capability, this type of diagram enables summary representation of
business capability breakdown into sub-business capabilities.

• A business capability map diagram that describes the set of business
capabilities of the structure.

To create a business capability map diagram:
1. Open the Diagrams page of the business capability map that interests

you.
2. Click Create a diagram.
3. Select Capability Structure.

The Business Capability Map Diagram appears. The frame of the
business capability map described appears in the diagram.

 You can construct this diagram in tabular input mode.



 For more information on using tabular entry, see the “Diagrams in
Tabular Entry Mode" in the Hopex Common Features guide.

Using Business Capabilities with Hopex IT Architecture

 A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.

Accessing the list of business capabilities with Hopex IT Architecture

Business Capabilitues can be accessed from Business Capability Maps list.

To access the list of business capability maps from Capabilities navigation menu:
1. Select Capabilities > Business Capabilities.

The business capability map list appears

170

2. Open the Structure page of the business capability map that interests
you.

3. Unfold the Owned Capability Component section.
The list of business capabilities appears in the edit area.

Creating a business capability

To create a business capability from the Capabilities navigation menu:
1. Select Capabilities > Business Capabilities.

The business capability map list appears
2. Open the Structure page of the business capability map that interests

you.
3. In the Owned Capability Component section, click New.

The Creation of Business Capability window appears.
4. Enter the Name of the business capability and click OK.

The new business capability appears in the list.

Describing a business capability

A business capability is described in more detail by the following elements:
• a more detailed granularity capability breakdown;
• the expected effects of the capability;
• The required functionalities, see Defining the functionalities associated

with Business Capabilities;
• the dependencies between capabilities (expected effect of one dependent

from the result of the other).
 For more details on managing a business capability, see the
"Describing a business capability" chapter in the Hopex IT Business
Management guide.

For example, the business capability grouping operational
activities is broken down into several business
capabilities: "Customer management”, "Supply", "Sales",
"Complaints” and "Order Management".

171

Aligning IT and Business
Describing Business Capabilities with Hopex IT Architecture

A business capability can be described by three types of diagram.
• The Business Capability Decomposition Tree is a diagram that describes

the tree structure of a business capability. Focusing on a particular
business capability, this type of diagram enables summary
representation of business capability breakdown into sub-business
capabilities.

• The Business Capability Tree is a diagram that describes the tree
structure business capability.

• A business capability map diagram that describes the set of business
capabilities of the structure.

Defining the functionalities associated with Business Capabilities
 A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.

Each business capability is associated with functionalities that it is able to provide
as well as skills that it needs to ensure its functionalities.

For example, the “Customer Management” needs the “get
customer information” functionality.

 For more information on enterprise functionalities, see Describing
functionalities with Hopex IT Architecture.

To associate a functionality with a business capability:
1. Open the Expected Capabilities properties window of the business

capability.
2. In the Expected Functionality section, click New.

An add functionality dialog box appears:
3. You can connect an existing functionality or create a new one by entering

the name of the new functionality
4. Click OK.

The expected functionality appears in the list of functionalities associated
with the business capability.

The functionalities and the expected effects appear in the diagrams, at the bottom
of the frame of the capability described.

 For more information on enterprise functionalities, see Describing
functionalities with Hopex IT Architecture.

172

USING FUNCTIONALITIES WITH HOPEX IT ARCHITECTURE

A functionality is an aptitude expected from an equipment.
 A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute
a specific operation. If it is a software functionality, it can be provided
by an application.

A functionality map describes all the functionalities the enterprise is able to cover
for its internal needs or for meeting the needs of its clients.

 A functionality map is a set of functionalities with their
dependencies that, jointly, define the scope of a hardware or software
architecture.

Example of a functionality map

 For more details on Functionality Maps management, see
“Describing the Functionality Map” of Hopex IT Business
Management guide.

Describing a Functionality Map with Hopex IT Architecture

 A functionality map is a set of functionalities with their
dependencies that, jointly, define the scope of a hardware or software
architecture.

Accessing the list of functionality maps with Hopex IT Architecture

To access the list of business capabilities from Capabilities navigation menu:
 Select Capabilities > Functionalities.

The list of functionality maps appears in the edit area.

173

Aligning IT and Business
Using Functionalities with Hopex IT Architecture

Creating a functionality map

To create a functionality map from the Capabilities navigation menu:
1. Select Capabilities > Functionalities.

The list of functionality maps appears in the edit area.
2. Click New.
3. Modify the Name of the functionality map and click OK.
4. Select Functionality Map.

The functionality map appears in the list.

Creating a functionality map diagram

A functionality map can be described by two diagram types:
• a functionality decomposition tree is a diagram that describes the tree

structure of a functionality. Focusing on a particular functionality, this
type of diagram enables summary representation of functionality
breakdown into sub-functionalities.

• A functionality map used to represent the set of functionalities of the
described map.

To create a functional map diagram:
1. Right-click the functionality map that interests you and select Create

Diagram.
2. Select the diagram type.

The diagram opens in the edit area. The frame of the functionality map
described appears in the diagram.

To create a functionality in a functionality map diagram and describing the
dependencies between the functionalities, see “Describing the Functionality Map”
chapter in the Hopex IT Business Management guide.

The properties of a functionality map

The Characteristics properties page of a functionality map provides access to:
• its Owner, by default, when creating the enterprise or business

capability map, this is the current library.
• its Name,
• the text of its Description.

With Hopex IT Architecture, a functionality map is described by the following
pages:

• the Structure page is used to specify a list of components owned and
the dependencies between them.

 For more information on the components of a functionality map,
see and Creating a Functionality Diagram with Hopex IT Architecture.

• the Implementation property page is used to specify the environments
that make it possible to create the described functionality map.

 For more details on implementation of functionalities, see Creating
Fulfillment of a Functionality.

174

Describing functionalities with Hopex IT Architecture

 A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute
a specific operation. If it is a software functionality, it can be provided
by an application.

The Characteristics properties page of a functionality provides access to:
• its Owner, by default during creation of the functionality, the current

enterprise.
• its Name,
• the text of its Description.
• its Desired capability effect.

 For more information on the desired capbility effects, see Creating
a Functionality Diagram with Hopex IT Architecture.

Creating a Functionality Diagram with Hopex IT Architecture

The Functionality Decomposition Tree is a diagram that describes the tree
structure of a functionality. Focusing on a particular functionality, this type of
diagram enables summary representation of functionality breakdown into sub-
functionalities.

To create a functionality diagram:
1. Right-click the functionality that interests you and select Create

Diagram.
2. Select Functionality Diagram.

The diagram opens in the edit area. The frame of the functionality
described appears in the diagram.

To create a functionality in a functionality diagram, see "Creating a functionality
component in a functionality map diagram" chapter in Hopex IT Business
Management guide.

To define the dependencies of sub-functionalities, see "Defining Functionality
dependencies" chapter in Hopex IT Business Management guide.

Describing a Technology Capability Map with Hopex IT Architecture

 A technology capability map is a set of technology capabilities and
their dependencies that, together, defines the scope of a hardware or
software architecture.

Accessing the list of technology capability maps with Hopex IT Architecture

To access the list of technology capability maps from Inventories navigation
menu:

 Select Deployment > Technology Capabilities.
The list of technology capability maps appears in the edit area.

175

Aligning IT and Business
Using Functionalities with Hopex IT Architecture

Describing a technology capability
 A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.

With Hopex IT Architecture, the use of technology capabilities and technology
capabilit maps is identical to that of the functionalities and functionality maps.

 For more details on the operation of functionality maps and
functionalities, see Describing a Functionality Map with Hopex IT
Architecture et Describing functionalities with Hopex IT Architecture.

Describing a hardware capability
 A hardware capability is the ability to deliver a physical outcome
which is required by an organizational resource in order to perform its
work. This hardware capability is generally necessary within a
computing process in order to execute a specific operation.

With Hopex IT Architecture, the use of hardware functionalities and hardware
functional maps is identical to that of the functionalities and functionality maps.

 For more details on the operation of functionality maps and
functionalities, see Describing a Functionality Map with Hopex IT
Architecture et Describing functionalities with Hopex IT Architecture.

To access the list of hardware capability maps from the Inventories navigation
menu:

 Select Hardware > Hardware Capabilities.
The list of hardware capabilities appears in the edit area.

176

USING FULFILLMENT MECHANISMS

The fulfillment mechanism is used to connect an element which corresponds to what
we know how to do or what we want to do, to a way of realizations that are
represented by:

• Concrete elements, such as applications or application systems.
• Elements at a conceptual level, that is upstream of organizational and

technical choices.

Describing Fulfillment of a Business Capability

This involves connecting the business capability, which corresponds to what we
know how to do or what we want to do, to a way of achieving that which is
represented by:

• logical applications or logical application systems, for example, at a
conceptual level, that is upstream of organizational and technical
choices.

 A logical application system is an assembly of other application
architectures, logical applications and end users, interacting with
application components to implement one or several functions.

• applications or application systems, for example, at a technical level.

For example, constructing the business capability map on the one hand and the
logical application system environment on the other hand, you can check that the
business capabilities are implemented by the logical applications.

 Conceptual representations are made before organizational and
technical choices.

Creating Fulfillment of a Business capability

A business capability can be implemented either by an application or application
system, or at a conceptual level, by a logical application or logical application
system.

To associate an application with a business capability, you must create a business
capability fulfillment.

 A business capability implementation is the physical agent (e.g. an
Application System) or the logical agent (e.g. a Business Function) that
implements the capability.

To specify that a business capability is fulfilled by an existing application:
1. Open the Fulfillments property page of the business capability that

interests you.
2. Click New.

The creation window for a business capability implementation opens.
3. Check the Add a component and connect a type box and select the

type Application.

177

Aligning IT and Business
Using fulfillment mechanisms

4. In the applications list that appears, select the application you wish to
connect and click OK.
The capability realization appears in the list with the name of the selected
application.

Analyzing enterprise capability implementation

Hopex IT Architecture provides reports to display realization coverage of business
capability elements by operational elements such as applications, and according to
different perspectives: Organizational, Business/Data, Logical/Physical Application,
etc.

 For more details on fulfillment reports for enterprise capabilities,
see Building Block Breakdown report.

Describing the fulfillment of a Functionality

The aim here is to connect the functionalities, which correspond to what is expected
to achieve the objectives, to the means of implementation represented by
applications (or application systems) or, at a conceptual level, to logcical
applications (or logical application systems) .

 Conceptual representations are made before organizational and
technical choices.

Creating Fulfillment of a Functionality

A function can be implemented either by an application or application system, or at
a conceptual level, by a logical application or logical application system.

To associate an application with a functionality, you must create a functionality
fulfillment.

 An implementation describes the relationship between a logical
entity and a physical entity that implements it. The physical entity gives
the list of logical entities that it implements.

To specify that a functionality is implemented by a new application:
1. Open the Fulfillments property page of the functionality that interests

you.
2. Click New.

The creation window for a functionality implementation opens.
3. Check Ajouter un composant avec un nouveau type and select the

Application type.
4. Click OK.

An application creation dialog box opens.
5. Enter the Name and the Owner of your application and click OK.

The functionality fulfillment appears in the list with the name of the
selected application.

 The components implemented by technology or hardware
capabilities appear in the diagrams representing the functionality.

178

Identifying the applications associated with functionalities

Applications cover functionalities associated with business capabilities. Hopex IT
Architecture provides reports to display realization coverage of functionalities by
operational elements such as logical or physical application components:

 For more details on this breakdown report, see Building Block
Breakdown report.
 An example of technology capabilities fulfillment by cloud services
is provided, see Accessing the list of Cloud Services

Access to implementations from a service point

Services provides by software building blocks (applications or application services)
can be accessed by service points.

 A service point is a point of exchange by which an agent offers a
service to potential customers.
 For more information on service points, see Describing Service and
Request Points.
 The services requested are defined by a service interface assigned
to the service point. For further detail on service interfaces, see
Describing a service interface.

The services provided by software building blocks can address the fulfillments of
functionalities or business capabilities.

As a consequence, a service point can be connected to one of the fulfillments of the
business capability that owns it.

To specify the business capability fulfillments adressed by a service point:
1. Open the Published Fulfillments property page of the service point

that interests you.
2. Select the tab corresponding to the fulfillment that interests you.

 Only the fulfillments of the object that owns the service point can
not be connected to & service point

179

MODELING IT INFRASTRUCTURES

Functionalities proposed by Hopex IT Architecture for modeling complex infrastructures enable
representation of equipment, IT and organizational resources required for system deployment and
operation: service interactions between components, communication means supporting these
service interactions, and services offered and used by the modeled architecture.

All the modeled infrastructure elements can be accessed from the navigation menu Infrastructure
> Infrastructure.

The following points are covered here:

 Describing Resource Architectures.
 Describing IT Infrastructures.
 Describing the Computing Devices.
 Describing communications in an IT Infrastructure.

180

DESCRIBING RESOURCE ARCHITECTURES

A resource architecture comprises equipment, IT and organizational resources
required for operation of a complex infrastructure (system).

Communications between these components are represented by service
interactions and the equipment means supporting these service interactions are the
communication channels.

 A resource architecture is the combination of physical and
organizational assets configured to supply a capability.

Services offered by the system to its users are represented by service points.
Service points are physically supported by communication ports that enable access
to communication means of the system.

Describing Resource Architectures

 A resource architecture is the combination of physical and
organizational assets configured to supply a capability.

To create a resource architecture from the Infrastructure navigation menu:
1. Select Infrastructure > Resource Architecture.

The tree of resource architectures appears.
2. Select Resource Architecture and click New > Resource

Architecture.
The Creation of a Resource Architecture window opens.

3. Enter the Name of your architecture as well as its Owner and click OK.
The new resource architecture appears in the tree.

Creating a Resource Architecture Assembly Diagram:

To create a Resource Architecture Assembly Diagram:
1. Select Infrastructure > Resource Architecture.

The tree of resource architectures appears.
2. Select the resources architecture that interests you and click Create

Diagram.
3. Select Structured diagram.

The resource assembly diagram appears. The frame of the described
resource architecture map appears in the diagram.

Using a Resource Architecture Assembly Diagram

Adding a Resource Architecture

To describe that a resource architecture, such as a “call center”, implements another
resource architecture, such as a “customer management service”, for example, you
will add the resource architecture used in the user resource architecture diagram.

181

Modeling IT Infrastructures
Describing Resource Architectures

To add a resource architecture to a Resource Architecture Assembly Diagram:
1. In the objects toolbar of the Resource Architecture Assembly Diagram,

click Resource Architecture.
2. Click in the frame of the Resource Architecture Assembly Diagram.

An addition dialog box prompts you to select a resource architecture.
3. Select an existing resource architecture and click OK.

 To create a resource architecture, simply enter its name and click
Create button.

Adding an IT Infrastructure or a Resource Configuration
 An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.
 For more details on IT infrastructures, see Describing IT
Infrastructures.

 A resource configuration is a set of physical and human resources
configured to provide a business capability.
 For more details on resource configurations, see Describing a
resource configuration.

To describe that a resource architecture is based on IT resources such as a
communication network, workstations housing applications, you will add IT
Infrastructure type components to the Resource Architecture Assembly Diagram.

 An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.
 For more details on IT infrastructures, see Describing IT
Infrastructures.

To create an IT Infrastructure:
1. In the diagram objects toolbar, click IT Infrastructure.
2. Click in the diagram frame.

An addition dialog box prompts you to select the IT infrastructure to be
deployed.

3. Select the IT infrastructure that interests you and click OK.
The IT infrastructure appears in the diagram.

 To create an IT infrastructure, simply enter its name and click
Create button.
 In the same way, you can add a resource configuration in the
Resource Architecture Assembly Diagram. For more details on resource
configurations, see Describing a resource configuration.

Adding an Org-Unit or a Position Type
 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external

182

org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

 A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

To describe that a Resource Architecture such as a call center uses operators to take
calls and handle requests, you will create a Position Type component.

To add a Position Type to a Resource Architecture Assembly Diagram:
1. In the objects toolbar of the Resource Architecture Assembly Diagram,

click Position Type.
2. Click in the frame of the resource architecture described.

An addition window prompts you to choose the Position Type that you
wish to use:

3. Select the Position Type concerned and click OK.
The Position Type appears in the diagram.

 To create a position type, simply enter its name and click Create
button.
 In the same way, you can add an org-unit in the Resource
Architecture Assembly Diagram.

Describing the Services in a Resource Architecture Assembly
Diagram

A resource architecture is created to assure one or several services.

Expected and realized services are represented by:
• service points

 A service point is a point of exchange by which an agent offers a
service to potential customers.

• request points

 A request point is a point of exchange by which an agent requests a
service from potential suppliers.
 For more details, see Service points and Request points.

Describing Service interactions in a Resource Architecture
Assembly Diagram

In a resource architecture assembly diagram, Service Interactions enable
representation of exchanges between organizational entities.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Exchange terms are defined by a service interface assigned to the service
interaction.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

183

Modeling IT Infrastructures
Describing Resource Architectures

You can define service interactions between:
• Two components of resource architecture type to represent exchanges

between these entities,
• A component of resource architecture type and an IT infrastructure to

represent the terms of use of the equipment resource by the
organizational resource. For example, you can represent that operator
hardware use is arranged by booking.

• two components of IT infrastructure type to represent the terms of use
of one IT resource by another in the context of the modeled resource
architecture.

• a service point and one or more resource architecture type components
to represent implementation of the service within the resource
architecture,

• a component of resource architecture type and a request point to
represent that the entity calls a resource of an external organization.

 For further details, see .For further details, see Service interactions.

Channels and communication ports

In a resource architecture, network channels support the transfer of information
from one hardware asset to another.

 For more details on creation of these channels and the associated
communication protocols, see Network channels.

Communication ports enable connection of resource architecture physical assets
with external equipment elements.

Describing a Resource Architecture Environment

 A business architecture environment represents the relationships of
a business functional area with its partners.

Creating a resource architecture environment

To create a resource architecture environment using the Infrastructure navigation
menu:

1. Select Infrastructure > Resource Architecture.
The tree of resource architectures appears.

2. Select the resource architecture that interests you.
3. Open the Environment property page.

The list of resource architecture environments appears.
4. Click New.

The new resource architecture environment appears in the list.
5. Open the properties of the resource architecture environment to modify

its Name and its Owner.

184

The properties of a resource architecture environment

The Characteristics properties page of resource architecture environment
provides access to:

• its Owner, by default during creation of the object, the current
enterprise.

• its Name,
• the text of its Description.

With Hopex IT Architecture, a resource architecture environment is described by
the following property pages:

• The Component page which provides access to the list of internal and
partner components of resource architecture environment.

• The page Component wich provides access the diagrams.
• The Reports page provides access to the reports available for object.

To create a resource architecture environment diagram

To create a resource architecture environment diagram:
1. Open the Environments page of the resource architecture that interests

you.
2. Select the resource architecture environment that interests you and

click Create Diagram.
3. Select Structured diagram.

The resource architecture environment diagram appears.

Describing a resource architecture environment diagram

Adding a Resource Architecture
 A resource architecture is the combination of physical and
organizational assets configured to supply a capability.

To add a resource architecture to a resource architecture diagram environment:
1. In the objects toolbar of the resource architecture environment, click

Resource Architecture.
2. Click in the frame of the resource architecture environment described.

A dialog box prompts you to select the implemented resource
architecture. You can select an existing resource architecture or create a
new one.

 In the case where the resource architecture you want to use does
not yet exist in the repository, simply enter its name.

3. Click OK.

Creating a Partner Resource Architecture

To describe that an external resource architecture is implemented in the described
environment, you will add a resource architecture partner component in the
environment diagram.

 A partner resource architecture is the installation of an external
resource architecture in another resource architecture or an
environment.

185

Modeling IT Infrastructures
Describing Resource Architectures

To create a Partner Resource Architecture:
1. In the resource architecture environment diagram toolbar, click Partner

Resource and select Resource Architecture.
2. Click in the frame of the resource architecture environment described.

An addition dialog box prompts you to select a resource architecture to
add. You can enter the name of a new resource architecture.

3. Click OK.

Creating a human asset

To describe that the resource architecture environment services are used by
customers, for example, you will create a position type or an org-unit.

 A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.
 For more details on creating a human asset, see Adding an Org-
Unit or a Position Type.

Describing communications

The elements below allow you to describe the technical and organizational
communications:

• Ports and network channels,
 For further details, see .For further details, see Describing technical
communications.

• Service interactions, service and request points,
 For further details, see .For further details, see Describing the
services communications.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Describing a resource configuration

 A resource configuration is a set of physical and human resources
configured to provide a business capability.

186

Creating a resource configuration

To create a resource configuration from the Infrastructure navigation menu:
1. Select Infrastructure > Resource Configuration.

The list of resource configurations appears.
2. Click New.

The Creation of a resource configuration window opens.
3. Enter the Name of your resource configuration as well as its Owner and

click OK.
The new resource configuration appears in the list.

Creating a resource configuration diagram

To create a resource configuration diagram:
1. Select the resource configuration and click Create a diagram.
2. Select Structured diagram.

The resource configuration diagram opens.

Using a Resource Configuration Diagram

In a resource configuration diagram, you can insert:
• IT Infrastructures; see Describing an IT infrastructure

 An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.

• IoT Devices,

 An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight
history management

• IT networks; see Describing an IT network

 An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.

• Hardware elements, see Describing an Hardware,

 Non-IT Hardware can embed computers. Together with their
embedded computers, they provide information and IS services.
Examples: Connected Truck with Delivery Calendar Application and
connected Drone with Online Payment Application. Hardware device can
also provide hardware functionalities. Example: Connected fridge

187

Modeling IT Infrastructures
Describing Resource Architectures

providing ordering functionalities and of course a freezing hardware
functionality and connected drones fly and provide Online Payment.

• Position types or Org-Units.

 A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

 An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.
 For more details on creating a human asset, see Adding an Org-
Unit or a Position Type.

• Ports and network channels, see Describing technical communications.
• service and request points, see Describing the services communications.
• Service Interaction, see Describing technical communications.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Describing an Hardware

 Non-IT Hardware can embed computers. Together with their
embedded computers, they provide information and IS services.
Examples: Connected Truck with Delivery Calendar Application and
connected Drone with Online Payment Application. Hardware device can
also provide hardware functionalities. Example: Connected fridge
providing ordering functionalities and of course a freezing hardware
functionality and connected drones fly and provide Online Payment.

Creating an Hardware

To create an Hardware element from the Inventories navigation menu:
1. Select Hardware > Hardware.

The list of Hardware elements appears.
2. Click New.

The created hardware element appears in the list.

Creating a Hardware Assembly Structure Diagram

To create a hardware assembly structure diagram:
1. Select the hardware you are interested in and click Create a diagram.
2. Select Structured diagram.

The Hardware Assembly Structure Diagram opens.

188

Using a hardware assembly structure diagram

In a Hardware Assembly Structure Diagram, you can insert:
• IT servers and Computing devices, see Describing a Computing Device,

 An IT Server is an IT component providing a service to users
connected via an IT network. This IT component can house databases
and run applications.

 A computer device is a device which provides a computing service
to the end-users directly. This computer can house databases and run
applications. This is, for example, a workstation, a laptop or a
smartphone.

• IoT Devices, see Describing a Computing Device,

 An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight
history management

• Hardware Component, see Describing an Hardware,
• Communication ports and network channels, see Describing technical

communications.
• service and request points, see Describing the services communications.
• service interactions.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.
 For more information about service interactions, see Describing the
services communications.

189

Modeling IT Infrastructures
Describing IT Infrastructures

 DESCRIBING IT INFRASTRUCTURES

Describing an IT infrastructure

 An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.

You can describe the components of an Infrastructure in an infrastructure assembly
diagram.

Creating an IT infrastructure

To create an IT infrastructure from the Infrastructure navigation menu:
1. Select Infrastructure > IT Infrastructures.

The IT Infrastructures tree deplays.
2. Select the IT Infrastructures file and click New > IT Infrastructure.

The Creation of IT technical device window appears.
3. Enter the Name of your infrastructure as well as its Owner and click

OK.
The new IT Infrastructure pops up in the tree.

Creating an Infrastructure Assembly Structure Diagram

To create an infrastructure assembly structure diagram:
1. Select the IT infrastructure and click Create a diagram.
2. Select Structured diagram.

The infrastructure assembly structure diagram opens in the edit zone.

Using an infrastructure assembly structure diagram

In an infrastructure assembly structure diagram, you can insert:

You can insert in this diagram:
• IT servers and Computing devices, see Describing a Computing Device,

 An IT Server is an IT component providing a service to users
connected via an IT network. This IT component can house databases
and run applications.

 A computer device is a device which provides a computing service
to the end-users directly. This computer can house databases and run
applications. This is, for example, a workstation, a laptop or a
smartphone.

• IoT Devices, see Describing a Computing Device,

 An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video

190

camera with live IP video feed, connected weighting scale with weight
history management

• Network devices, see Describing a Computer Network Device,

 An IT device can host and run Software Technology. Conjointly with
its hosted software, it provides services. This consists of, for example:
Wifi Access Point, Firewall, router, switch, printer, Hard Drive.

• IT Network Components, see Describing an IT network,

 An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.

• Ports and network channels, see Describing technical communications.
• service and request points, see Service points see Request points.
• service interactions.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.
 For more information about service interactions, see Describing the
services communications.

The Infrastructure description report allows you to analyze the infrastructure
components and the expected relationships between them to verify that each
element described in the diagram hosts a software or hardware component.

 For further details, see .For further details, see Infrastructure
Description Report.

Describing an IT network

 An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.

Creating an IT network

To create an IT network:
1. From the Inventories navigation menu, select Infrastructure > IT

Networks.
The list of IT networks appears.

2. Click New.
The IT Network Creation window appears.

3. Enter the Name of your network as well as its Owner and click OK.

Creating an IT network

An IT network is described by an infrastructure assembly structure diagram.

To create an infrastructure assembly structure diagram from an IT network:
1. Right-click the IT network and select Create a diagram.

191

Modeling IT Infrastructures
Describing IT Infrastructures

2. Select Structured diagram.
The infrastructure assembly structure diagram opens in the edit zone.

 For more details on this type of diagram, see Using an
infrastructure assembly structure diagram.

Describing a Facility

 A facility is a model of site of interest for the enterprise. Examples:
Data Center, Factory or Outlet

Creating a facility

To create a facility:
1. From the Inventories navigation menu, select Infrastructure >

Facilities.
The list of facilities appears.

2. Click New.
The Creation of facility dialog box appears.

3. Enter the Name of your facility as well as its Owner and click OK.

To create a resource configuration diagram from a facility

A resource configuration is described by a resource configuration diagram.

To create a resource configuration diagram from a facility:
1. From the Inventories navigation menu, select Infrastructure >

Facilities.
2. Right-click the facility and click Create a diagram.
3. Select Structured diagram.

The resource configuration diagram opens in the edit zone.
 For more details on this type of diagram, see Using a Resource
Configuration Diagram.

192

DESCRIBING THE COMPUTING DEVICES

Describing a Computing Device

Accessing the list of computing devices

To access all the different types of computing devices:
 From the Inventories navigation menu, select Infrastructure >

Computing Devices.
The list of all computing devices appears:
• IoT Devices,

 An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight
history management

• IT Servers,

 An IT Server is an IT component providing a service to users
connected via an IT network. This IT component can house databases
and run applications.

• Cloud services

 The Cloud Service (considered as an IoT device) can be used in a
deployment architecture. The Cloud service picture appears in the frame
of the corresponding deployable package.
 For more information on Cloud services, see Using Cloud Services.

• Computer devices

 A computer device is a device which provides a computing service
to the end-users directly. This computer can house databases and run
applications. This is, for example, a workstation, a laptop or a
smartphone.

Creating an Computer Device

To create Computer device:
1. From the Inventories navigation menu, select Infrastructure >

Computig Devices
The different computing device types are sorted out in folders.

2. Select the folder corresponding to the type of computing device you want
to create and click New.

3. Enter the Name of your computing device as well as its Owner and click
OK.
The new computing device appears in the list.

193

Modeling IT Infrastructures
Describing the Computing Devices

Creating a Computing Device Assembly Diagram

To create a computing device assembly diagram:
1. Right-click the computing device and click Create Diagram.
2. Select Structured diagram.

The computing device assembly diagram opens in the edit zone.

You can insert the following in a computer assembly diagram:
• deployable Package Hosts, see Adding a deployable application package

in an application deployment architecture diagram,
 A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/… or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

• software technology hosts,

 A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

• microservice hosts

 A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

• data store hosts,

 A data store provides a mechanism to update or consult data that
will persist beyond the scope of the current process. It enables storage
of input message flows, and their retransmission via one or several
output message flows.

• ports and network channels,
• service and request points,
• service interactions.

 For more details on the creation of service interactions, service and
request points, channels and associated communication protocols, see
Describing communications in an IT Infrastructure.

194

Describing a Computer Network Device

Accessing the list of computer network devices

The types of computer network devices commonly available in Hopex IT
Architecture are:

• Hub,
• Printer,
• Modem,
• Firewall,
• Wifi Hotspot,
• Bridge,
• Network Device,
• Router,
• Satellite,
• Switch.

To access the list of a specific type of computer network device:
1. From the Inventories navigation menu, select Infrastructure >

Computer Network Devices
2. Unfold the file corresponding to the type of device you are interested in.

The list of computer network devices searched for displays.

Creating a Computer Network Device

To create a Printer-type computer network device, for example:
1. From the Inventories navigation menu, select Infrastructure >

Computer Network Devices
2. Select the file corresponding to the type of network device you are

interested in.
3. Click New.
4. Enter the Name of your network device and its Owner, and click OK.

The new computer network device pops up in the list.

195

Modeling IT Infrastructures
Describing communications in an IT Infrastructure

DESCRIBING COMMUNICATIONS IN AN IT INFRASTRUCTURE

In an IT Infrastructure, communications are based on:
• service points, request points, and service interactions for

communications related to the service,
• ports and network channels, for technical communications.

Describing the services communications

Service interactions

Service interactions show the exchanges planned between the organization entities.
 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Exchange terms are defined by a service interface assigned to the service
interaction.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

You can define service interactions between:
• Two components of resource architecture type to represent exchanges

between these entities,
• A component of resource architecture type and an IT infrastructure to

represent the terms of use of the equipment resource by the
organizational resource. For example, you can represent that operator
hardware use is arranged by booking.

• two components of IT infrastructure type to represent the terms of use
of one IT resource by another in the context of the modeled resource
architecture.

• a service point and one or more resource architecture type components
to represent implementation of the service within the resource
architecture,

• A component of architecture use type and a request point to represent
that the entity calls a resource of an external organization.

For more information on service interaction management terms, see Managing
Service Interactions.

196

Service points

Services provided by infrastructure elements are represented by service points.
 A service point is a point of exchange by which an agent offers a
service to potential customers.

The service id requested according to specific terms that are defined by a service
interface assigned to the service point.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

The resources activated to carry out a service are connected to the service point by
service interactions. If the activation of several resources is necessary, several
service interactions must be created between the service point and the architecture
resources.

To create a service point, see Describing Service and Request Points.

Request points

A request point is used to represent the use of an external service.
 A request point is a point of exchange by which an agent requests a
service from potential suppliers.

The service is requested according to specific terms that are defined by a service
interface assigned to the request point.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

The resources emitting a request are connected to the request point via a service
interaction.

In the example, request points represent service requests
made between call center operators and other organizations.

The request point creation procedure is identical to that for service points. For
further details, see .For further details, see Describing Service and Request Points.

197

Modeling IT Infrastructures
Describing communications in an IT Infrastructure

Describing technical communications

Communication ports

Communication Ports are physical points of communication that can be defined in
technical infrastructures and resource architectures.

 A communication port is a physical point of communication with a
resource. It adheres to the specific communication protocol. A
communication port implements service and requests points.

Communication Ports assure physical transfer of information exchanged on service
points and request points.

Communication ports comply with specific "Communication Protocols". See Network
communication protocols.

Network channels

The network channels connect hardware resources between each other, to
organizational resources or to communication ports.

 A network channel is a physical connector between resource
elements. It supports service interactions defining communication
protocols between physical resources It connects external resource
elements through their Communication Ports.

Creating a network channel

To create network channel:
1. In the object inserting bar of the resource assembly diagram, click

Network channel .
2. Draw a link between the two communication entities.

The channel appears directly in the diagram.

To define the communication protocol associated with the channel:
1. Open the Supported Protocols property page and click Connect.
2. In the query window that appears, select the communication protocol

that interests you and click Connect.
The protocol name appears alongside the channel.

Network communication protocols

A Communication Protocol is supported by network channel.
 A communication protocol is a set of standardized rules for
transmission of information (voice, data, images) on a communication
channel. The different layers of protocols can handle the detection and
processing of errors, authentication of correspondents, management of
routing.

For example, an HTTPS protocol is based on an HTTP protocol for transport, those
protocols are based on TCP, which is itself based on Ethernet.

198

A user may wish to build a customized layer of communication protocols and assign
these to communication ports and communication channels.

 Communication protocols supported by a communication port must
be compatible with the communication ports to which they are
connected.

Connecting a Service Interaction to a Network Channel

To indicate that a service interaction is supported by network channel:
1. In the resource assembly diagram objects toolbar, click the link button.
2. Draw a link between the service interaction and network channel

supporting it.
A dotted line appears in the diagram.

To access the list of service interactions supported by a network channel:
 Open the Managed service interactions property page of the network

channel you are interested in.
The name of the service interaction appears in the list.

 You can use the Connect button to connect other interactions to
network channel.

199

ACCESSING THE SOFTWARE DESIGN

Hopex IT Architecture offers the tools to assist architects in specifying updates to their IT system.

 To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.

The following points are covered here:

 UML modeling of data.
 Describing Batch Processing.
 Defining User Interfaces.

200

UML MODELING OF DATA

Hopex IT Architecture provides the tools required to model logical data via class
diagrams and data models.

 To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.

Using data area and data views concepts, you can detail a logical data structure in
a particular use context.

 A data view represents the scope covered by an element of a data
model or a data area. A data view is based on the selection of several
classes connected in the specific context of the view.
 For more details on creating and updating a data model, see the
"Data Model" chapter in the Hopex Data Architecture guide.

The different logical view concepts are described in the paragraph.

UML package

A package is used to represent the static structure of a system, particularly the
types of objects handled in the system, their internal structure, and the
relationships between them.

The package is an owner element. It provides a namespace for the elements that it
consolidates.

201

Accessing the Software Design
UML modeling of data

The package allows you to classify elements referenced in a project. You can create
sub-packages in a package to classify objects in finer detail, for example actors of
a project.

Urgent purchase requests are provided to process purchase
of spare parts and boat rental requests. In both of these
cases, users are actors of the purchasing domain.

Class diagrams are used to graphically represent the elements of a package.
 For more details on building a class diagram, see The Class
Diagram.

Data models

Like a package, a data model is used to represent the static structure of a system,
particularly the types of objects handled in the system, their internal structure, and
the relationships between them.

Data diagrams are used to graphically represent the elements from a data model.

For more details on creating and updating a data model, see The data model.

202

Example

The data model of the "Purchase Request Automation" project is presented below.

The application manages purchase requests, orders and
product stock levels in each of the representation offices.

A centralized catalog of products and suppliers is
installed.

Contracts with referenced suppliers are also accessible
from the application.

Data areas

A Data Area represents a restricted data structure dedicated to the description of a
software Data Store (see Managing Data). It is made of classes and/or data views
and can be described in a Data Area Diagram.

A logical data area is used to define a logical data structure made up of classes and
data views.

A logical data domain is owned by a package and can reference objects held in other
packages.

You can define the access mode (creation, deletion, etc.) to the objects referenced
by a data area by integrating them as components of the data area.

During integration with HOPEX Database Builder, a corresponding physical structure
can be defined via a physical data area. It is made up of tables and table views.

203

Accessing the Software Design
UML modeling of data

Example

The following data domain diagram represents a data structure relating to Orders;
it describes classes and their relationships in a Whole/Part formalism.

To address these specific use cases, you can create Data Views in which you can see
and modify the scope covered by the classes.

 A data view represents the scope covered by an element of a data
model or a data area. A data view is based on the selection of several
classes connected in the specific context of the view.

204

DESCRIBING BATCH PROCESSING

With Hopex IT Architecture, you can describe the sequencing of automated
processing in batch planning structure diagrams.

 To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.
 To see the Batch Processing, open the Options window and
check that IT Architecture > User Interface and Batch Features
(ADES) option is activated.

This type of diagram is used to represent the execution schedule for batches, batch
programs and their organization.

Defining a Batch Process

A batch processing is a set of IT processing operations executed by a computer
without human intervention, generally overnight or at the weekend.

A batch process is described by a batch planning or a Program.
 A batch planning defines all the IT processing operations to be
executed on one or several machines over a given time period.

 A program is an elementary stage in execution of a batch planning
that consists of running execution of a program using the appropriate
parameters.

A batch planning is a set of batch processes. Each is associated either with a
program or with another batch planning. A batch planning is described by a
batch planning structure diagram.

 For further details, see Building a Batch Planning Structure
Diagram.

A program is a set of batch processes. Each of these can be associated with a
single program. A program is described by a batch program structure
diagram.

 For further details, see Creating a Batch Program Structure
Diagram.

Building a Batch Planning Structure Diagram

 A batch planning defines all the IT processing operations to be
executed on one or several machines over a given time period.

205

Accessing the Software Design
Describing Batch Processing

Creating a batch planning structure diagram

The sequencing of automated processes can be described in a batch planning
structure diagram.

To create a batch planning structure diagram:
1. Click Design (UML) navigation menu.
2. Select Batch and Program Implementation > Batch and Program.

The list of batch plannings appears.
3. Open the Diagrams property page of the batch planning in question and

select Create a diagram..
4. Creating Batch Planning Structure Diagram.

The diagram opens.

Adding a call for batch processing in the diagram

The components of a batch planning are defined with batch processing calls
that are positioned in the diagram. This can be applied to batch plans or programs.

To add an operating type component to the string structure diagram for batch
process:

1. Select the Batch Processing Call button and click in the diagram.
The Add a Batch Processing Call dialog box opens.

2. Click the arrow at the right of the Object Type field and select Batch
Planning in the drop-down list.

3. Click the arrow at the right of the Short Name field and select the batch
planning that interests you.

4. Click OK.
The call for batch processing appears in the diagram with the batch
planning icon.

206

Defining batch sequencing

To specify the execution order of processes:
1. Click Batch Sequence.
2. Click the initial batch processing call and, holding the left mouse button

down, draw a link to the batch processing call.
3. Release the mouse button.

The link representing the sequencing of the processes appears in the
diagram.

Creating a Batch Program Structure Diagram

 A program is an elementary stage in execution of a batch planning
that consists of running execution of a program using the appropriate
parameters.

Creating a batch program structure diagram

The sequencing of the processes of a program can be described in a batch program
structure diagram.

To create the batch program structure diagram:
1. Open the Diagrams property page of the program of your choice and

click Create a diagram.
2. In the dialog box, select Batch Program Structure Diagram.

The diagram opens.

Adding a programming call to the diagram

The components of an program are defined with programming calls that are
positioned in the diagram.

207

Accessing the Software Design
Describing Batch Processing

To add a component to a diagram:
1. Select Programming Call and click in the diagram.

The Add a Programming Call dialog box opens.
2. Click the arrow at the right of the Name field and select the Program

that interests you.
3. Click OK.

The program call appears in the diagram.

The execution scheduling of programs is defined by batch sequences, see Defining
batch sequencing.

Using system process batch realizations

A realization mechanism is provided to specify that a system process describes the
execution of a Batch Planning or a Program.

To describe that an batch plan is associated with an application process:
1. Open the Characteristics > Realization property page of the batch

planning that interests you.
2. Click the New button.

The realization creation window opens.
3. In the Object type field, select System process batch realizations

and click Next.
4. Select the application process that interests you and click New.

The system process batch realization appears in the properties page of
the batch plan.

208

DEFINING USER INTERFACES

It is possible to describe interfaces connecting services or operations with the
exterior. This description is carried out in a user interface diagram.

 To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.
 To see the User Interfaces, open the Options window and check
that IT Architecture > User Interface and Batch Features (ADES)
option is activated.

Creating a user interface

To create a user interaction using Design (UML) navigation menu:
1. Select User Interfaces.

The list of user interfaces appears.
2. Click New.
3. Enter the name of the interface.
4. Click OK.

Building a User Interface Diagram

To create an interface diagram:
1. Select the User interface that interests you and click Create Diagram

button.
2. In the dialog box, select User Interface Diagram.

The UI diagram opens in the Edit window.

209

Accessing the Software Design
Defining User Interfaces

Take, for example, the "Flight Reservation" UI diagram.

The interface is presented in the form of a dialog box, in which various fields must
be completed.

• Departure city
• Destination
• Flight date

A button cancels the request, another button opens a second interface.

Drawing the Interface Diagram

The user interface diagram allows you to draw the interface of the operation or
service.

User interface element

Buttons allow you to modify the appearance of the interface:
• Text Field
• List
• Radio Group
• Check Box
• etc.

To create an element:
1. In the diagram objects bar, select the button corresponding to the

element required, then click in the diagram.
2. In the dialog box that appears, enter the name of the element.
3. Click OK.

210

You can also click the User Interface Element button and indicate the element
type in its properties dialog box.

User interface event

You can connect an event to a user interface element. In our example, the "Propose
flights" button is connected to an event, which when actuated opens another
interface.

To create an event:
1. Click the Interface event button, then click in the diagram.
2. Enter the name of the event and click OK.

Event type

There are various types of event. An event can be:
• Click on a button
• Entry in a text field
• etc.

To specify the type of event:
1. Open the Characteristics property page of the sketch.

211

Accessing the Software Design
Defining User Interfaces

2. In the User Interface Event Type text box, click the arrow and select
Query User Interface Event Type.
The Query dialog box appears:

3. Click Find.
The list of event types appears.

4. Select the type required and click OK.

Connecting the event to an element

To connect the event MMI to an element MMI, there are two possibilities:
• Select the event in the diagram and drag it onto the element.
• Or open the Characteristics properties dialog box of the event and

complete the User Interface Element text box.

212

213

DESCRIBING INFORMATION EXCHANGES

This chapter explains how to describe service interfaces between the components of a business or
IT architecture.

To simplify the service interface creation, service operation templates and service interface
templates can be used.

 Managing Service Interactions;
 Describing a service interface.
 Describing a Service Operation.
 Using a Service Interface Template.

214

MANAGING SERVICE INTERACTIONS

A Service Interaction represents the exchange of information between architecture
components.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

The content of a service interaction is described by a service interface.
 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).
 For more details on service interfaces, see Describing a service
interface.

In a “Purchasing Requests Processing” application system structure diagram, two
service Interfaces are used by the different service interactions.

Adding a service interaction to an application system structure diagram

The clients must be identified before entering an order.
They can enter orders directly from “MyCompagny.com”
application or by using a Call Center. The Call Center uses
the “Call Management” application which uses the client
identification service offered by the “MyCompagny.com”
application.

215

Describing information exchanges
Managing Service Interactions

Creating a Service interaction

To create a service interaction:

1. In the objects toolbar for a diagram, click Service interaction
2. Click the entity requesting the service and draw a link to the entity

providing the service.
3. In the add service interaction dialog box, specify the service interface

you wish to use.
 You can also use a new service interface. For more details, see
Creating a service interface.

4. Click Add.

Describing Service and Request Points

In a service-oriented architecture, communication is based on access points:
service points and request points.

 A request point is a point of exchange by which an agent requests a
service from potential suppliers.

 A service point is a point of exchange by which an agent offers a
service to potential customers.

Service points

An application system, for example, is created to ensure one or more services.
These services are represented by service points.

 A service point is a point of exchange by which an agent offers a
service to potential customers.

The service is requested according to precise terms defined by a service interface
assigned to the service point.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).
 For further detail on service interfaces, see Describing a service
interface.

216

Components activated to assure a service are linked to the service point by service
interactions. If it is necessary to activate several components, you have to create
several service interactions between the service point and the system components.

In the example presented here, the IT Service ”Customer
Management” is activated by the interaction service
“Information request”.

 To create a service point, see Creating a Service Point or a Request
Point.
 The Published Fulfillments property page of the service point
enables the access to the capabilities implemented by the service point
that interests you. To create a service point, see Access to
implementations from a service point.

Request points

A request point enables representation of use of a service external to the
described entity.

 A request point is a point of exchange by which an agent requests a
service from potential suppliers.

The service is requested according to precise terms defined by a service interface
assigned to the request point.

 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).
 For further detail on service interfaces, see Describing a service
interface.

Components that issue a request are linked to the request point by a service
interaction.

In the example, request points represent requests for
service executed by the “Email Order Management" IT service
to identifier a customer and issue an order.

 To create a request point, see Creating a Service Point or a Request
Point.

217

Describing information exchanges
Managing Service Interactions

Creating a Service Point or a Request Point

The process for creating a service point or request point is identical.
 A request point is a point of exchange by which an agent requests a
service from potential suppliers.

 A service point is a point of exchange by which an agent offers a
service to potential customers.

To create a service point:

1. In the diagram insert toolbar, click Service Point .
2. Position the object at the edge of the frame of the described object.

A creation dialog box opens.
3. Click the arrow to the right of the Service Interface field to define the

service interface enabling activation of this service point, and select, for
example, Connect Service interface.
A query window opens.

4. Select the service interface associated with this service point and click
Connect.

5. Click Next.
A dialog box opens proposing a list of the service interface roles that can
be associated with the service point.

 This dialog box is not proposed if there is only one candidate role
that can be associated with the service point.

6. Select the role that interests you and click OK.
The service point appears in the diagram.

218

DESCRIBING A SERVICE INTERFACE

A Service interface represents the exchange of information between architecture
components.

 A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

The content of a service interaction is described by a service interface.
 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

A service contract is described by a sequence of operations which are represented:
• By service interfaces used,

 A service interface use is associated to a service interface. It
enables representation of complex exchanges.

• Or by service operations used.

 A service operation use represents the usage of a service operation
in an service interface.
 For further detail on service operations, see Describing a Service
Operation.

Examples of Service Interface Diagrams (BPMN)

A service interface is described by a sequence of steps which are represented:
• By service operations used,
• By service interfaces used.

 A service interface use is associated to a service interface. It
enables representation of complex exchanges.

The service interface roles, presented at the border of the frame, represent
participants:

• customer/supplier, or
• sender/recipient

A service interface can be described by involving more than two participants. In this
case, a role is consumer of the service interface and the others are providers.

219

Describing information exchanges
Describing a service interface

Example of Service Interface Diagram (BPMN)

The service interface diagram associated with the “customer identification protocol
” describes in BPMN formalism the operations executed.

Service interface Diagram (BPMN) "Customer Identification"

Customer identification protocol starts with a customer
identification step. If the customer is found the service
interface returns customer information, if not, a “customer
creation” service interface is activated.

220

Example of an advanced service interface communication

“Information Requirement” Service Interface diagram (BPMN)

The "Information Request" service interface is used by
Center call center to take account of a customer request
online. There are therefore three participants in this
service interface: the customer, the IT applications and
the customer representative who is the effective requester
of the service (in this case the call center).

This service interface consists of identifying the
customer, then analyzing the request. The request is then
processed as a purchase request or as another request if it
is an information request for example.

 The Roles property page provides access to the list of contributor
roles and to the initiator role of a service interface.

Accessing the list of service interfaces

To access the list of service interfaces of a library:
1. From the Environment navigation menu, open the exploration area

Container > Libraries.
2. Unfold the desired library, and then the Service interfaces folder.

The list of service interfaces accessible from the library appears.

221

Describing information exchanges
Describing a service interface

 Creating a service interface

You can create a service interface:
• from a library,
• from a diagram using service interactions, for example.

Whatever the point of origin, you can create service interface in standard mode or
using a service interface template.

 For more details on service interfaces, see Using a Service Interface
Template.

Creating a service interface in standard mode from a diagram

To create a service interface in standard mode, in a diagram, from a service
interaction:

1. In the objects toolbar for a diagram, click Service interaction
2. Draw a link between the two communication entities.
3. In add service interaction window, click the arrow at the right of the field

Service interface and select Create a service interface.
The creation window appears.

4. Select the Creation Mode: Standard Creation.
 For more details on service interface template use, see Creating a
service interface from a service interface template.

5. Enter the service interface name in the Name field.
6. Click OK.
7. In the service interaction creation dialog box, enter the name of the

service interaction using the name of the service interface and click Add.
The service interaction and the service interface are created.

Building a Service Interface Diagram (BPMN)

Creating a Service Interface Diagram (BPMN)

A service interface is represented by a Service Interface Diagram (BPMN).

To create a Service Interface Diagram (BPMN) from an interaction service:
1. From the Environment navigation menu, open the exploration area

Container > Libraries.
2. Unfold the desired library, and then the Service interfaces folder.

The list of service interfaces accessible from the library appears.
3. Select the associated service interface and, in its pop-up menu, click

Create Diagram
4. In the dialog box, select Service Interface Diagram (BPMN)

The diagram opens with service interface frame and the two roles
representing consumer and the supplier.

 A role is a participant in an interaction service, workflow or process.
It can be the initiator, that is the requester of a service, or it can
represent a sub-contractor carrying out processing outside the service.

222

A role is an integral part of the object that it describes, and is not
reusable. It can subsequently be assigned to an org-unit internal or
external to the organization or to an IT component. Examples: client,
traveler.

The events, gateways and sequence flows of your diagram follow the BPMN
standard.

 For more details on events, gateways and sequence flows, see
Managing events, gateways and sequence flows

Defining a Service operation or a Service interface

In a service interface diagram (BPMN), operations are described by:
• Service interfaces used
• Service operations used

 A service interface use is associated to a service interface. It
enables representation of complex exchanges.

 A service operation use represents the usage of a service operation
in an service interface.

To create a used service interface used:

1. Select the Service Interface Used button and click in the diagram
within the service interface frame.
The service interface appears in the diagram.

2. Open the Characteristics property page of the service interface.
3. Click the arrow to the right of the Specification of a service interface

used box.
4. Select Connect service interface from the drop-down list and choose

the service interface that you want to use.
 The Service operations page provides access to the list of
components of the exchange contract.

223

Describing information exchanges
Describing a Service Operation

DESCRIBING A SERVICE OPERATION

The content of a service interaction is described by a service interface.
 A Service Interface is a template of a contract between entities
(organizational, IT …). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).
 For further detail on service interfaces, see Describing a service
interface.

A service interface is described by a sequence of service operations or service
interfaces.

 A service operation specifies exchanges between participants.

A service operation diagram describes the sequence flows of a service operation.

"Customer Identification Service" Service Operation Diagram

The customer identification service protocol begins by
sending information enabling identification of the
customer. An error message appears if the customer is not
found, otherwise customer information is sent (customer
identification, status of orders, etc.).

224

Accessing the list of service operations

To access the list of service operations of a library:
1. From the Environment navigation menu, open the exploration area

Container > Libraries.
2. Unfold the desired library, and then the Service operations folder.

The list of service operations accessible from the library appears.

Creating a service operation

You can create a service operation a service interface diagram (BPMN).
 For more details on service operation templates, see Using a
Service Interface Template.

To create a service operation from a service interface diagram (BPMN):

1. Select the Service Operation Used button and click in the diagram
within the service interface frame.

 A service operation use represents the usage of a service operation
in an service interface.

The service operation appears in the diagram.
2. Open the Characteristics property page of the service operation.
3. Click the arrow at the right of the Service operation specification and

select Create a service operation.
The Creation of Operation Joint Action dialog box opens.

4. Enter the Name of your service operation click OK.
The service operation is automatically created.

Describing a Service Operation

Creating a Service Operation Diagram (BPMN)

A service operation is described by a service operation diagram presenting the
sequence flow of messages exchanged.

To create a service operation diagram:
1. From the Environment navigation menu, open the exploration area

Container > Libraries.
2. Unfold the desired library, and then the Service operations folder.
3. Select service operation that interests you and click Create Diagram.
4. In the dialog box, select Service operation Diagram (BPMN)

The diagram opens. The frame of the service operation is positioned and
the two roles (Consumer and Provider) are created.

225

Describing information exchanges
Describing a Service Operation

Creating a message flow with content

You must specify the message flows and their content exchanged between the two
service operation roles.

 A message translator is a communication step that translates a
message from a format to another. It can be used for trans-codification,
data type conversion.

 The content designates the content of a message or an event,
independent of its structure. This structure is represented by an XML
schema linked to the content. A content may be used by several
messages, since it is not associated with a sender and a destination.
There can be only one content per message or event, but the same
content can be used by several messages or events.

To create a message flow and its content:
1. In the service operation diagram, click the Flow With Content button.
2. Click the role that represents the message flow sender and, holding the

mouse button down, draw a link to the message flow recipient.
The Creation of Flow dialog box opens.

3. In the Content drop-down list, select the content you wish to associate
with the flow.
The message flow is displayed with its content in the diagram.

Managing events, gateways and sequence flows

“Start” and “End” events are required in description of the service assured by the
service interface.

 An event represents a fact or an action occurring in the system,
such as updating client information. It is managed by a broker. An
application indicates that it can produce the event by declaring that it
publishes it. If an application is interested in an event, it declares that it
subscribes to the event.

In compliance with the BPMN standard, in the object toolbar, several gateway types
are available to you.

 Gateways are modeling elements that are used to control how
sequence flows interact as they converge and diverge within a process.

A sequence flow is a directional link that represents the chronological organization
of the different processing steps.

 A sequence flow is used to show the order in which steps of an
service contract will be performed. A sequence flow has only one source
and only one target.
 For more details on events, gateways and sequence flows, see
Managing events, gateways and sequence flows

226

USING A SERVICE INTERFACE TEMPLATE

Service interface templates as well as Service operation templates and content
templates simplify the service Interfaces creation by duplicating the components of
the model used.

Then, the service interface be updated or modified.

Presentation of standard service interface Templates

Service interface templates are provided to simplify the creation of your service
interfaces. These service interfaces are supported by service operation templates.

Some service interface templates are provided with the solution.

The service interface template “One way communication”

“One way communication” service interface template diagram (BPMN)

This service interface is based on an service operation used noted “One way
communication” between the consumer and the provider.

 A service operation use represents the usage of a service operation
in an service interface.

227

Describing information exchanges
Using a Service Interface Template

The service operation used represents the content “(Template) Data” exchanged
between the consumer and the provider.

“One way communication” service operation diagram (BPMN)

The service interface template “Request-Response”

“Request-Response” service interface template diagram (BPMN)

This service interface is based on an service operation used noted “Request-
Response ” between the consumer and the provider.

 A service operation use represents the usage of a service operation
in an service interface.

The service operation used represents the service operations of the contents
“(Template) Request” and “(Template) Response” exchanged between the
consumer and the provider.

“Request-Response” service operation diagram (BPMN)

This service operation represents the sending of a request
content and the sending of the response content.

228

The service interface template “Publish-Subscribe”

“Publish-Subscribe” Service interface Diagram (BPMN)

This service interface is based on a service operation used noted “Publish-
Subscribe” between the consumer and the provider. The request for subscription is
sent. An event represents the waiting time before the acceptance for publication.

Accessing the list of service interface templates

To access the list service interface templates of a repository:
 From the Administration navigation menu, select Templates >

Service Interfaces.
The list of service interface templates appears.

In the same way, to access to the list of service operation templates:
 From the Administration navigation menu, select Templates >

Service Operations.
The list of service operation templates appears.

Furthermore, to access the list of content templates:
 From the Administration navigation menu, select Templates >

Contents.
The list of content templates appears.

Creating a service interface from a service interface template

To create a service interface from a list using a service interface template:
1. From the Environment navigation menu, open the exploration area

Container > Libraries.
2. From the library that interests you, create a Service Interface.
3. In the following dialog box, select the Creation Mode: Template

Based Creation

229

Describing information exchanges
Using a Service Interface Template

4. Select the template that interests you and click Next.
A dialog box displays the list of components of the Service Interface.

The name of duplicated components is prefixed with “[To be renamed]”.
The content templates used are duplicated.

5. Double-click the name you wish to modify.
6. (Option) In the Existing content selection column, select the content

you want to reuse.
As a consequence, the created content ““[To be renamed]” is destroyed.

7. Click OK.
The service interface is created.

 Then you can change the service interface components, for
example from its diagram, see Building a Service Interface Diagram
(BPMN).

Creating a Service Interface Template

You can use an existing service interface to create service interface template.

To specify that a service interface is a template:
1. Select the service interface that interests you.
2. Open the Characteristicsproperties page.
3. Check the Interaction Behavior Template box.

The service interface is added to the list of existing service interface
templates.

The service interface template components declared as templates are duplicated
when the service interface template is used.

230

To access the list of a service interface template components declared as template:
1. From the Administration navigation menu, select Templates >

Service Interfaces.
2. Open the Template Definition property page of the Service Interface

that interests you.
3. Check the Template box of the components to be duplicated.

Creating a Service Operation Template

To specify that a service operation is a template service operation:
1. Select the service operation that interests you.
2. Open the Characteristicsproperties page.
3. Check the Interaction Behavior Template box.

The service operation is added to the list of existing service operation
templates.

 To access to the list of service operation templates: from the
Administration navigation menu, select Templates > Service
Interfaces.

231

Hopex IT Architecture Reports

HOPEX IT ARCHITECTURE REPORTS

Hopex IT Architecture provides facilities for analyzing and tracking the changes implemented in
the IT Infrastructure of your architecture. Hopex Suite uses reports to group sets of repository
objects and study their interactions.

 For more details on reports, see the Hopex Common Features
guide, "Generating Reports".

Report templates proposed as standard by Hopex IT Architecture offer various analysis
presentation possibilities. Some reports are shared with other solutions, for example Hopex IT
Business Management.

Furthermore, the Exploded Diagram Reports are available on several types of object. This type
of report enables the building of a summary view of a complex object architecture into one single
diagram ; it consists in the generation of an exploded diagram view of a complex object by inclusion
in a diagram describing the root object. The diagrams describing the objects mentioned in the
source diagram, recursively, so that several diagramming levels can appear in one picture.

 For more details, see "Launching the exploded diagram report"
chapter in the Hopex Common Features guide.

232 HOPEX IT Architecture

5

APPLICATION ARCHITECTURE REPORTS

Technical Architecture Matrix

This report displays the distribution of IT Service of an Application on its Technical
Areas (Application or Data).

Report example

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application. One object mandatory.

233

Hopex IT Architecture Reports
Application Architecture Reports

Application Exchange Density

This report displays the density of exchanges around an application in order to help
defining application systems.

The lines display the fact that there is at least one content exchanged between two
applications.

The color of the line indicates the number of exchanged contents.
• Gray: 1 or 2 contents,
• Green: between 3 and 5 contents,
• Orange: between 6 and 10 contents,
• Brown: between 11 and 15 contents,
• Red: more than 15 contents.

Report example

Report parameters

This consists of defining report input data.

Exchange Consistency Structure Scenario

This report allows to check exchange consistency between scenario and structure
descriptions (via Application flows or Service Interactions).

Parameters Parameter type Constraints

Root object Application system,
Application or IT service

One object mandatory.

Depth Integer

234 HOPEX IT Architecture

5

It analyzes every content sent/received by an agent via an application flow and
checks presence of equivalent service interactions and vice versa.

Exchange Consistency Structure Scenario report example

Report parameters

This consists of defining report input data.

Content Consistency (Structure)

This report allows to check exchange consistency between “external” views and
“internal” views, limited to structure descriptions (Service Interactions).

A Service Interface between the analyzed object and another one (via a Service
Interaction) in an “external view” must be established also with a component of the
analyzed object (via another Service Interaction) in an “internal view”. And vice
versa.

 All Service Interactions/Service Interfaces with another agent must
be handled by an internal component and all Service Interactions/
Service Interfaces handled by an internal component must be used by
another agent.

Parameters Parameter type Constraints

Root object Application system,
Application or IT service

One object mandatory.

235

Hopex IT Architecture Reports
Application Architecture Reports

Content Consistency (Structure) report example

Report parameters

This consists of defining report input data.

Content Consistency (Scenario)

This report allows to check exchange consistency between “external views” and
“internal views”, limited scenario descriptions (application flow).

A content send/received in an “external view” with another agent must appear also
in an “internal view” and vice versa.

 All flows exchanged with another agent must be handled by an
internal component and all flows handled by an internal component
must be used by another agent.

Parameters Parameter type Constraints

Root object Application system,
Application or IT service

One object mandatory.

236 HOPEX IT Architecture

5

Content Consistency (Scenario) report example

Report parameters

This consists of defining report input data.

External Contents Matrix (Structure)

This report displays a matrix of contents sent or received by analyzed agent with
other agents, limited to structure descriptions (Service Interactions).

Parameters Parameter type Constraints

Root object Application system,
Application or IT service

One object mandatory.

237

Hopex IT Architecture Reports
Application Architecture Reports

External Contents Matrix (Structure) example

Report parameters

This consists of defining report input data.

External Contents Matrix (Scenario)

This report displays a matrix of contents sent or received by analyzed agent with
other agents, limited to scenario descriptions (Application Flows).

Parameters Parameter type Constraints

Root object Application system,
Application or IT service

One object mandatory.

238 HOPEX IT Architecture

5

External Contents Matrix (Scenario) example

Report parameters

This consists of defining report input data.

External Service Interface Matrix

This report displays a matrix of Exchanged Contracts used by the analyzed object
to service with other agents.

Parameters Parameter type Constraints

Root object Application system,
Application or IT service

One object mandatory.

239

Hopex IT Architecture Reports
Application Architecture Reports

External Service Interface Matrix Example

Report parameters

This consists of defining report input data.

Graph of Flows between Agents

This graph report displays a synthesis of all interactions between some agents
(Application System, Application, IT Service, Microservice etc.) selected by the user.

Filters can be applied on display by selecting some service interfaces and/or service
interaction contexts.

Report can be visualized in 2D or 3D.

Parameters Parameter type Constraints

Root object Application system,
Application or IT service

One object mandatory.

240 HOPEX IT Architecture

5

Graph of Flows of between Agents Example

Report parameters

This consists of defining report input data.

Graph Flows of an Agent

This graph report displays a synthesis of all application flows exchanged by an agent
(Application System, Application, IT Service, Microservice etc.).

Filters can be applied on display by selecting some exchanged contents and/or flow
contexts.

Report can be visualized in 2D or 3D.

Parameters Parameter type Constraints

Root object Application System,
Application, IT Service or
Microservice.

One object mandatory.

241

Hopex IT Architecture Reports
Application Architecture Reports

Example of a 2D graph of Flows of an Agent

Example of a 3D graph of Flows of an Agent

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application System,
Application, IT Service or
Microservice.

One object mandatory.

242 HOPEX IT Architecture

5

Flow Process Rationalization

This graph shows the distribution of multi-software communication chains. It allows
to quickly identify the contents with the most associated communication chains and
therefore potentially the least urbanized in terms of flows.

Report parameters

This consists of defining report input data.

Graph of Service Interactions between Agents

This graph report displays a synthesis of all service interactions between some
agents (Application System, Application, IT Service, Microservice etc.) selected by
the user.

Filters can be applied on display by selecting some service interfaces and/or service
interaction contexts.

Report can be visualized in 2D or 3D.

Parameters Parameter type Constraints

Root object Communication System One object mandatory.

243

Hopex IT Architecture Reports
Application Architecture Reports

Graph of Service Interactions between Agents Example

Report parameters

This consists of defining report input data.

Graph of Service Interactions of an Agent

This graph report displays a synthesis of all service interactions between some
agents (Application System, Application, IT Service, Microservice etc.) selected by
the user.

Filters can be applied on display by selecting some service interfaces and/or service
interaction contexts.

Report can be visualized in 2D or 3D.

Parameters Parameter type Constraints

Root object Application System,
Application, IT Service or
Microservice.

One object mandatory.

244 HOPEX IT Architecture

5

Example of a graph of interactions of an Agent

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application System,
Application, IT Service or
Microservice.

One object mandatory.

245

Hopex IT Architecture Reports
Reports on the Architecture Functional Coverage

REPORTS ON THE ARCHITECTURE FUNCTIONAL COVERAGE

Building Block Breakdown report

This report aims at detailing the breakdown of a root Class of Building Block object
into its Class of Block Component object and emphasizing the realizing EA artifacts
of each component.

• The depth of analysis can be defined,
• The types of analyzed components can be displayed or filtered out (EA

dimension),
• The types of realizing items can be displayed and filter out by types

(EA layers),
• The look and feel can be fine-tuned (color palette, number of

displayed columns).


 For more details on use of breakdown report, see “Handling a
Breakdown report” in the Hopex Common Features guide.

246 HOPEX IT Architecture

5

Report examples
The example below enables viewing of the functional
breakdown of the functionality map specified as parameters.

 Example of functionality breakdown report.
In the example below, the applications that implement the
functionalities are presented.

247

Hopex IT Architecture Reports
Reports on the Architecture Functional Coverage

Another representation helps to see the capability maps fulfilled by applications.

248 HOPEX IT Architecture

5

Report parameters

This consists of defining report input data.

 For more details on how to associate a business capability with a
functionality, see Describing Fulfillment of a Business Capability.

Overlapping Applications

This report presents a matrix of application systems, applications, IT Services and
Microservices that have the same functional perimeter as the described element.

 For more details on how to associate a concret element with a
functionality, see Describing the fulfillment of a Functionality.

Parameters Parameter type Constraints

Root object Building block One object mandatory.

Depth level Short Defines the breakdown level of the
business capability map or the capa-
bility entered as a parameter.

Number of col-
umns

Short Defines the number of columns dis-
played by breakdown level (for eg. 2
or 3)

Color palette HOPEX palette Mandatory.
The palette delivered by default is
"BoxInBox Report Monochrome Grey"

EA Level Multiple choice:
- business function level,
- organizational level,
- application level,
- technical level.

Define which objects of which type of
architecture level are displayed for
capability realizations;

For example, activation of the "appli-
cations level" displays the business
capability realizations for the Applica-
tion System Environment, the Appli-
cation Systems or the Applications

EA dimension Multiple choice:
- capability models,
- agent models,
- process model,
- information models,
- performance models,
- results models

Define which types of objects are
examined within the framework of
the breakdown analysis

For example, activation of "capability
models" will display the business
skills or functionalities required by
the capabilities that are broken down

249

Hopex IT Architecture Reports
Reports on the Architecture Functional Coverage

Overlapping Applications report example

Report parameters

This consists of defining report input data.

Business Capability Breakdown Report

You can use this report to display the realization coverage of business capability
elements by operational elements such as logical and physical applications,
application systems, etc.

 For more details on how to associate a business capability with an
application, see Creating Fulfillment of a Business capability.
 For more details on use of a breakdown report, see Building Block
Breakdown report

Parameters Parameter type Constraints

Root object Application System,
Application, IT Service or
Microservice.

One object mandatory.

250 HOPEX IT Architecture

5

Report examples
The example below enables viewing of the coverage rate of
the capability map specified as parameters.

The example below shows how the functionalities associated
with capabilities are implemented by application
components.

 For more details on how to associate a business capability with a
functionality, see Describing Fulfillment of a Business Capability.

251

Hopex IT Architecture Reports
Reports on the Architecture Functional Coverage

Report parameters

This consists of defining report input data.

 For more details on how to associate a business capability with a
functionality, see Describing Fulfillment of a Business Capability.

Parameters Parameter type Constraints

Root object Business Capability
Business Capability Maps

One object mandatory.

252 HOPEX IT Architecture

5

INFRASTRUCTURES REPORTS

Infrastructure Description Report

The report displays a description of the infrastructure and lists the defined
communication channels between components.

 For more details, see Modeling IT Infrastructures.

Report example

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object IT Infrastructure or IT
Network

One object mandatory.

253

Hopex IT Architecture Reports
Infrastructures Reports

Application Technology Requirements x IT Infrastructure Provided
Technologies Matrix

This report compares Technology requirements from Technical Architecture of an
Application and Technology provided by IT Infrastructure of same Application.

• Green color indicates a compliance between requirement and a
hosting device.

• Red color indicates a non-covered requirement by the device.
• Orange color indicates device capability that is not required.

Report example

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application One object mandatory.

254 HOPEX IT Architecture

5

Network Channel x Service Interactions

This report displays a matrix of the Network Channels x the Applicative Interactions.

Report example

Report parameters

This consists of defining report input data.

Network Channel x Package Connection Matrix

This report displays a matrix of the Network Channels x Package Connections.

Parameters Parameter type Constraints

Root object IT Infrastructure or IT
Network

One object mandatory.

255

Hopex IT Architecture Reports
Infrastructures Reports

Report example

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object IT Infrastructure or IT
Network

One object mandatory.

256 HOPEX IT Architecture

5

DEPLOYMENT ARCHITECTURE REPORTS

Deployment Architecture Report

This report displays in the form of tables, the characteristics of the following events:
• Deployable Packages
• Package Connections,
• Prescribed Hosting Devices

Report parameters

This consists of defining report input data.

Deployment architecture matrix

This report displays the distribution of IT Service of an Application on its Technical
Areas (Application or Data).

Parameters Parameter type Constraints

Root object Application deployment
architecture
Application system
deployment architecture

One object mandatory.

257

Hopex IT Architecture Reports
Deployment Architecture Reports

Report example

Report parameters

This consists of defining report input data.

Package Connection x Service Interactions Matrix

This report allows to analyze support of Service Interactions by Package
Connections.

Checkmark indicates presence (or not) of a link between a Service Interaction and
a Package connection in a Deployment Architecture.

Parameters Parameter type Constraints

Root object Application One object mandatory.

258 HOPEX IT Architecture

5

Report example

Report parameters

This consists of defining report input data.

Package Connection x Resource Flow Matrix

This report allows to analyze support of application flows by package connections.

Checkmark indicates presence (or not) of a link between an application flow and
package connections of the analyzed Deployment Architecture.

Parameters Parameter type Constraints

Root object Application deployment
architecture
Application system
deployment architecture

One object mandatory.

259

Hopex IT Architecture Reports
Deployment Architecture Reports

Report example

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application deployment
architecture
Application system
deployment architecture

One object mandatory.

260 HOPEX IT Architecture

5

261

UML modeling

262 HOPEX IT Architecture

263

About UML implementation

ABOUT UML IMPLEMENTATION

UML (Unified Modeling Language) is established as the standard for the graphic modeling of
information systems. Hopex IT Architecture offers a set of tools allowing you to model your IS in
compliance with version 2.3 of this standard.

 To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.

The aim of this part is to introduce you to the main UML functionalities provided by Hopex IT
Architecture.

 "Overview", page 264
 "Organization of UML Diagrams", page 266

264

OVERVIEW

The facilities provides by Hopex IT Architecture for UML modeling are described
below.

Analyzing use cases

Before designing a system, there must be a careful analysis of the functions
expected of it. The system components will be used by the “actors” in the
organization to perform their tasks. The various “use cases” for the system will be
presented in use case diagrams.

These are used as the starting point for discovering objects.

They then allow validation of the use of these objects in the interaction diagrams.

Then they provide criteria for grouping the discovered objects into "packages".

See "Use Case Diagram", page 269.

Identifying objects

Objects with a similar structure, the same behavior, and the same types of relations
with other objects, are placed in the same class.

The class diagram identifies the objects involved within the system and defines
their structure in terms of attributes and operations, as well as the relationships
between them. The object diagram shows the instances compatible with a
particular class diagram, and can be used as an example to verify it.

See "The Class Diagram", page 281.

Describing behaviors

The state machine diagram enables definition of the behavior of an object in
response to internal or external requests it may receive. It indicates each possible
object state, and the reaction of the object to a given event when in that state.

The activity diagram also describes a behavior, but in terms of actions.

See:
• "State Machine Diagram", page 339
• "Activity Diagram", page 349

Representing interactions between objects

The resulting dialog that is initiated between the different objects concerned by the
event can be represented in interaction diagrams.

Interaction diagrams emphasize the exchanges that take place between objects.

The sequence diagram shows the same exchanges, but indicates the chronology.

265

About UML implementation
Overview

The communication diagram highlights structural organization of objects that
send and receive messages.

The interaction overview diagram provides a general view of control flow.

See "Interaction Diagrams", page 357.

Dividing classes between packages

Once the objects are identified, it is easy to divide the classes that implement them
into different packages. These classes are grouped in the package diagram so as
to minimize exchanges between different packages. They meet two criteria: the first
is more technical and concerns the execution environment, while the other is more
structural and is related to the use it will be put to by the users for each use case.

See "The Package Diagram", page 328.

Defining interfaces

To respect the principle of encapsulation, there is strict distribution of elements
between components. This means interfaces must be provided between elements
that have relationships but belong to different components.

The component diagram and the composite structure diagram present the
interdependence between components or component elements.

Defining object interfaces while complying with a standard exchange protocol
(CORBA2, DCOM/OLE) is key to interoperability, enabling objects developed and
used in heterogeneous environments to work together.

See:
• "The Component Diagram", page 331
• "Composite Structure Diagram", page 335

Specifying deployment

Implementation of objects in an concrete working environment can be specified in
the deployment diagram.

See "The deployment diagram", page 375.

266

ORGANIZATION OF UML DIAGRAMS

General organization

Use case diagrams show the main interactions between the system being
analyzed and its environment, and indicate its main sub-systems.

Package diagrams provide a more technical breakdown of the system. Dividing a
system into packages imposes some structure, as an object can only be in one
package. You can begin drawing package diagrams as soon as you have identified
the main components of your system (Sales, Production, Invoicing, etc.).

Detailed specification

The main diagram is the class diagram. It describes the essential semantics of the
objects in the system. This is where designers will generally spend most of their
time. Classes are generally discovered by iteration between class and sequence
diagrams.

The state machine diagram describes the static aspects of an object: the different
states it can be in and the possible state transitions. This fleshes out the class
description.

The interaction diagrams describe the dynamic aspects of the system, by showing
the interactions between objects. They provide a detailed description of the different
scenarios in a use case. The sequence diagram specifies how a scenario progresses

267

About UML implementation
Organization of UML Diagrams

over time, while the communication diagram stresses the interactions between
objects.

Technical specification and deployment

The component diagram describes the different technical components of an
application and shows their interactions.

The composite structure diagram specifies collaborations between components
or component elements in execution of a common task.

The deployment diagram is used to specify the system architecture, indicating the
workstations or nodes in the information system where the different application
components are to be installed.

UML diagram entry points

In Hopex IT Architecture, the entry points above are accessible in Design (UML)
navigation menu.

Diagram Entry points

Class diagram Package, class, use case

Object diagram Class, component, package, use case

Component diagram Component, package

Composite structure diagram Component, class, collaboration

Deployment diagram Package

Package diagram Package, library

Use case diagram Package, Use case, Application
environment (ADES)

Sequence diagram interaction

Communication Diagram interaction

Interaction

overview diagram

interaction

Activity diagram (UML2) Activity

State machine diagram State machine, , protocol state
machine

268

269

Use Case Diagram

USE CASE DIAGRAM

The use case diagram constitutes a first step in description of an information system. It enables
identification of the functionalities to be provided by the system to meet the requirements of
organization actors; it therefore describes interactions between the system and the actors.

The following points are covered here:

 Creating a Use Case Diagram
 Use Case Diagram Elements

270

CREATING A USE CASE DIAGRAM

A use case diagram is used to describe the interactions between the organization
actors and the system, for each of the planned use cases.

 A use case is a series of actions leading to an observable result for
a given actor. Scenarios illustrate use cases for example.

These use cases are grouped into packages representing the system boundaries.
 A package partitions the domain studied and the associated work.
It enables grouping of various elements, in particular use cases and
classes. A package can also contain other packages. Packages are
interconnected through contractual reports defining their interface.

You can create a use case diagram from a package. However, for complex systems,
you can create this type of diagram from a use case in order to detail the latter.

With Hopex IT Architecture , you can also create a use case diagram for the
application environment of a project. See Creating an application Use Case Diagram.

Creating a Package

To create an interaction with Hopex IT Architecture using Design (UML)
navigation menu:

1. Click Packages sub-menu.
2. In the edit area, click New.

The Creation of Package dialog box appears.
3. Enter its Name.
4. Indicate the library and owner package if necessary.

 The default library is used to store an object if there is no current
library at the time of its creation.

5. Click OK.

The package is created and added to the list of packages.

Creating the Use Case Diagram of a Package

To create a use case diagram:
1. Select the package stream that interests you and click New Diagram.
2. In the dialog box, select Use Case Diagram.

The diagram opens in the edit window. The frame of the package is
positioned within the drawing.

271

Use Case Diagram
Use Case Diagram Elements

USE CASE DIAGRAM ELEMENTS

 Actors
 Use Cases
 Packages
 Participations
 Use Case Associations: Extensions and Uses
 Generalizations
 Interfaces

Actors

 An org-unit represents the role played by something or someone
within the enterprise environment of the modeled system. It is related
to the business activities of the enterprise, and interacts with the
system in different use cases. It can be an element in the enterprise
structure such as a division, a department, or a workstation.

Examples of actors:

To create an actor in a use case diagram:

1. In the object toolbar, click Actor
2. Click in the diagram.

The Add Actor dialog box opens.
3. Enter the name of the actor, “Receptionist” in this example.
4. Click Add.

The actor then appears in the diagram.
 You can create several elements successively without clicking in the
toolbar each time by double-clicking the Actor button.

 To return to normal mode, press <Esc>, or click on another button
in the toolbar.

272

Use Cases

Examples of use cases: processing an order, delivering to a client, opening an
account, sending an invoice, establishing credit, purchasing an airline ticket, etc.

To create a use case in a diagram:

1. In the use case diagram objects toolbar, click the Use Case button.
The Add Use Case dialog box opens.

2. Enter the use case Name and click Create.

The use case appears in the diagram.

Zooming in on a use case

To open the diagram that describes a use case directly from the package diagram:
1. Right-click the use case.
2. Select Use Case Diagram.

The use case diagram opens.

 Zooming in on the description of an object is possible for all
elements described by a diagram.

Packages

 A package partitions the domain studied and the associated work.
It enables grouping of various elements, in particular use cases and
classes. A package can also contain other packages. Packages are
interconnected through contractual reports defining their interface.

273

Use Case Diagram
Use Case Diagram Elements

Examples of package: the commercial information system, accounting, production
management, digital control of a machine, an alarm system, etc.

You can create a package using the Package button in the toolbar. You can
then increase its size in order to place use cases within it.

You can link a use case to a package simply by placing it within the package. When
you have moved the object within the package, the package shape is highlighted to
indicate that the object will be connected to it

 If the linked objects disappear under the package, click the
package and select the Send to Back button in the Edit toolbar.

When you move a use case from one package to another using the mouse, it is
unlinked from the first one and linked to the second. When you move it with the
keyboard arrows, however, the links remain unchanged.

Participations

You can indicate which actor participates in each of the different use cases.
 A participation indicates that an actor plays a role in a use case.

274

Examples of participation

• The sales representative participates in order processing and in checking
client status;

• The shipping agent participates in delivery;
• The accounting manager participates in setting up loans, etc.

Creating participations

To create a participation in a use case diagram:

1. In the insert tool bar, click the Participation button
2. Click the actor concerned, and drag the mouse to the use case before

releasing the button.
A dialog box appears:

3. Enter the name of the participation and indicate if the actor is the
initiator.

 It is possible to specify the beginning of the use case by selecting
the IsInitiator check box in the properties dialog box of the
corresponding participation. An arrow appears on the line representing
the participation.

4. Click OK.

275

Use Case Diagram
Use Case Diagram Elements

The link representing the participation appears in the diagram.
 A participation is represented by a link, but it is in fact an
object with its own properties.

 The spool is not used to create participations. It is used to
create certain types of links, such as those between packages and other
objects.
 If you make a mistake, you can delete an object by right-clicking it
and selecting the Delete command in its pop-up menu. You can also
delete a link by right clicking on it and selecting Delete or Disconnect
from the link pop-up menu.

Multiplicities of a participation

Multiplicity can be specified on a participation:
• From the actor, to indicate that several instances of the actor participate

in the same instance of the use case (example: participants in a
meeting).

• From the use case, to indicate that the same instance of the actor
participates in several instances of the use case (example: a sales
representative processes several orders form the same customer).

To define multiplicities on a participation:
1. Select the activity concerned and display its Properties.
2. In the properties page that opens, click the drop-down list and select

Characteristics.
A first section allows you to define multiplicity of the actor, a second frame
that of the use case.

Having been defined, the multiplicities appear in the diagram.

Use Case Associations: Extensions and Uses

When the system to be described is large, it is useful to have modeling mechanisms
that can be adapted to the desired level of detail. Associations between use cases
provide this ability.

When a use case includes too many alternatives and exceptions, these are
represented separately as relationships that extend the standard use case.

Inclusion relationship

One use case can be called automatically following another, for example validation
of an order necessarily includes selection of a means of payment.

To indicate that one use case includes another:

1. In the use case diagram, click the Link button
2. Click the use case, for example “Process Order" and drag the mouse to

the case used, for example “Choose Payment Mode" before releasing the
mouse button.

3. Select the link of type “Uses use case” and click OK.

276

The link appears in the diagram, labeled “Include”.

Examples of inclusion

In a training establishment, the following use cases:
• Inter-enterprise course (where the participants come from several

different companies)
• Intra-enterprise course (where the participants all come from the same

company)

can both include the following use case:
• Host and evaluate the course

In a company doing direct sales, the use case:
• Place an order

can reuse the following use cases:
• Provide client information
• Place a manufacturing order
• Propose a payment method

Extend Relation

One use case can result in execution of another. Unlike inclusion, which is
automatic, extension is optional.

To indicate that one use case is an extension of another:

1. In the use case diagram, click the arrow associated with the Link
button and click Extension.

2. Click the use case, for example "Consult Catalog" and drag the mouse to
the extension case, for example "Process Order" before releasing the
mouse button.
The Creation of Extension dialog box appears. You can define a constraint
or an extension location.

3. Click OK.

277

Use Case Diagram
Use Case Diagram Elements

The link appears in the diagram, labeled “Extend”.

Extension example

The purchase of an airline ticket can also include booking a hotel room or renting a
car.

Extension point

The extension can intervene at a precise point in the extension case. This point is
called the extension point.

To create an extension point on the extension case:
1. Open the properties window of the extension.
2. Select the Characteristics page.
3. In the Extension Point section, click Add.

The query dialog box appears.
4. Select the desired extension point and click Connect.

The extension point appears in the extension properties window.

278

An extension point can be associated with a constraint which indicates the moment
at which the extension intervenes. You can add a constraint at creation of the
extension or later, in the extension properties dialog box.

 A constraint is a declaration that establishes a restriction or
business rule generally involving several classes.

Extension point example

The following example presents the use case of a bank transfer; above a sum of 20
euros, customer credit check is triggered.

Generalizations

 A generalization represents an inheritance relationship between a
general class and a more specific class. The more specific class is fully
consistent with the more general class and inherits its characteristics
and behavior. However, it also contains additional information. Any
instance of the more specific class is also an instance of the general
class.

The concept of generalization was initially used for classes, but has been extended
to other UML concepts such as actor and use case.

Examples of generalizations between actors:

The "Client" actor can have the USA or Export specialization.

279

Use Case Diagram
Use Case Diagram Elements

To create a generalization between actors in a use case diagram:

 Click the button and drag the link from the specialized actor (eg:
USA client) to the more general actor (eg: Client).

The generalization then appears in the drawing.

 In the same way you can create a generalization between two use
cases.

When creating a second generalization, a dialog box allows you to reuse the existing
generalization if it involves the same subject.

Interfaces

It is possible to complement the description of a use case or actor by describing the
interfaces by which it communicates with its environment.

Creating an Interface

To create an interface in a use case diagram:

1. In the diagram objects toolbar, click the Interface button.
 If the Interface button does not appear in the toolbar, select View
Views and Details and select Classes.

2. Click in the diagram.
3. In the dialog box that appears, enter the name of the interface and click

the Add button.

The interface appears in the diagram.

Connecting an interface to a use case

When you connect an interface to a use case, you must specify if it is a supported
interface or an interface required by the use case.

280

To specify the type of link between an interface and a use case:

1. Click Connect and drag the link from the use case (eg: Process
Order) to the interface (eg: Order Interface).
A dialog box appears:

2. Indicate the type of link to be created.
• Required interface
• Supported interface

3. Click OK.

The link then appears in the diagram.

You can detail which operations the use case can carry out via this interface.

 For more details on required and supported interfaces, see Linking interfaces to
other objects.

281

The Class Diagram

THE CLASS DIAGRAM

A class diagram is used to represent the static structure of a system, particularly the types of objects
manipulated in the system, their internal structure, and the relationships between them. An object
diagram provides examples to illustrate a class diagram.

The class diagram specification is often considered the most important part in the modeling of an
information system. The following points are covered here:

 Presentation of the Class Diagram
 Creating a Class Diagram
 Classes
 Attributes
 Operations
 Signals
 Associations
 Generalizations
 Specifying Interfaces
 Specifying Dependencies
 Specifying Parameterized Classes
 Constraints
 Object Diagram

282

PRESENTATION OF THE CLASS DIAGRAM

A class diagram is used to represent the static structure of a system, particularly
the types of objects manipulated in the system, their internal structure, and the
relationships between them.

 An object is an entity with a well-defined boundary and identity that
encapsulates state and behavior. Its state is represented by the values
of its attributes and its relationships with other objects. Its behavior is
represented by its operations and methods. An object is an instance of a
class.

Examples of objects:
• Business objects:

• John Williams, Elizabeth Davis and Paul Smith are instances of the
“person” class.

• Orders 10533 and 7322 are instances of the "order" class.
• SPD-1730 Monitor is an instance of the “item” class.

• Technical objects used for programming:
• Dlg_Order_Create, Dlg_Client_Query are instances of the window

class.
• Str_Client_Name, Str_Product_Comment are instances of the "string"

class.

Data modeling consists of identifying the classes representing the activity of the
company, and defining the associations existing between them.

The classes and associations comprising the class diagram associated with a
business area of the company must provide a complete semantic description.

In other words, one should be able to describe the activity of a company by using
only these classes and associations.

This does not mean that each word or verb used in the explanation maps
corresponds directly to an object in the class diagram. It means one must be able
to state what is to be expressed, using these classes and associations.

The class diagram specification is often considered the most important part in the
modeling of an information system.

An object diagram provides examples to illustrate a class diagram.

In particular, it is possible to illustrate a class diagram by showing the corresponding
object diagram in the same drawing.

283

The Class Diagram
Presentation of the Class Diagram

The Class Diagram: summary

A class diagram includes:
• Classes, which represent the basic concepts (client, account, product,

etc.).
• Associations, which define the relationships between the different

classes.
• Attributes, which describe the characteristics of classes and, in certain

cases, of associations.
• Operations, which can be executed on objects of the class.

 Operations are not taken into account by Hopex Data
Architecture tools (synchronization, generation etc.).

The class diagram also contains multiplicity definitions.

See the glossary at the end of this guide for definitions of these and other concepts.

Creating a Class Diagram

A class diagram is created from a package.

To create a class diagram:
 Click the icon of the package concerned and select New > Class

Diagram.
The diagram opens in the edit window.

A class diagram can describe a package, a use case, a class, or an instance.

284

CLASSES

 Definition: Class
 Creating a Class
 Class Properties
 Class Stereotype

Definition: Class

A class is described by a list of attributes and operations.

A class is linked to other classes via associations. The set of classes and associations
forms the core of a class diagram.

We can illustrate the class concept by comparing classes to index cards filed in
drawers.

Classes can be technical objects used for programming.
Examples: dialog box, rectangle, string, table, etc.

Classes can represent technical objects used in industry.
Examples: Alarm, Sensor, Zone

Classes can also represent business objects:
Examples: customer, order, product, person, company, etc.

A class can also express a process, such as “Confirm client request”, or implement
a business rule, such as “Consistency in cost accounts”.

 See the glossary at the end of this guide for definitions of these and
other concepts.

285

The Class Diagram
Classes

Creating a Class

To create a class:

1. In the class diagram, click Class in the insert toolbar.
2. Click in the diagram.

The Add Class dialog box opens.
3. Enter the Name of the class and click the Add button.

The class is then placed in the diagram.
 In the examples presented in this guide, object names may include
spaces, upper case characters, and accented characters. It is important
to note that if you have a generation tool using specifications created
with Hopex UML, and this tool is more restricted in authorized
characters and name lengths, it is preferable to adhere to the more
restrictive rules of the Hopex UML specification.

You can create several classes successively without needing to click on the toolbar
each time. To do so, double click the Class button.

To return to normal mode, click the arrow.

You can use the complete name of a class throughout by adding the name of the
package to which it belongs to its name, separated by two colons.

Example:

Enterprise::Sales Management::Client.

If one of the packages in the name does not exist, it is automatically created and
linked to the class.

Finding an existing class

To find an existing class:
1. In the Add Class dialog box, select List in the drop-down list box using

the arrow.
The list of classes appears.

2. Select the desired class and click OK.
The name of the selected class appears in the Add UML Class dialog box

3. Click Add.
The class then appears in the drawing.

Class Properties

The properties displayed depend on the class stereotype.

To open the Properties dialog box of a class:
 Select the class concerned and click the associated Properties button in

the edit window.
It contains several pages where you can define the class properties.

286

 characteristics page

The Characteristics page is used to enter different characteristics of the class:
• Its Name, which you can modify.

 You can also modify the name of a class by clicking directly on the
name in the drawing.

• The owner of the class (for example, the package).
• The Visibility of the class (as related to its package):

• “Public”: the class is visible to any element outside the package. This
is the default visibility.

• “Protected”: the class is visible to elements that inherit it or have
import dependencies with it, and to friends.

• “Private”: the class is only visible to elements that have import
dependencies with it and to friends.

• "Not specified".

 Friends of a class are the classes that are authorized to access its
internals. It is possible to specify the friends of a class in the
complements tab of the properties dialog box of the class.

• Its Stereotype : see Class Stereotype.
• Comment: Comments can be used to add key information to diagrams

when certain details cannot be displayed in the drawing. These
comments are included in the document describing the class diagram.

The other characteristics you can specify are the abstraction, persistence, and
activity:

• If the class Is Abstract, it has no instances. It is only used to group
operations or attributes common to its subclasses.

• Persistence specifies whether the objects in the class need to exist
after the process or thread that created them, or whether they only last
as long as the processing.

• Instances of a class which Is Active are able to trigger control flows
without user intervention.

Example: An instance of the printer class can send an "Out
of paper" message to the network administrator screen.

• An IsRoot class is a class that has no superclasses in the tree of class
generalizations.

• An IsLeaf class is a class that has no subclasses in the tree of class
generalizations.

You can also specify the Parameters of a parameterized class (for C++).
 See To specify a parameterized class: for further information.

Other properties pages

Other pages allow you to define or view:
• Attributes of a class (see Attributes)
• Operations of a class (see Operations)
• Associated classes (see Associations)
• Instances of a class (see Object Diagram)
• Redefined elements

287

The Class Diagram
Classes

Class Stereotype

A stereotype is a type of modeling element that extends the semantics of the
metamodel. Stereotypes must be based on existing types or classes whose
structure they use. Other stereotypes can be created by the user.

Stereotypes available for a class are:
• Org-Unit: represents the role played by something or someone within

the enterprise environment of the modeled system.
• Auxiliary:class that supports another central or fundamental class,

generally by implementing a secondary logic or a control flow.
• Implementation class: is used to characterize the classes needed

for physical implementation of the system.
• Metaclass: class of which the instances are themselves classes. As a

general rule, metaclasses are used to build metamodels.
• Control: is used for classes that perform processing internal to the

system. These generally require contributions from several classes.
• Entity: enables description of classes that are passive; that is that do

not initiate interactions on their own. They can participate in in several
use cases and generally outlive any single interaction. They represent
objects shared between the different actors that handle them.

• Enumeration: datatype containing a list of tabulated values.
• Expression: expressions of complex datatypes based on types.
• Focus: class that defines the main logic or control flow for the

auxiliary class(es) that support it.
• Boundary: used to describe classes that are in direct contact with the

system environment. Man-machine interfaces are of this type.
• Interface: an interface is a named set of operations that describe the

behavior of an element. In particular, an interface represents the
visible part of a class or package in a contractual client-supplier type
relationship.

 These are interfaces between the different components of the
computer system. These are not interfaces with system users, as those

288

are considered boundary stereotypes. See Specifying Interfaces for
further information.

• Worker: represents a human actor who interacts with the system. A
worker interacts with other workers and manipulates entities while
participating in use case realizations.

• Case worker: a case worker interacts directly with actors outside the
system.

• Internal worker: an internal worker interacts with other workers and
other entities within the system.

• PowerType: metatype of which instances are sub-types of another
type.

• Structure: class that describes a structure used in the programs.
• Thread: stereotype used in implementation of an active object as a

light business process.
• Primitive Type: used to describe the datatypes.
• Utility: a class of this stereotype groups global variables and

procedures useful for programming, and described as attributes and
operations of this class.

• Schema group: class describing a type of XML element, the sub-
elements of which form a group.

• XML Document Definition Root: class that describes the structure
of a message exchanged between two systems using the XML
language syntax.

Stereotype display option

An option allows you to display stereotypes in the navigation window of objects.

To activate this option:
1. Open the Options window.
2. In the left pane of the options window, select the Workspace folder.
3. In the right pane, select the option Display stereotype of UML objects

in navigator.
4. Click OK.

289

The Class Diagram
Attributes

ATTRIBUTES

 Definition: Attribute
 Specifying Class Attributes
 Attribute Properties

Definition: Attribute

An attribute is a named property of a class. This is the most basic data saved in the
enterprise information system.

Examples:

"Client Name" (attribute of the client class).

"Client No." (identifier of the client class).

"Account balance" (attribute of the account class).

Classes and association classes may be characterized by attributes.

These attributes can be found by studying the content of messages circulating
within the enterprise.

An attribute characterizes an association when its value depends on all the classes
participating in this association.

In the diagram below, the "Role" that a "Consultant" plays in a "Contract" depends
on the consultant and on the contract, and therefore on the "Intervene" association.

290

Specifying Class Attributes

Creating a standard attribute

To create an attribute on an class:
1. Select the class concerned and display its properties.
2. In the properties window, click the drop-down list then Components.
3. In the Attributes section, click Add Attribute .

The new attribute appears.
4. Click the name to modify it.

For each attribute, you can specify:
• Its Type, which can be expressed as an expression.

Example: Integer.

 The expression must comply with UML syntax. See Operation or
Signal Signatures for further information.
 See also: Attribute type.

• Its Visibility:
• "Public": this is the default visibility. The attribute is visible to all.
• “Protected”: the attribute is visible to those inheriting its package, or

to its friends.
• “Private”: the attribute is visible to its class or to its friends.

 Friends of a class are the classes that are authorized to access its
internals. It is possible to specify the friends of a class in the
complements tab of the properties dialog box of the class.

• Its Multiplicity, which is the number of times this attribute can be
repeated in the class.

Creating a computed attribute

A computed attribute is connected to a calculation rule.

The calculation rule defines the input and output objects as well as the expression
of the rule.

The input objects can be classes, types or data views. The output objects are classes
only.

To create an attribute on an class:
1. Select the class concerned and display its properties.
2. In the properties window, click the drop-down list then Components.
3. In the Attributes section, click Add Computed Attribute calculated.

The new attribute appears.
4. Open the properties of the attribute to specify:

• the list of input parameters
• the description of the rule

291

The Class Diagram
Attributes

Inherited attributes

When a generalization exists between a general class and a more specialized class,
the specialized class inherits the attributes of the general class.

 Click the Inherited Attributes button to view attributes inherited from
other classes.

Attribute Properties

To open the Properties window of an attribute:
1. In the Components property page the holding class, in the Attributes

section, select the attribute in question.
2. Click Properties.

 The button displays the hidden commands.

In the Characteristics page, you can specify:
• The Type of the attribute in the form of an Expression (see Attribute

type).
• Whether it is a Static attribute: specifies if the attribute can take specific

values for each instance of the class or take one value characterizing the
entire class.
• "Yes": the attribute has a value that characterizes the entire class. The

attribute "Telephone number length" for the "USA Client" class is 10
digits.

• "No": the attribute can take a different value for each class instance.
For example, the "Telephone number" attribute has a different value
for each instance of the "Client" class.

• If the attribute has Persistence, specifying whether its value needs to
exist after the process or thread that created it, or whether it only lasts
as long as the processing.

• Its Multiplicity, which is the number of times this attribute can be
repeated in the class.

• Whether it is Read Only, that is if its value can be modified once it has
been specified.

• Whether it is a Calculated Attribute, specifying if its value is
determined from the value of one or more other attributes.

• The Initial Value of the attribute, assigned when an instance of the
class is created.

Attribute type

A datatype defines the type of values that a data can have. This can be simple
(whole, character, text, Boolean, date, for example) or more elaborate and
composite.

Types are implemented as classes.

Any class can be used to type an attribute or parameter.
Example: Client, Order, Window, Table.

292

Classes of the “Primitive type” stereotype are created only for typing attributes or
parameters. They are fixed.

Examples of primitive types:

String.

Integer.

Export address.

Monetary amount.

You can list the existing types or create new ones.
 The types listed include the classes owned or used by the current
package.
 To specify the structure of a type, place the corresponding class in
the same diagram or in another diagram, and select the Properties
command in its pop-up menu.

293

The Class Diagram
Operations

OPERATIONS

 Definition of an Operation
 Specifying Class Operations
 Operation Properties
 Operation or Signal Signatures
 Operation Parameters
 Operation Methods (opaque behavior)
 Object Diagram
 Operation Exceptions
 Displaying Class Attributes and Operations

Definition of an Operation

An operation is a service that can be requested from an object to affect a defined
behavior. An operation has a signature, which may be used to specify the
parameters it requires.

Examples:

"Age Calculation" (operation of the client class).

"Print" (operation of the drawing class).

"Calculate due dates" (operation of the loan class).

 Operations are not taken into account by Hopex Data
Architecture tools (synchronization, generation etc.).

Specifying Class Operations

To specify class operations:
1. Select the class concerned and display its properties.
2. In the Components property page, expand the Operations section,

click New to create an operation or Connect to connect an existing
operation.

The operation appears in the properties of the class.

You can specify its signature.

Inherited operations

When a generalization exists between a general class and a more specialized class,
the specialized class inherits the operations of the general class.

 Click the Inherited Operations button to view operations inherited
from other classes.

294

Operation Properties

To open the Properties dialog box of an operation:
1. In the Components property page the holding class, expand the

Operations section, select the operation in question.
2. Click Properties.

 The button displays the hidden commands.

You can indicate for each operation:
• Its Stereotype to specify its use:

• Constructor: creates an instance of the class.
• Destructor: destroys an instance of the class.
• Iterator: iterates through all instances of the class.
• Selector: selects certain instances of the class.

• Whether it is a Static operation: if the operation can take specific values
for each instance of the class or take one value characterizing the entire
class.

• The Concurrency, to specify how the operation behaves when it is called
several times simultaneously.
• Concurrency: the operation responds simultaneously to the different

calls.
• Protected: the operation answers the first call and rejects ensuing

ones.
• Sequential: the operation responds successively to each call.

• If it is an Is Query operation, indicating that the object state is not
modified.

• If the operation Is Polymorphic, to enable methods for this operation to
be redefined in the subclasses.

The following indications are used to further describe the operation signature.
• The Expression type of the operation.

 The expression type of an operation specifies the type of the
variable returned by the operation on completion of its execution.

• Its Signature.

Operation or Signal Signatures

An operation or signal signature consists of the name of the operation (or signal),
its return type, and its parameters with their types. Standard UML syntax is used
for signatures, in the form: Ope0 (Param0: M-Bool): M-Bool.

295

The Class Diagram
Operations

The signature can be defined:
• Either in the properties dialog box of the operation or signal.
• Or in the Properties window of the class to which the Operationssection.

The saved signature includes a reference to the type. If the type is renamed, the
signatures that use it will reflect this change.

Signature syntax

The standard syntax for signatures is:
operationname(parameter1:typeexpression1,parameter2:typeexp
ression2,...):returnexpressiontype

Names containing spaces or special characters must be enclosed in single quotes
('Client name'). When a name contains an apostrophe, the apostrophe must be
typed twice: 'Buyer''s Name'

Examples of signatures:

Unstock (Product0: Integer(3), Quantity0: Integer): Boolean

'Create order' ('Client name' : Client): Byref Variable

In a signature specification, it is possible to specify the package to which a class
belongs, followed by two colons.

Example: Enterprise::'Sales Management'::Client.

The listed class is linked to the parameter or return type. If it does not exist, it is
created. Any packages listed in the path that do not exist are also created, and
linked to the class.

If the package is not specified, a dialog box will enable you to select from similarly
named classes.

Operation Parameters

A parameter is the specification of a variable, which can be modified, sent or
returned. A parameter can specify a name, a type and a direction. Parameters are
used for operations, messages and events.

An argument is a specific value corresponding to a parameter.

296

In the Properties dialog box of an operation, the Parameters section allows you to
specify:

• The operation ExpressionType, eg. Integer(5).
• Its Defaultvalue, eg. 0.
• Its Direction: at input and/or output of the operation.

To create a parameter on an operation:
1. Open the operation properties.
2. Select the Characteristics page.
3. In the Parameters section, click New.

The dialog box for creating a parameter opens.
4. Enter the name of the parameter and click OK.

Operation Methods (opaque behavior)

A method - or opaque behavior - is a textual representation of implementation of
an operation, class or component. It specifies the algorithm or procedure that
produces results of an operation or behavior of an element.

To define the method that implements an operation:
1. Open the Characteristics property page of the operation.
2. In the Method section, click Add.

The dialog box for adding a method appears.
3. Enter the name of the method to be created or search for an existing

operation.
4. Click OK.

To enter the body of the text and the method that implements the operation:
1. Open the Characteristics property page.
2. Define the method in the Body frame.

When a class has several subclasses, each subclass can perform the operation using
a different method.

The Method section presents the method relating to the selected class.

Operation Conditions

You can define operation conditions in the form of constraints.

The condition types are:
• A PreCondition that must be met before the operation is executed.
• The condition on the Body that must be checked at operation execution.
• A PostCondition that must be met after executing the operation.

To define a condition on an operation:
1. Open the Conditions property page of the operation.

297

The Class Diagram
Operations

2. In the Conditions section, select the condition type:
• precondition
• condition on the body
• postcondition

3. Click New.
The dialog box for adding a restriction appears.

4. Enter the name of the restrictions to be created or search for an existing
operation.

5. Click OK.

To enter the body for the condition:
1. In the properties window of the holding operation, select the condition.
2. Click the Properties button.

 The button displays the hidden commands.

3. Click the Characteristics page.
4. In the Expression Body section, enter the expression.

Operation Exceptions

If a condition is not respected, an exception is generated.

The Exceptions tab allows you to define error messages sent by the operation
when an exception occurs and to specify their signature.

Displaying Class Attributes and Operations

To modify how the attributes and operations for a class are displayed:
1. Right-click the class or classes whose attributes you want to display.
2. Select Shapes and Details.

Use the Display dialog box to select what elements are to be displayed.
3. In the tree on the left, click Attribute.
4. Select the attributes you want to see displayed.

You can display All the attributes, Some of the attributes (select them from the
list), or None of the attributes.

You can request display of the Visibility, Type, … of each of the attributes.
 A datatype is used to group characteristics shared by several
attributes. Datatypes are implemented in the form of classes.

 You can hide or show the compartment containing the class
attributes in the drawing, by selecting or clearing the "Display of" check
box.

Proceed in the same manner to indicate how operations are to be displayed, but
instead, select Operations in the tree.

298

SIGNALS

Defining a Signal

A signal is an event that can be explicitly invoked. A signal can have parameters. A
signal can be sent to an object or set of objects. It can be invoked as part of the
participation of an actor in a use case.

A message can be sent or received by a class. It can also be sent by an operation
after an exception.

Specifying Class Signals

Creating a sent or received signal

To specify what signals can be sent or received by a class:
1. Select the class concerned and display its properties.
2. In the properties window, click the drop-down list and select

Complements.
3. In the menu tree presented, select sentSignal or receivedSignal then

click Add.
4. Indicate the name of the signal and click OK.

Signal Properties

To open the properties dialog box of a signal:
 In the properties window for a class, in the Complements page, select

the signal and click Properties.

 The button displays the hidden commands.

The Properties dialog box of the signal appears.

299

The Class Diagram
Signals

You can indicate for a signal:
• Its Stereotype to specify its use:

• Exception: an error signal is generated when an exception occurs
during the execution of an operation.

• Its Visibility related to the package:
• Public: this is the default visibility. The signal is visible to any element

outside the package.
• Protected: the signal is visible to inherited elements or friends.
• Private: the signal is visible to its class or to its friends.

 Friends of a class are the classes that are authorized to access its
internals. It is possible to specify the friends of a class in the
complements tab of the properties dialog box of the class.

• The ExpressionType of the signal (see expression type)..

 The ExpressionType of a signal specifies the type of variable
returned by the signal on its receipt by the addressee.

A signal can be a request to Vote sent to each active object, asking if it is possible
to perform a specific action such as closing a Windows session.

A signal can be a general Broadcast to all active objects.

Signal parameters

The Parameters of the signal are specified in the Parameters tab of its Properties
dialog box. You can specify:

• The operation ExpressionType, eg. Example: Integer(5).
• Its Default Value. Example: 0.
• Its Direction: at input and/or output of the operation.

 A parameter is the specification of a variable, which can be
modified, sent or returned. A parameter can specify a name, a type and
a direction. Parameters are used for operations, messages and events.

 An argument is a specific value corresponding to a parameter.

300

ASSOCIATIONS

An association is a relationship existing between two classes.

An association is binary when it links two classes, ternary when it links three classes,
etc.

Associations can be compared to links between index cards.

The following drawing provides a three-dimensional view of the situations a class
diagram can store.

Peter and Mary are clients. Peter has made reservations numbers 312 and 329.

A class diagram should be able to store all situations in the context of the company.
 The diagram should not allow representing unrealistic or aberrant
situations.

301

The Class Diagram
Associations

Examples of associations:
• A client issues an order.
• An order includes several products.

• A person works for a company.

• An alarm is triggered by a sensor.

A sensor covers a zone.

A window displays a string of characters.

Creating an Association

To create an association:

1. In the class diagram, click Association in the objects toolbar.
2. Click one of the classes concerned and drag the mouse to the other class

before releasing the button.
The Creation of Extension dialog box appears.

3. Enter the name of the association to be created.
 You can also select an existing association.

4. Click Add.
The association is indicated by a line in the diagram.

 If you make a mistake, you can delete an element or a link by
right-clicking it and selecting the Delete command in the pop-up menu.

Roles (or Association Ends)

It is possible to describe the different roles played by the classes in associations and
to specify their multiplicity and their navigability.

Each end of an association specifies the role played by the class in the association.

302

The role name is distinguished from the association name in the drawing by its
position at the link end. In addition, the role name appears in a normal font, while
the association name is italicized.

When two classes are linked by only one association, the name of the classes is
often sufficient to describe the role. Role names are useful when several
associations link the same two classes.

Examples of roles:
• A client is the order issuer.
• An order is issued by a client.
• An order is prepared from products.
• A product is ordered.

A person is an employee of a company.

A company is the employer of these persons.

An alarm is triggered by one or more sensors.

A zone is covered by a sensor.

One or more strings are displayed in a window.

Multiplicity of a Role

 Multiplicity specifies the interval between minimum and maximum
values of cardinalities for a set. This is primarily indicated for each role
that classes play in an association. It can assume the values *, 0..1, 1,
1..*, 2..*, 4..10, etc. The default value is *.

 Cardinality is the number of elements contained in a set.

303

The Class Diagram
Associations

The multiplicity expresses the minimum and maximum number of instances of a
class that can be linked by the association to each instance of the other class.

The usual multiplicities are "1", "0..1", "*" or "0..*", "1..*", and "M..N" where "M"
and "N" are integers:

• The "1" multiplicity indicates that one and only one instance of the class
is linked by this association to each instance of the other class.

• The "0..1" multiplicity indicates that at most one instance of the class
can be linked by this association to each instance of the other class.

• The "*" or "0..*" multiplicity indicates that any number of instances of
the class can be linked by the association to each instance of the other
class.

• The "1..*" multiplicity indicates that at least one instance of the class is
linked by the association to each instance of the other class.

• The "M..N" multiplicity indicates that at least M instances and at most N
instances of the class are linked by the association to each instance of
the other class.

1 One and one only

0 / 1 Zero or one

M..N From M to N (natural integer)

* From zero to several

0..* From zero to several

1..* From one to several

304

The following example illustrates the significance of the different multiplicities:

• 0..1: An order corresponds to zero or at most one invoice.
• *: No restriction is placed on the number of invoices corresponding to an

order.
• 1: Each order has one and only one corresponding invoice.
• 1..* : Each order has one or more corresponding invoices.

Other examples of multiplicity:

• 1..* : A client can issue one or more orders.
• 1: An order is issued by one and only one client.
• 1..* : An order contains one or more products.
• *: A product can be contained in any number of orders, including no

orders.
• 0..1 : A person works for a company.
• 1..* : An alarm is triggered by one or more sensors.
• 1: A sensor covers one and only one zone.
• 1..* : A window displays one or more strings.

Specifying role multiplicity

To specify association end multiplicity:
1. Right click on the part of the line of the association that is located closest

to the class.

305

The Class Diagram
Associations

2. Select Multiplicity then the desired value.
 If the menu you see does not propose multiplicity, check that you
clicked on that part of the line indicating the role and not the
association.

The multiplicity now appears on the role.

 All the information specified with the pop-up menu can also be
viewed and modified in the role properties dialog box.

Association End Navigability

IsNavigable specifies in which direction(s) an association between two classes can
be traversed. To avoid crowding the drawing, this is only indicated when only one
direction is possible.

Example of navigability:
• It is important to be able to find out what products are contained in an

order.
• However, it is rarely useful to be able to find all orders that concern a

product.

306

Specifying navigability for a role

To indicate that an association is navigable in one direction only:
1. Right-click the non-navigable role.
2. Select IsNavigable > No.

An arrow representing the navigability now appears for the other role.

Association End Aggregation

Aggregation is a special form of association, indicating that one of the classes
contains the other.

Example: A car includes a chassis, an engine, and wheels.

Specifying role aggregation

To specify role aggregation:
1. Right-click the role.
2. Select Whole/Part > Aggregate.

 If the menu you see does not propose aggregation, check that you
clicked on that part of the line indicating the role and not the
association.

A diamond now appears on the role, representing the aggregation.

Association End Composition

A composition is a strong aggregation where the lifetime of the components
coincides with that of the composite. A composition is a fixed aggregation with a
multiplicity of 1.

Example: An order consists of several order lines that will
no longer exist if the order is deleted.

307

The Class Diagram
Associations

Composition is indicated by a black diamond.

Role Changeability

Read Only specifies whether the role played by a class in an association may be
modified after it has been created. By default, the role of a class in an association
is considered changeable.

Example: An order includes an order line for each of the
ordered products. These order lines can no longer be
modified after the order has been saved.

You can indicate whether a role is changeable using the role pop-up menu or the
role properties dialog box.

The Read Only characteristic of the role can have the following values:
• Add only: it is still possible to link new objects with this association, but

already linked objects cannot be unlinked.
• Read Only: linked instances can no longer be unlinked. Nor is it is

possible to add a new link.
• No Restriction: new instances can be linked or unlinked at any time

with no constraints.

Role Order

It is possible to specify whether or not a role Is Ordered. For example, for a client
order, it can be useful to store the sequence in which its lines appear.

To specify that a role is ordered:
1. Open the Properties dialog box of the role.
2. In the Characteristics page, select the IsOrdered check box.

308

Role Static Property

As for an attribute, it is possible to specify if a role can take specific values for each
class instance, or take a value characterizing the entire class:

1. Open the properties dialog box of the role.
2. Click the Characteristics page.
3. In the Static box, select:

• “Yes”: so that the role can take a value characterizing the entire class.
• “No”: so that the role can take a different value for each class

instance.

Role Qualifier

A qualifier is an attribute whose values partition the set of objects related to an
object across an association.

Example: An order includes several order lines. The order
line number can be used as the qualifier that identifies
each line.

To define a qualifier:
1. Right-click the role and select Properties.

The Properties dialog box of the role opens.
2. Select the Qualifiers page.
3. To add a new qualifier to the role, click Add.
4. Enter the name of the qualifier.
5. Click Add.

Several qualifiers may be needed to uniquely identify each object in a class.

For example, each square on a chessboard is identified by its row number and
column number on the chessboard.

309

The Class Diagram
Associations

Overloading a Role

A role can inherit a role defined at higher level. Overloading enables definition of
additional properties on an inherited role.

To overload a role:
1. Open the properties dialog box of the role.
2. In the properties window, click the drop-down list and select

Characteristics.
3. In the Roles section, select Overloaded Role.
4. Click Add.

The Query dialog box appears:
5. Search and select the role in question.
6. Click OK.

Association Classes

An association class is an association that also has class properties as attributes.

It is helpful to create an association class in order to specify the characteristics of
an association.

For example, the quantity of the requested product needs to
be specified on each order line.

To create an association class:
1. Create a new class.
2. Using the Link button, create a link between the class and the

association.
The association class is linked to the association by a dotted line.

 As for standard classes, it is possible to hide the compartments and
resize the association class using the Display command in its pop-up
menu.

310

Displaying an N-ary Association

Certain associations associate more than two classes. These associations are
generally rare.

Example: When taking inventory, a certain quantity of
product was counted in each warehouse.

To create a ternary association:
1. First create the association between the two classes.

2. Click the Association Role button
3. Draw a link between the association and the third class.

You can then proceed as described above to create an association class if needed.

Reflexive Associations

Certain associations use the same class several times.

A classroom, a building, and a school are all locations.

A classroom is contained in a building, which is contained in a school.

A reflexive association concerns the same class at each end.

311

The Class Diagram
Associations

Creating a reflexive association

To create a reflexive association:

1. Click the Association button in the toolbar:
2. Click on the class concerned and drag the mouse outside the class, then

return to it and release the mouse button.
The reflexive association appears in the form of a half-circle.

 If there is an association of a class to itself, the roles need to be
named in order to distinguish between the corresponding links in the
drawing.

312

THE PARTS

In a class diagram, a part represents a role played by an instance of a class or
component at execution of a task.

A part belongs to a class. Ownership is specified on the link of the part.
In the example below, the “Order” class comprises the
“Person” class.

The part is owned by the “Order” class and references the
“Person” class.

Creating a Part between two Classes

A part is a directional link that connects two classes only.

To build an part between two classes:
1. In the objects toolbar of the class diagram, click Part.
2. Draw a link from the owner class to the referenced class.

The name of the part is automatically defined.

Defining the Identifier of a Class via a Part

In the example below, the identifier of the “Oder line” class can be defined from the
“Order” class through the “Order line” part.

To define the identifier of the “Order line” class:
1. Display the properties of the “Order line” class.
2. Select the Identifier page.

313

The Class Diagram
The Parts

3. Right-click the Members folder and select Connect > Part.

4. Select the proposed part.
5. Click OK.

Multiplicities of the Associated Classes

With multiplicities you can specify the minimum and maximum number of instances
linked by the part.

Example: 1 order comprises 1 or several order line(s).

Multiplicity of the class referenced by the part

The multiplicity of the referenced class must be indicated on the part link.

To define the multiplicity of the referenced class:
1. Right-click the part link.

2. Select Multiplicity then the desired value.

314

Multiplicity of the owner class of the part

To define the multiplicity of the owner class of the part:
1. Right-click the part role associated with the owner class.

2. In the pop-up menu that appears, select Multiplicity then the desired
value.

Aggregation and Composition Relationships

On the part that links two classes, you can define an aggregation or composition
relationship.

 Aggregation is a special form of association, indicating that one of
the entities contains the other.

 A composition is a strong aggregation where the lifetime of the
components coincides with that of the composite. A composition is a
fixed aggregation with a multiplicity of 1.

To define a composition or an aggregation link between two classes:
1. Right-click the part.
2. Select Whole/Part then the desired value:

• Aggregate
• Composite

315

The Class Diagram
The Parts

Associated multiplicities

The following table presents the multiplicities automatically associated with
aggregations and compositions.

Corre-
sponding
multiplicity

Example

Composition 1

1, 1..*

Aggregation 0 / 1

0..1, 1..*

None *

*, *

316

GENERALIZATIONS

A generalization represents an inheritance relationship between a general class and
a more specific class. The more specific class is fully consistent with the more
general class and inherits its characteristics and behavior. However, it also contains
additional information. Any instance of the more specific class is also an instance of
the general class.

 What is a Generalization?
 Multiple Subclasses
 Advantages of Subclasses
 Multiple Inheritance
 Creating a generalization
 Discriminator

What is a Generalization?

Class A is a generalization of class B. This implies that all objects in class B are also
objects in class A. In other words, B is a subset of A.

B is then the subclass and A the superclass.

Example A: Person, B: Bostonian.

B is a subset of A, so the objects in class B inherit the characteristics of those in
class A.

It is therefore unnecessary to redescribe for class B:
• Its attributes
• Its operations
• Its associations

317

The Class Diagram
Generalizations

Example

The "Large Client” class, representing Clients with a 12-month revenue exceeding
$1 million, can be a specialization of the Client class (origin).

In the above example, the associations and attributes specified for “Client” are also
valid for “Large client”.

Other examples of generalizations:
• Prospect and client are two subclasses of "person".

• Export order is a subclass of the "order" class.
• Individual person and corporate person are two subclasses of the

"person" class.
• Polygon, ellipse, and circle are subclasses of the "shape" class.
• Oak, elm, and birch are subclasses of the "tree" class.
• Motor vehicle, all-terrain vehicle, and amphibious vehicle are subclasses

of the "vehicle" class.
• Truck is a subclass of the "motor vehicle" class.

318

Multiple Subclasses

When a class has multiple subclasses, they:
• are not necessarily exclusive.
• do not necessarily partition the set.

Advantages of Subclasses

A subclass inherits all the attributes, operations, and associations of its superclass,
but can have its own attributes or associations that the superclass does not have.

A subclass can also have specific attributes. These only have meaning for that
particular subclass. In the above example:

• "Registry number" and "number of employees" only have meaning for a
"company".

• "Date of birth" is a characteristic of a "person", not a "company".
• It is also useful to calculate the "age" of a "person". This attribute and

this operation are generally not needed for a "company".

319

The Class Diagram
Generalizations

A subclass can also have specific associations.

• A "person" falls into a "socio-professional group": "manager",
"employee", "shop keeper", "grower", etc. This classification makes no
sense for a "company". There is also a classification for companies, but it
differs from that for persons.

Multiple Inheritance

It is sometimes useful to specify that a class has several superclasses. The subclass
inherits all the characteristics of both superclasses. This possibility should be used
carefully.

 Multiple inheritance is not taken into account when generating
tables.

Creating a generalization

To create a generalization:

1. Click the Generalization button in the toolbar.
2. Click the subclass concerned, and drag the mouse to the superclass

before releasing the button.

The generalization is now indicated in the diagram by an arrow.

320

Discriminator

The discriminator is the attribute of a generalization, the value of which distributes
objects into the sub-classes associated with the generalization.

For example, the gender code attribute divides the objects in the person class into
the man and woman subclasses.

You can define discriminator(s) in the generalization properties dialog box, under
the Discriminators page.

 It is also possible to specify whether a generalization:
Is Disjoint: An instance cannot belong to two subclasses of the
generalization simultaneously.
Is Complete: All instances of the superclass belong to at least one of the
subclasses of this generalization.

321

The Class Diagram
Specifying Interfaces

SPECIFYING INTERFACES

An interface represents the visible part of a class or package in a contractual client-
supplier type relationship. The interface is a class stereotype.

An interface is a named set of operations that describe the behavior of an element.
In particular, an interface represents the visible part of a class or package in a
contractual client-supplier type relationship.

These are interfaces between the different components of the computer system.

Creating an Interface

To create an interface class in a class diagram:

1. In the toolbar, select Interface .
2. Click in the diagram.
3. In the dialog box that appears, enter the name of the interface and click

the Add button.
The interface class then appears in the diagram.

You can then specify the operations of the interface as for any other class.

Connecting an interface to a class

When you connect a class to an interface, you must specify if it is an interface
required or provided by the class.

A required interface is an interface necessary for object operation.

A provided interface is an interface made available by an object to other objects.

To connect an interface to a class:

1. Click the Link button
2. Create the link from the class to the interface.

A dialog box appears:
3. Indicate the type of link to be created: provided interface or required

interface.
 Other types of links, specific to classes, can be displayed.

4. Click OK.

322

SPECIFYING DEPENDENCIES

In the class diagram, to indicate that a package references a class or another
package:

1. Click the Link button
2. Then carry out the link from a package to the package or class that it

references.

 The Views button allows you to specify the buttons that you
want to appear in the objects toolbar.

323

The Class Diagram
Specifying Parameterized Classes

SPECIFYING PARAMETERIZED CLASSES

A parameterized class enables definition of characteristics and a behavior that
varies as a function of the value of certain parameters. For example, a
parameterized class can be used to manage object lists. In this case the parameter
will be the object type to be managed in the form of a list. This type of class is
implemented in particular in C++ language.

To specify a parameterized class:
1. Open the Characteristics property page of the class.
2. You can enter the parameters and specify their type if necessary.

The class parameters are displayed at top right.

To link a class to a parameterized class:

1. Click the Link button
2. Create the link from the class to the parameterized class.

324

CONSTRAINTS

A constraint is a declaration that establishes a restriction or business rule generally
involving several classes.

Most constraints involve associations between classes.

Examples of constraints:
• The person in charge of a department must belong to the department.
• Any invoiced order must already have been delivered.
• The delivery date must be later than the order date.

A sensor covering a zone can trigger an alarm for that zone only.

To create a constraint in the class diagram:

1. Click the Constraint button in the object toolbar.

 If it is not displayed, select View Views and Details and select
the "Constraints" check box.

2. Then click one of the associations concerned by the constraint, and drag
the mouse to the second association before releasing the mouse button.
The Add Constraint dialog box appears.

3. Enter the name of the constraint, then click Add.
The constraint then appears in the drawing.

 You can link a constraint to other classes or associations using the

Link button

325

The Class Diagram
Object Diagram

OBJECT DIAGRAM

An object diagram or instance diagram contains objects with values illustrating their
attributes and links. It shows in detail the state of the system at a given moment.

You can create the object diagram of a class, component, package or use case.

Objects

An object is an entity with a well-defined boundary and identity that encapsulates
state and behavior. Its state is represented by the values of its attributes and its
relationships with other objects. Its behavior is represented by its operations and
methods. An object is an instance of a class.

326

Examples of objects:
• Business objects:

• John Williams, Elizabeth Davis, Paul Smith are instances of the person
class.

• Orders 10533 and 7322 are instances of the order class.
• Sony SPD-1730 Monitor, Compaq Deskpro 200 are instances of the

item class.
• Dupont and Burger King are instances of the company class.

• Technical objects used for programming:
• Dlg_Order_Create, Dlg_Client_Query are instances of the window

class.
• Str_Client_Name, Str_Product_Comment are instances of the string

class.
 The objects represented in an object diagram can be instances of a
class, package, use case, component, or node, to enable defining
sequence diagrams at the desired level of detail.

Creating an object (instance)

To create an object:

1. Click the Instance button.
You can create objects of different types. The arrow at the right of the
button offers a shortcut to Class and Component object types, the most
frequently used.

2. Then click in the diagram work area.
The window for adding an instance opens.

3. Enter the instance Name.
4. Specify the Instance Type if necessary.
5. Click Add.

The instance appears in the diagram.

Instance properties

To open the properties dialog box of an instance:
 Select the instance in question and click Properties in the edit window if

it is not activated.

327

The Class Diagram
Object Diagram

It contains several pages where you can define the properties of an instance.

In the Characteristics page, you can:
• Select the Instance kind (Actor, Class, etc.).
• You can specify of which Class, Actor, etc. this object is an instance.
• Indicate a name for this instance.
• Specify its Stereotype.

Value of an attribute

To specify the value of an attribute:
1. Display the properties of the instance of the class that contains the

attribute.
2. Select the Attributes page.
3. In the corresponding column, indicate the value of the attribute. You can

specify an instanced value or a constant value.
• Instanced value: click in this column to display the list of possible

instances for the selected attribute. These are variable values.
• Value: click in the column and enter the value of the attribute.

Links

A link represents an instance of an association between two objects.

328

Examples of links between objects:
• Order no. 10733 was placed by John Williams.
• Order no. 10733 includes the products Sony SPD-1730 Monitor and

Compaq Deskpro 200.
• John Williams works for Dupont.
• The window Dlg_Client_Query displays the string Str_Client_Name.

Creating a link

To create a link:

1. Click the Link button in the diagram toolbar.
2. Click one of the objects concerned, and drag the mouse to the second

object before releasing the mouse button.

The link then appears in the diagram.

If there is already a link between the two objects, a dialog box asks you to choose
an existing link or create a new one.

Link properties

To open the properties dialog box of a link:
 Select the center of the link to display its Properties.

 If you do not click on the center of the link, the properties dialog
box for one of the roles will be displayed.

Under the Characteristics page, you can specify:
• The Name of the link.
• The link Stereotype.
• The Association corresponding to the link.
• The Visibility of the link.
• The Package containing the link.

In the Link Role page:
• For each Instance connected by this link, the name of the Role and its

Multiplicity.
 Only the associations between the classes of the two instances are
listed.

Role properties

To open the properties dialog box of a role:
1. In the properties window of a link, select the Link Role page.
2. Select the role in question and click Properties

 The button displays the hidden commands.

The Properties dialog box of the role opens.

329

The Class Diagram
Object Diagram

In this dialog box you can specify:
• A Name for the role.
• The Role for this instance.
• The Multiplicity for the role.
• The values for the role Qualifiers, defined at the class level.

330

327

Structure and Deployment Diagrams

STRUCTURE AND DEPLOYMENT DIAGRAMS

In addition to class and object diagrams, structural diagrams include:

 The Package Diagram, enabling organization of elements of the model
 The Component Diagram, highlighting dependency relationships between

components
 Composite Structure Diagram, describing interactions between components and

their parts

328 HOPEX IT Architecture

THE PACKAGE DIAGRAM

A package diagram enables organization of modeling elements, in order to partition
the work involved in specification and development.

An element should only appear in a single package.

Dividing into packages is generally carried out so as to minimize interactions
between different packages.

Example of a package diagram

The "HBC" package contains the "Commercial IS" and "Production Management"
packages.

The "Production Management" package can be divided into two packages, "Digital
Control" and "Alarm System".

The "Commercial IS" package contains the "Prospect", "Client", "Company",
"Person", "Order", and "Product" classes.

Creating a Package Diagram

A package diagram is created from a package.

To create a packages diagram with Hopex IT Architecture from Design (UML)
navigation pane:

1. Click Packages sub-menu.
2. Select the package stream that interests you and click New Diagram.
3. Select Package Diagram.

The diagram opens in the edit window.

329

Structure and Deployment Diagrams
The Package Diagram

Defining Packages

A package partitions the domain studied and the associated work. It enables
grouping of various elements, in particular use cases and classes. A package can
also contain other packages. Packages are interconnected through contractual
reports defining their interface.

Examples of packages:
• The commercial information system.
• Accounting.
• Production management.
• Digital control of a machine.
• Inventory management.
• Alarm system and telephone management.

To add in the diagram an existing package:
1. In the package diagram, click the Package button in the object toolbar,

then click the workspace.
2. In the Add Package dialog box, select List in the drop-down list box

using the arrow .
The list of packages appears:

3. Select the desired package and click OK.
The name of the diagram appears in the Add UML Package dialog box.

4. Click Add.

The package appears in the diagram.

Defining Classes

The package diagram can be used to place classes in different packages.

To quickly add a set of classes to the package diagram:
1. Click Main Menu > Advanced Search to open the search assistant.

2. In the wizard, select the "Class" metaclass and click Query
The list of repository classes appears.

3. Select the classes you want and drop them in the diagram.

Specifying Dependencies in a Package Diagram

Links allow you to indicate if a package contains or references a class or another
package.

330 HOPEX IT Architecture

To indicate that a package references a class or another package:

1. Click the button.
2. Then carry out the link from a package to the package or class that it

references.
A dialog box asks you the type of link to be created.

3. Select "Referenced package" or "Referenced class" as required.

331

Structure and Deployment Diagrams
The Component Diagram

THE COMPONENT DIAGRAM

A component diagram shows the interdependency of software components and
interfaces (it defines who uses what).

 A component is an implementation element of the system: it can be
software, a program, a code element, or a physical element such as a
work document.

 An interface represents the visible part of a class or package in a
contractual client-supplier type relationship. The interface is a class
stereotype.

A component diagram contains components and classes of the "Interface"
stereotype. It is also possible to specify packages implemented by the components.

Example of a component diagram

This diagram describes the elements contained in the "Order" component and the
interactions of these elements with external components.

Creating a Component Diagram

In Hopex IT Architecture, you can create a component diagram using a
component or package.

To create a component diagram with Hopex IT Architecture from Design (UML)
navigation menu:

1. From the navigation sub-menu, click Packages.
2. Select the package stream that interests you and click New Diagram.
3. Select Components Diagram.

The diagram appears in the edit window.

332 HOPEX IT Architecture

Components

A component represents a modular part of a system that encapsulates its content,
and which can be replaced in its environment. A component defines its behavior by
means of interfaces that it provides and requires.
One component can be replaced by another if their interfaces conform.
A component can be a software package, program, code unit, etc.

It is represented by the following icon:

Interfaces

Creating component interfaces

An interface represents the visible part of a class or package in a contractual client-
supplier type relationship.

The interface is a particular type of class.

To create a class of "Interface" stereotype in the composite structure diagram:

1. Click the Interface button , then click in the diagram.
2. In the dialog box that appears, enter the name of the class.
3. Click Add.

 You can specify the details for the interface in terms of attributes
and operations in the class diagram in the same way as for a class.

Linking interfaces to other objects

Two link types enable differentiation of required interfaces and provided interfaces.

A required interface is an interface necessary for object operation.
Example: the "Purchasing Management" component requires the
"Product" interface for its operation to be able to
associate a purchase order with products ordered.

A provided interface is an interface made available by an object to other objects.
Example: the "Product Management" component makes available
the "Product" interface.

You can define interfaces required and provided by an object independently of other
objects.

To specify that an interface is supported or required by an object:

1. Click the Connect button and drag the link from the object to the
interface.
A dialog box appears:

333

Structure and Deployment Diagrams
The Component Diagram

2. Indicate the type of link to be created:
• Required interface
• Supported interface

3. Click OK.

The link then appears in the diagram.

The interface shape differs according to link type:

Connecting interfaces

Two interfaces can be interconnected. This connection is modeled by a connector.

You can also indicate that an interface provided by an object is required by another.
Here it is one and the same interface.

Ports

Ports enable connection of a component to its parts or to its environment.

Ports are represented by a square in the diagram, placed at the edge of the
described element when they assure connection with the exterior.

They are connected to components by connectors.

Ports can specify queries sent and services provided by the component, as well as
queries and services they may require from other parts of the system. These queries
and services are represented by classes of interface type.

You can view interfaces associated with a port in the properties dialog box of the
port, in the Provided and Required Interfaces tab.

Connectors

Connectors enable connection of diagram objects.

Connectors of simple type do not specify a particular connection type, they are
notably used to connect instances of objects described in collaborations.

In the composite structure diagram, it is possible to specify the type of connector
between two objects: Assembly or Delegate.

334 HOPEX IT Architecture

Delegate connector

A "Delegate" type connector indicates the redirection of queries to a component
element responsible for their execution.

The delegation link can be made directly between the component port and the
component element, or between the component port and the element port.

Below, the "Order" component delegates management of accounts to be debited to
the "Order Header" class.

Assembly connector

An "Assembly" type connector is a connector between two or more components or
ports indicating that one or more components provide services that others use.

 These can be other objects or components.

To connect ports or components that share an interface, you can also use "Provided
Interface" and "Required Interface" links.

An "Assembly" type connector connects the interface provided by the "Account"
component to the interface required by the "Order Header" class.

335

Structure and Deployment Diagrams
Composite Structure Diagram

COMPOSITE STRUCTURE DIAGRAM

The composite structure diagram enables description of the internal structure of a
component, a package or a structured class.

It also enables specification of collaborations that intervene between elements of
the structure in execution of a task, highlighting the role played by each element in
the collaborations.

Elements of this diagram are parts, ports by which parts interact with the exterior,
and connectors linking the parts between themselves and with the ports.

Example of a composite structure diagram

This diagram describes the role played by parts in the "Brokered Sale" collaboration.

Creating a Composite Structure Diagram

To create a composite structure diagram with Hopex IT Architecture from
Design (UML) navigation menu:

1. From the navigation sub-menu, click Components.
2. Select component stream that interests you and click New Diagram.
3. Select Composite structure diagram.

The diagram opens in the edit window.

336 HOPEX IT Architecture

Parts

A part represents a role played by an instance of a class or component at execution
of a task.

Parts are interconnected by connectors or dependencies.

A part can also be connected, via a connector, to a port which acts as interface
between the described component and the exterior.

For more details on these elements, see:
 Connectors
 Dependency links
 Ports.

Multiplicities defined on parts indicate the number of instances created. Multiplicities
on connector roles indicate the number of links that can be created for each of these
instances.

To define multiplicity of a part:
1. Open the properties dialog box of the part.
2. Select the Characteristics page.
3. Click the arrow in the Multiplicity box and select the required

multiplicity.
4. Click OK.

Collaborations

In the composite structure diagram, a collaboration describes the role played by
each part (instance) in execution of a task.

 A collaboration (UML) describes a collaborative structure between
several elements (roles), each accomplishing a specialized function and
collectively producing an expected functionality of the system. Its
objective is to show how a system functions independently of a specific
use. We therefore generally remove the precise identity of the
participating classes or instances.

It is represented by a dotted line oval containing the collaboration instances.

These instances are interconnected by connectors. The role that corresponds to the
instance name is displayed at each end of the connector.

 A connector is a link used to establish communication between
several objects. A delegation connector links the external contract of the
object (as specified by its ports and/or inters) to internal objects that
execute it. An assembly connector between a number of objects (or
their ports) specifies how one of the objects supplies the interface
required by another.

The model of a collaboration can be applied to different instances.

337

Structure and Deployment Diagrams
Composite Structure Diagram

Collaboration use

A collaboration use represents application of the structure described by a
collaboration to a particular situation implementing classes or specific instances.
These classes or instances therefore play roles defined in the collaboration.

The instances are connected to the collaboration use by a dependency link on which
the role played by the instance must be specified.

 A dependency specifies that the implementation or operation of one
or more elements requires the presence of one or more other elements.
There are several dependency stereotypes.

Collaboration use example
In the case of a purchasing request between two instances of
an actor, a collaboration is used. This collaboration
connects two roles: the role of buyer and the role of
seller. On the dependency that connects each instance to the
collaboration, you can indicate the role played by the
instance.

Dependency links

A dependency specifies that implementation or operation of one or several elements
requires the presence of one or several other elements.

A dependency is a supplier/customer type relationship indicating source and target
elements in the collaboration.

338 HOPEX IT Architecture

A stereotype on the dependency enables specification of dependency type:
• Binding: relationship between a template and a modeling element

generated from the template. It includes a list of arguments
corresponding with template parameters.

• Derive : indicates a derivation relationship between modeling elements
that are generally, but not necessarily, of the same type. Such a
dependency relationship implies that one of the elements can be
calculated from the other.

• Mapping UML/XML : expression that defines the relationship between
elements (classes, attributes, ...) of a schema or class diagram and
those of another schema or class diagram.

• Refine: specifies a dependency relationship between modeling elements
at different semantic levels, such as analysis and design.

• Trace: specifies a traceability relationship between modeling elements or
sets of modeling elements that represent the same concept in different
models.

To specify dependency type:
1. Open the properties dialog box of the dependency.
2. Select the Characteristics page.
3. In the Stereotype box drop-down list, select one of the proposed

stereotypes.

The arrow also allows you to create new stereotypes.

339

State Machine Diagram

STATE MACHINE DIAGRAM

A state machine diagram enables description of possible behaviors of an object, depending on the
events it experiences during its life cycle.

The following points are covered here:

 Presentation of the State Machine Diagram
 Creating a State Machine Diagram
 States
 State Transitions

340 HOPEX IT Architecture

PRESENTATION OF THE STATE MACHINE DIAGRAM

A state machine is the set of states and transitions between states that define the
life cycle of an object that is variable over time.

The state machine diagram enables representation of the sequence of states that
an object can take in response to interactions with the objects (internal or external
to the studied system) in its environment.

Example of state machine diagram

The diagram below describes possible behaviors of an automated teller machine:

Creating a State Machine Diagram

A state machine diagram is created based on a state machine.

You can create a state machine using a package, class or component.

To create a state machine diagram with Hopex IT Architecture from Design
(UML) navigation menu:

1. From the navigation sub-menu, click status.
2. Select machine stream that interests you and click New Diagram.
3. State Machine Diagram.

The diagram opens in the edit window.

341

State Machine Diagram
Presentation of the State Machine Diagram

The diagram is initialized by creation of a region. A region is part of a composite
state or state machine which contains states and transitions and of which execution
is autonomous.

342 HOPEX IT Architecture

STATES

A state is a condition or situation in the life of an object, during which it satisfies
some condition, performs some activity, or waits for some event. A state represents
an interval of time delimited by two events. It is a phase an object passes through
during its life cycle.

Examples of object states
• A person can be:

• Unmarried
• Married
• Divorced

• An item can be:
• Available
• In stock
• At reorder level
• Out of stock
• etc.

Creating a State

To create a state in a state machine diagram:
1. Click the arrow associated with the State button of the object insert

toolbar
2. Select a state type.
3. Click in the diagram work area.

The Add State dialog box opens.
4. Indicate the Name of the state and click Create.

The state appears in the diagram.

State types

It is necessary to specify the state type at the time of its creation. It can be:

• A normal state: has no sub-structure.

• A composite state: comprises several states, described in the
diagram.

• A sub-machine state: calls the descriptor of a state machine
described elsewhere. See Detailing Behavior of a State.

• A final state

When you place a state in another state, it is automatically connected as a
component of this state.

343

State Machine Diagram
States

Pseudo-states

Pseudo-states are used to specify complex paths by combining several transitions
between states.

They can be of different types: initial, final, choice, deep history, shallow history,
input, output, fork, join, junction or reference.

Initial

An initial pseudo-state has a single output transition to the initial state of the object
at its creation.

Deep history

A deep history pseudo-state represents the last active configuration of a composite
state containing it; that is the configuration that was active the last time the
composite state was exited.

Simple history

A simple history pseudo-state represents the most recent active sub-state of a
composite state (without the sub-states of this sub-state).

Fork

A fork separates a transition into several concurrent transitions.

Join

A join is the grouping of several transitions into a single transition.

Choice

Represents the choice of a transition between several possible transitions.

Junction

A junction is used to define paths of complex transitions between several states.

344 HOPEX IT Architecture

Input

Entry point of a state machine or of a composite state.

Output

Exit point of a state machine or of a composite state.

Reference

Reference to an input or output of a state machine or of a composite state.

Final

Input in this pseudo-state involves complete shutdown of the state machine.

Deep history

A Deep History state represents the last active configuration of a composite state;
that is the configuration that was active the last time the composite state was
exited.

A Simple History state represents the most recent active sub-state of the
composite state.

Example:

Consider the "Married" state as the last active configuration. Sub-states of this state
are "With children" and "Without children". In the case of a deep history, the "With
children" and "Without children" sub-state is specified. In the case of a simple
history, only the "Married" state is taken into account.

Detailing Behavior of a State

A state can be made up of sub-states.

To describe composition of a state in a diagram:
1. Open the pop-up menu of a state and select New > Detailing

Behavior.
The state machine diagram creation window opens.

2. Click New.
The diagram opens.

You can also define composition of a state by associating it with a new or existing
state machine:

1. Open the Characteristics property page of the described state.
2. In the Detailing Behavior box, create a state machine or query an

existing state machine.

345

State Machine Diagram
States

State Properties

To access the state properties:
1. Right-click the state.
2. Select Properties.

The properties dialog box of the state appears:

This can be used to:
• Modify the state Name.
• Indicate whether the sub-states are Concurrent, meaning they can be

executed simultaneously.
• Indicate the Detailing Behavior (in the case of a complex state). See

Detailing Behavior of a State.
• Specify the Activities that can be performed at input, output or while

the object is in this state.
 The contents of the properties dialog box of a state vary depending
on state type.

346 HOPEX IT Architecture

STATE TRANSITIONS

Passage from one node to another is represented by a transition.
 A transition is passage of an object from one state to another. A
transition is the response of an object to an event it receives. When an
event occurs and certain conditions are satisfied, the object executes
certain actions while still in the first state, before passing to the second
state.

All authorized transitions must be defined. Those that are not defined are prohibited.

Examples of transitions:

For the marital status of a person, certain transitions are possible:
• It can change from the "unmarried" to the "married" state
• It can change from the "married" to the "divorced" state.

Other transitions are not possible:
• The state cannot change from "unmarried" to "divorced".

Creating a Transition

To create an transition between two states:

1. In the state machine diagram, click Transition (UML) in the insert
toolbar.

2. Click the source state and drag the mouse to the target state.
3. Release the mouse button. The association is created.

Transition Types

A transition can be external, internal or local.

You can specify the transition type in the Characteristics property page of the
transition.

External transition

An external transition is a transition that modifies the active state.

Internal transition

An internal transition enables an object to react to the arrival of an event that does
not result in a state change but has an effect such as calling an operation or sending
a message. For example, when pulling items from inventory, an item may not
change state if the quantity remaining in the inventory is sufficient and does not fall
below the reorder level or shortage level.

347

State Machine Diagram
State Transitions

Local transition

A local transition applies to sub-states of a composite state. It can cause a change
of state only within the composite state.

Transition Effects

Triggering of a transition can be accompanied by an effect. The effect can be
represented by:

• An activity
• A collaboration
• An interaction
• A state machine

To define effect of a transition:
1. Open the Characteristics property page of the transition.
2. Click the arrow in the Effect (Behavior) box and create or connect the

object that defines the effect.

Transition Effect Display

To modify how the transition effects are displayed.
1. In the state machine diagram, right-click the transition and select

Shapes and Details.
2. Then select “Effect” in the tree that appears.

You can now specify whether to display all or part of the transition effects and their
characteristics.

Transition Triggering Event

In the properties dialog box of a transition in the Event tab, you can indicate the
Event Kind that triggers a transition.

348 HOPEX IT Architecture

It can be:
• Any event
• Calling an operation
• Changing the object concerned by the transition
• Creating an object
• Destruction of an object
• Sending a signal
• Sending an operation
• Sending a signal from the object
• Receiving a signal
• Receiving an operation
• A timer

 A timer is an event determined only by time elapsed. Example:
Monday, at 4 pm, etc.

Fields displayed under Event Kind vary according to the event kind selected.

You can select the object concerned by the effect.

In the case of an operation or signal, you can specify values of parameters sent.

349

Activity Diagram

ACTIVITY DIAGRAM

The activity diagram is very similar to the state machine diagram. Unlike the state machine diagram
which describes object behavior via state sequencing, the activity diagram describes element
behavior in terms of actions.

 Activity Diagram
 Partitions
 Nodes
 Flows

350 HOPEX IT Architecture

ACTIVITY DIAGRAM

An activity diagram represents sequencing of steps describing behavior of a system
element.

Steps are modeled by nodes - nodes of action, configuration or control - coordinated
by data flows or control flows.

Example of an activity diagram

Creating an Activity Diagram

In Hopex IT Architecture, an activity diagram is created based on a package or
an activity.

You can create an activity for a package, component or class.

To create an activity diagram:
1. Right-click the package or the activity concerned.
2. In the pop-up menu that appears, click New > Activity Diagram.

The new activity diagram opens.

351

Activity Diagram
Partitions

PARTITIONS

An activity diagram can be divided into partitions. Each partition contains nodes or
actions as well as the flows between these elements.

You can use partitions to organize tasks or to specify the element responsible for
implementation of multiple tasks.
For more details on swimlanes, see the Hopex Common Features guide,
"Handling Repository Objects" chapter, "Using Swimlanes” section.

Creating a Partition

To create a partition in the activity diagram:

1. Click the Partition button in the object insert toolbar.
2. Specify its name.
3. Click Add.

Partition Properties

The State page presents the states contained in the partition.

352 HOPEX IT Architecture

The Complements page is used to specify the element represented by the
partition. This is the element that implements the elements of the partition. It can
be an actor, class or component.

353

Activity Diagram
Nodes

NODES

Nodes enable modeling of activity steps. There are different node types in Hopex:
• Object nodes
• Parameter nodes
• Control nodes
• Object nodes: Input, Output and Exchange Pins

Object nodes

Actions are the basic steps of behavior represented by the activity.

Coordination of actions is by control flows and data flows.

Creating an Action

To create an action in an activity diagram:
1. In the diagram object insert toolbar, select the button corresponding to

the action type then click the work plan.
The dialog box for adding an action of the selected type opens.

 The insert toolbar offers three main types of actions.
2. Specify its name and click Add.

Modifying the Action Type

In the Characteristics property page of the action, you can modify the action type.
It can be:

• Calling an operation of another object
• Creating an object
• Destruction of an object
• Local execution of an operation of the object
• Sending a signal from the object
• Terminating the object
• etc.

Parameter nodes

The parameter nodes of an activity describe the inputs and outputs of this activity.

They transmit parameters to the activity via flows which they send and receive.

354 HOPEX IT Architecture

Control nodes

A control node coordinates the flows between nodes of an activity.

A control node can be of initial, final, decision, merge, fork or join type.

Control node types

Initial

An initial node indicates where the control flow starts when the activity is invoked.
An activity can have several initial Nodes.

Final

When a token reaches a final node an activity, all flows of the activity are stopped.
Conversely, a final Node a flow destroys tokens that arrive, but has no effect on
other tokens of the activity.

Decision

A decision makes a choice of one flow from among several possible output flows.
Output flows are selected according to their guard conditions.

Merge

A merge fusion (merge) groups several alternative input flows into a single output
flow. It is not used to synchronize concurrent flows, but to accept a single flow from
among several.

Fork

A fork separates a flow into several concurrent flows. Tokens arriving at a fork are
duplicated through the output flows.

355

Activity Diagram
Nodes

Join

A join synchronizes multiple flows. The flow is triggered when all input flows are
available.

Object nodes: Input, Output and Exchange Pins

To specify input values of an action and return values, we use object nodes called
input and output pins. The action can only start when a value is assigned to the input
pin. Similarly, when the action is completed, a value must be assigned to the output
pin.

Input pin

An input pin supports input values consumed by an action that it receives from other
actions.

Output pin

An output pin supports output values produced by an action and supplies these
values to other actions through flows.

Exchange pin

An exchange pin is used to represent data exchanged between two actions.

Flows

Passage from one node to another is represented by a flow.

Control flow

A control flow starts an action node when the previous node is completed. Objects
and data cannot be transmitted by a control flow.

Object flows

An object flow enables transmission of data or objects from one Node to another
within an activity.

356 HOPEX IT Architecture

357

Interaction Diagrams

INTERACTION DIAGRAMS

Interaction diagrams, that is the sequence diagram, communication diagram and interaction
overview diagram, represent a series of interactions between objects, ordered in time. They show
one or more possible illustrations of a system.

The following points are covered here: :

 Interactions
 Sequence Diagram
 Communication Diagram
 Interaction Overview Diagram

358

INTERACTIONS

An interaction describes behavior of a system in a particular context by exchanges
of messages between system elements.

While state machine diagrams or activity diagrams study individual behaviors,
interaction diagrams concentrate on cooperation of a group of objects.

Creating an Interaction

You can create an interaction from a package, class or component.

To create an interaction with Hopex IT Architecture using Design (UML)
navigation pane:

1. Click Interaction sub-menu.
2. Click the New button.
3. Enter the name of the interaction and an owner if necessary.
4. Click OK.

Creating an Interaction Diagram

The sequence diagram, communication diagram and interaction overview diagram
are created using an interaction.

To create an interaction diagram:
1. Right-click on an interaction.
2. In the pop-up menu that appears, click New > Interaction Diagram.

359

Interaction Diagrams
Sequence Diagram

SEQUENCE DIAGRAM

The sequence diagram highlights the chronology of messages exchanged between
objects participating in an interaction. These objects are represented in the diagram
by their lifelines.

Example of a sequence diagram

The diagram below describes behavior of an automated teller machine:
• Two entry points (represented by lifelines) have a user access check.

This check is described in an interaction.
• Depending on the result of the check, either access is refused and the

user card is rejected, or door opening is actuated;
• An optional behavior (represented by a combined fragment) can

influence door opening.

360

Creating a Sequence Diagram

To create a sequence diagram in Hopex IT Architecture :
1. Right-click on an interaction.
2. In the pop-up menu that appears, click New > Interaction Diagram.

See also Creating an Interaction.

Lifelines

A lifeline represents a participant in an interaction.

Lifelines are instances of different types (of classes, of actors, etc.).

In a sequence diagram, time is represented as passing from top to bottom along the
lifelines of these objects. Message instances transit between these objects.

 The instances represented in a sequence diagram can be instances
of a class, actor, package, use case, component, or node, used to define
the sequence diagrams at the desired level of detail.

Creating a lifeline

To create a lifeline/

1. Click the Lifeline button.
2. Click in the diagram.

A dialog box opens.
3. Enter the name of the lifeline.
4. Click Add.

The lifeline appears in the diagram.

Lifeline properties

To access properties of a lifeline:
 Select the instance and click Properties in the edit window if it is not

activated.

You can select the Type of the object (Actor, Class, etc.), specify the Class, Actor,
etc. of which it is an instance, and indicate its Stereotype.

Messages

A message defines a particular communication between lifelines of an interaction. It
specifies the sender and receiver via intermediate occurrence specifications, as well
as the type of communication. This communication can be, for example, sending a
signal, calling an operation or deleting an instance.

361

Interaction Diagrams
Sequence Diagram

Examples of exchanged messages

1) The message sent by the "Client" actor to the "Order" class carries the "New
Order" signal.

2) The message sent by the "Order" class to the "Product" class calls the "Reduce
inventory" operation.

Creating a message

To create a message in the sequence diagram:
1. Click the Message button in the insert toolbar, selecting the required

message type.

2. Click on the dotted line under the first object, and hold down the mouse
button while dragging the cursor to the dotted line under the second
object.
The message exchanged between the two objects is drawn.

362

Message types

You can create four types of message:
• In a message type "Complete", the sender and receiver are both defined.
• In a message type "Lost", only the sender is known. Here we consider

that the message never reaches its destination.
• In a message type "Found", only the receiver is known. This is the case

when origin of the message is outside the description context.
• In a message type "Unknown", neither sender nor receiver are defined.

Execution Specification

An execution specification represents an action or behavior unit that progresses
from a start occurrence specification to an end occurrence specification.

Creating an execution specification

To create an execution specification:

1. In the sequence diagram, click the Execution Specification button
in the object insert toolbar.

2. Position it on the lifeline concerned.
The specification appears in the diagram.

Occurrence specification

Creation of a message or an execution specification automatically creates
occurrence specifications.

363

Interaction Diagrams
Sequence Diagram

An occurrence specification is a syntax point at the extremity of a message or at the
start or end of an execution specification.

Occurrence specifications are ordered along a lifeline.

These are basic semantic units of an interaction.

You can access the pop-up menu of an occurrence specification by right-clicking one
of the extremities of a message.

Calculating sequence numbers

From positioning of occurrence specifications, a calculation tool enables ordering of
messages and execution specifications.

To order messages circulating between lifelines of an interaction:
1. Open the pop-up menu of the described interaction.
2. Select Calculate Sequence Numbers.

The tool automatically applies numbers to messages.

364

Example

You can manually modify the sequence number of a message in the message
properties dialog box:

 Select the Characteristics tab and change the value in the Sequence
Expression.

When you restart calculation of sequence numbers, this updates sequencing
according to the modifications made.

Combined Fragment

A combined fragment enables concise description of several execution sequences.

A combined fragment is defined by an interaction operator and the corresponding
interaction operands.

365

Interaction Diagrams
Sequence Diagram

Creating a combined fragment

To create a combined fragment:
1. In the sequence diagram insert toolbar, click the Combined Fragment

button.
You can associate different types of interaction operator to a combined
fragment. The arrow at the right of the button offers shortcuts to four of
these. See Interaction operator type.

2. Click in the diagram.
The combined fragment creation dialog box appears.

3. Specify its Name and the Interaction Operator Type if not already
indicated.

4. Click Finish.

A combined fragment is represented by a rectangle with the interaction operator
type displayed at the top left-hand corner.

366

In the example below, a combined fragment of option type translates a behavior
that could disturb normal operation (door opening).

Interaction operator type

The interaction operator type conditions meaning of the combined fragment. There
are various operator types: seq, alt, opt, break, par, strict, loop, region, neg, assert,
ignore and consider.

Alternatives

Alt expresses the possibility of choosing between different possible behaviors by
evaluating guard conditions associated with each of the operands. Only one of these
operands can be executed.

The Else operand is selected when none of the other conditions is satisfied.

Option

Opt represents a choice between the unique operand proposed, or none.

Break

Break represents a stop scenario that is executed instead of the rest of the
containing interaction fragment.

367

Interaction Diagrams
Sequence Diagram

Parallel

Par means that the different operands can be executed in parallel. Occurrence
specifications of different interaction operands can be sequenced in various ways as
long as the order imposed by each operand is maintained.

Weak Sequencing

Seq designates weak sequencing between behaviors of operands defined by three
properties:

- Order of occurrence specifications within each of the operands is maintained in the
result.

- Occurrence specifications of different lifelines from different operands can appear
in any order.

- Occurrence specifications of the same lifeline from different operands are ordered
so that the occurrence specification of the first operand appears before that of the
second.

Strict Sequencing

Strict defines strict sequencing of operand behaviors.

Negative

Neg represents an invalid operand.

Critical Area

Critical represents an area that must be processed atomically, meaning that
occurrence specifications cannot be sequenced with those of this critical area.

Ignore/Consider

Ignore and consider require that a list of relevant messages be specified.

Ignore indicates that the types of certain messages are ignored in the combined
fragment.

Consider indicates that certain messages will be considered in the combined
fragment. This is equivalent to defining all other messages as 'ignored'.

Assertion

Assert represents a sequence that is the only one valid for a given message.

Therefore any sequence defined by an interaction fragment that starts with
messages leading to the sequence defined by the Assert block and continuing with
an exchange of messages that do not respect the Assert block must be defined as
invalid.

Assertions are frequently used in combination with Ignore and Consider types.

368

Loop

Loop indicates that the interaction operand will be repeated a certain number of
times. It is possible to specify minimum and maximum number of loops, as well as
an expression of loop continuation.

Interaction operands

An interaction operand is contained in a combined fragment, and represents an
operand of the expression given by the containing combined fragment. It can be
conditioned by an interaction constraint, which acts as guard condition.

Creating an Interaction Operand

To create an interaction operand:
1. Right-click the combined fragment which contains the interaction

operand.
2. Select New > Interaction Operand.
3. Name the operand and click OK.

Creating an Interaction Constraint

To create the interaction constraint that will condition the operand:
1. Open the properties dialog box of the interaction operand.
2. Click the Characteristics tab.
3. In the Condition frame, click New.
4. The condition is represented by a constraint. Define the constraint and

click OK.

Interaction Use

An interaction use refers to an interaction. It is a means of copying content of the
interaction referenced at the interaction occurrence location.

369

Interaction Diagrams
Sequence Diagram

Example

To create an interaction use:

1. Click the Interaction Use button
2. Click in the diagram.
3. In the dialog box that appears, specify the name and the interaction

called.
4. Click Finish.

You can specify arguments of an interaction use. An argument is a specific value
corresponding to a parameter of the interaction called. In addition, when the
argument has been created on the interaction use, you must align it with the
interaction parameter called.

To create an argument:
1. Open the Characteristics property page of the interaction use.
2. In the Arguments frame, click the New button.

A value specification is created.
You can rename it and specify its characteristics by opening its properties
dialog box.

To align the argument with the interaction parameter called:
1. In the Characteristics property page of the interaction use.
2. Click the arrow at the right of the Interaction called box and select

Modify .
A dialog box displays characteristics of the interaction called.

3. For each parameter, click in the value column and select the
corresponding value specification.

Gate

A gate is a connection point between a message external to an interaction fragment
and a message belonging to this interaction fragment.

370

Example

To create a gate in the sequence diagram:

1. Click the Gate button in the object insert toolbar.
2. Click on the frame outlining the interaction at the point you wish to

position the gate.
The gate then appears in the diagram.

Continuation

A continuation is a syntax means for defining the continuation of sequences of
different branches of an Alternatives combined fragment. Continuations are similar
to labels representing intermediate points in a control flow.

371

Interaction Diagrams
Communication Diagram

COMMUNICATION DIAGRAM

The communication diagram is a simplified representation of the sequence diagram,
concentrating on message exchanges between objects within an interaction.

The sequence and communication diagrams are isomorphic. When a communication
diagram relates to an interaction already described in a sequence diagram, it is
automatically initialized from the information contained in the sequence diagram.

Example

Sequence Diagram

372

Communication Diagram

Diagram objects

Communication diagram objects are lifelines and messages transmitted by
connectors.

When you connect two lifelines with a connector , the connector creation dialog
box proposes messages that may be transmitted.

When the connector has been created, you can associate new messages in its
properties dialog box, in the Message tab.

The sequence of messages is given by a sequence number associated with each
message. See Calculating sequence numbers.

For more details on connectors, see Connectors.

373

Interaction Diagrams
Interaction Overview Diagram

INTERACTION OVERVIEW DIAGRAM

The interaction overview diagram describes sequences possible between scenarios
previously identified in the form of sequence diagrams. It gives an overview of
control flows.

Objects represented in the interaction overview diagram are interactions and
interaction uses, lifelines, messages, control nodes and control flows.

374

375

The deployment diagram

THE DEPLOYMENT DIAGRAM

The deployment diagram complements the component diagram with hardware resources on which
components run.

 Presentation of the Deployment Diagram.

376 HOPEX IT Architecture

PRESENTATION OF THE DEPLOYMENT DIAGRAM

The deployment diagram complements the component diagram. It describes
hardware resources (computer, router, etc.) in the system, and indicates
distribution of components on these hardware resources.

It also describes connections between components or nodes.

This diagram also allows specification of interfaces required and implemented for
sequencing of components.

It can be illustrated and supplemented by the addition of node, component or class
instances.

Example of a deployment diagram

Creating a Deployment Diagram

In Hopex IT Architecture, a deployment diagram is created from a package.

To create deployment diagram with Hopex IT Architecture from Design (UML)
navigation menu:

1. Click Packages sub-menu.
2. Select the package stream that interests you and click New Diagram.
3. Select Deployment Diagram.

The new deployment diagram opens in the Edit window.

377

The deployment diagram
Presentation of the Deployment Diagram

Deployment Diagram Objects

Node

A Node is a physical object representing an IT resource, generally with a memory
and often with calculation capabilities, on which components can be deployed

Nodes can comprise other Nodes or artifacts. To indicate that a component is
assigned to Node, either place the component in the node, or connect the
component to the node by a dependency link.

See Dependency links.

You can create a node in the deployment diagram using the Node (UML) button

 in the insert toolbar.

Communication path

Connections between Nodes are represented by communication paths via which
signals and messages are exchanged.

Component

A component represents a modular part of a system that encapsulates its content,
and which can be replaced in its environment. A component defines its behavior by
means of interfaces that it provides and requires.

One component can be replaced by another if their interfaces conform.

A component can be a software package, program, code unit, etc.

Artifact

An artifact represents a physical information element used or produced by the
software development process, or by the deployment or implementation of a
system. Example: source files, scripts, executable binary files, development
deliverables, word processing documents, electronic messages, etc.

Manifestation

A manifestation is the real physical restoration in an artifact of one or several
modeling elements such as components or classes.

The source of a manifestation dependency is an artifact, the target a component or
class.

378 HOPEX IT Architecture

Deployment specification

Deployment specification enables indication of the characteristics that determine
execution parameters of an artifact or component deployed on Node.

Configuration

The configuration button enables creation of the link between a deployment
specification and a deployment.

Example

379

Appendix: Attribute type

APPENDIX: ATTRIBUTE TYPE

The following points are covered here:

 Primitive Types
 Packages and Primitive Types
 Defining New Primitive Types

380 HOPEX IT Architecture

A

PRIMITIVE TYPES

A primitive type is used to group characteristics shared by several attributes.
Primitive types are implemented as classes.

Prerequisite: Importing the Primitive Types

To access primitive types in Hopex IT Architecture, the administrator must import
the “ISQL ANSI” module in your environment. To import a module in Hopex, see
Modules > Importing a Module documentation.

Defining a Primitive Type

Primitive types are defined in a class diagram.

These are classes for which the following is specified:
• They are of the "Primitive Type” stereotype.
• They are "Abstract” classes because they will not be instantiated.
• They are "Non-persistent" classes. They should not have a corresponding

table in the database.

To specify types of class attributes:
1. Open the properties of the class and select the Internal

Characteristics page.
2. Expand the Attributes section.
3. Click the Type expression field and select the attribute type using the

arrow.

The following classes are in the standard list:

Alphanumeric types Other Informa-
tion

M-Char Alphanumeric string of fixed
length

Length

M-Varchar Alphanumeric string of variable
length

Numeric types

M-Numeric Number Length, decimal
places

M-Amount Amount expressed as currency Length, decimal
places

381

Appendix: Attribute type
Primitive Types

Date types

M-Date Date

M-Time Time

M-Datetime Date and time

Binary types

M-Timestamp Identification automatically gen-
erated from the date and time,
expressed in thousandths of sec-
onds since 01 January 1970

M-Bool Boolean, equals 0 or 1

M-Multimedia Binary string

382 HOPEX IT Architecture

A

PACKAGES AND PRIMITIVE TYPES

Packages

 A package partitions the domain studied and the associated work.
It enables grouping of various elements, in particular use cases and
classes. A package can also contain other packages. Packages are
interconnected through contractual reports defining their interface.

The assignment of classes to packages imposes a rigid structure. As a class can
belong to only one package, it is necessary to define client/supplier relationships so
packages can use classes they do not own when they need to.

This is especially important for primitive type classes, because they will be used to
define the attributes of other classes.

 Rule: a class can belong to only one package.

What primitive types are available for typing the class attributes depends on which
package the class is in.

The type you can give to class attributes can only be primitive types defined for the
package containing the class.

The accessible primitive types are public classes with the “Primitive Type”
stereotype, that are contained in or are used by the package or the packages of
which it is the client.

You can define a reference package (or several reference packages) containing the
primitive types used by the enterprise. All the other packages are declared as clients
of the reference package of primitive types.

383

Appendix: Attribute type
Packages and Primitive Types

In the example below, the “Data types reference” package contains the classes
“Address”, “Code”, “Date”, etc.

It is referenced by the packages "Library", "Order management", etc.

The class attributes for these packages can be typed using the types “Address”,
“Code”, “Date”, etc.

It is also possible to specify directly that a package uses a class contained in another
package.

In the example below, the classes “P-Datetime”, “P-Multimedia”, "P-Numeric", etc.
are used by the “Data Type Reference” package without being owned by that
package.

Of these classes, only “M-Multimedia” is exported by the package for public use.

384 HOPEX IT Architecture

A

385

Appendix: Attribute type
Defining New Primitive Types

DEFINING NEW PRIMITIVE TYPES

New primitive types can be defined using a class diagram.

Depending on whether classes have been organized into packages, the class
diagram can describe:

• A reference database.
• The package of reference types.

You can define your own primitive types by declaring them as subclasses of the
standard primitive types, as shown in the example below:

The primitive types defined as subclasses will automatically inherit the
characteristics of their superclass. In particular, the datatype conversion rule for the
superclass is applied to the subclass.

It is possible to specify a length and a number of decimal places for the subclass.
These will be taken into account when generating the data types if they were not
already defined for the superclass.

Inheritance can occur at several levels.

386 HOPEX IT Architecture

A

In the following example, the primitive type “ZipCode” is a specialization of the
“Numeric5” type of length 5, which is itself a specialization of the standard type “P-
Numeric”.

If the new primitive type is not defined directly or indirectly as a subclass of a
standard primitive type, the conversion table that maps primitive types to column
data types must be updated.

 A connection can also be directly defined between a type and the
corresponding SQL datatype generated for each target DBMS without
using the inheritance mechanism (see "Mappings between Pivot Types
and Datatypes" in the Hopex Database guide).

Compound Primitive Type

You can define a compound primitive type by assigning to it a list of attributes.

Here the Address type is composed of number, street, zip code, city, and country.

The derivation of the Address attribute will produce these five columns.

It is possible to have several levels of compound types by assigning a compound
type to an attribute of a compound type.

For example, the zip code can be broken down into the five main digits and the four-
digit extension:

HOPEX XMI 2.1 Import for UML2

HOPEX XMI 2.1 Import for UML2 page 2/26

XMI IMPORT OVERVIEW

The XML Metadata Interchange XMI is an OMG standard for exchanging UML Models between different

UML products such as modeling tools and UML Design.

The XMI Import project aims at importing the content of .xmi and .uml files into HOPEX so that users can

reproduce diagrams from other platforms. Only the data (the objects) are imported, not the drawings.

Prerequisites

The XMI Import feature supports UML versions from 2.3 to 2.5. A file with a version lower than 2.3 or higher

than 2.5 can be imported, without guarantee of full success.

Scope of XMI Import

The purpose of the XMI Import tool is to import XMI data into HOPEX repository. The objects imported are

those belonging to the Class Diagram, Use Case Diagram, Component Diagram, Composite Structure

Diagram, Activity Diagram, Communication Diagram, Sequence Diagram, State Machine Diagram,

Interaction Overview Diagram, Object Diagram, Deployment Diagram, etc.

See object details in HOPEX/XMI Object Mapping.

 Only objects are imported. The XMI Import tool does not take into account UML profiles, extensions

and graphical diagram drawings.

HOPEX XMI 2.1 Import for UML2 page 3/26

IMPORTING XMI AND UML FILES

Depending on the source tool, the XMI import tool can import .xmi or .uml files.

To import a file:

1. In HOPEX, select Main Menu > Import > XMI 2.x UML 2.5 (*.uml; *.xmi).

The import wizard appears.

2. In File Location, select the file to be imported.

3. Select the library in which you want to import the data (optional).

4. Click Next.

The wizard shows the import process progression.

Then it shows the report of imported data.

HOPEX XMI 2.1 Import for UML2 page 4/26

HOPEX/XMI OBJECT MAPPING

The following paragraph indicates what kinds of objects are imported by UML2 diagram types. Only objects

belonging to the selected package are imported.

All objects that do not belong to a package are attached to a package called “Default Package”.

A package “UML Primitive Types” is imported by default if not already.

Class Diagram

Classes, attributes, associations, association ends, generalizations, generalization sets, operations,

parameters, data types, primitive types, interfaces, enumerations, etc.

Use Case Diagram

Use cases, actors, packages, constraints, extension points (text), participations, extensions (link), inclusions

(link), generalization, dependencies, etc.

State Machine Diagram

State machines, regions, states, pseudo states, transitions, constraints, etc.

Protocol State Machine Diagram

Protocol state machines, regions, states, pseudo states, transitions, constraints, etc.

Activity UML Diagram

Actions, control nodes, Input Pins, Output Pins, Exchange Pins, central buffer nodes, data store nodes,

activity partitions, control flows, object flows, exception handlers, activities uml, activity parameter nodes,

structured activity nodes, expansion regions, expansion nodes, interruptible activity regions, etc.

Component Diagram

Classes.

Elements such Components, ports packages, interfaces, required interfaces, provided interfaces, Connectors or realized

elements may be imported.

Composite Structure Diagram

Collaborations UML, collaboration uses, parts, dependencies, connectors, interfaces, classes, provided

interfaces, required interfaces, etc.

HOPEX XMI 2.1 Import for UML2 page 5/26

Sequence Diagram

Life lines, combined fragments, interaction uses, gates, states invariant, UML messages, constraints, etc.

Messages include those exchanged directly between lifelines as well as messages exchanged through execution specification.

Communication Diagram

Life lines, connectors, UML messages, etc.

Deployment Diagram

Packages, components, artifacts UML, nodes UML, devices, execution environments, interfaces,

deployment specifications, deployments, manifestations, deployment configurations, component instances,

device instances, node instances, execution environment instances, communication paths, etc.

 Only objects owned by the selected package or its sub-packages are exported.

Objects that are linked to objects contained in the selected export package but owned by another

package are also exported in order to ensure links. However, they will be owned by the exported

package.

HOPEX XMI 2.1 Import for UML2 page 6/26

The following table indicates concepts managed by the export tool:

Class Diagram

MEGA Concepts MetaAttribute MetaAssociation(End)

Class Name Class Target Dependency

 xmi_id Realization Class

 Visibility Nested Class

 Comment Association

 Abstract Connector

 IsLeaf Association Class

 IsActive Attribute

 Client Dependency Operation (UML)

 Generalization

 Required Interface

 Provided Interface

 Constraint

 Port

 AssociationEnd

 Owned Part

 Behavior: State Machine

 Behavior: Activity Uml

 Behavior: Interaction Uml

 Behavior: Collaboration Uml

 Protocol: ProtocolStateMachineDiagram

Source Dependency

 Data Type Name Class Target Dependency

HOPEX XMI 2.1 Import for UML2 page 7/26

MEGA Concepts MetaAttribute MetaAssociation(End)

 xmi_id Nested Class

 Visibility

 Abstract

 IsLeaf

 IsActive

 Client Dependency

Interface xmi_id Class Target Dependency

 Name Nested Class

 Visibility Association

 Comment Attribute

 Abstract Operation (UML)

 IsLeaf Generalization

 Client Dependency RequiredInterface

 SpecificationInterface

Enumeration _Hexaidabs Class Target Dependency

 Name Attribute

 Visibility Operation (UML)

 Comment Literal Value

 Client Dependency RequiredInterface

Specification Interface

LiteralValue _Hexaidabs Value Slot

 Name

HOPEX XMI 2.1 Import for UML2 page 8/26

MEGA Concepts MetaAttribute MetaAssociation(End)

Expression xmi_id Class Target Dependency

 Name Specification Interface

 Visibility

 Comment

 Client Dependency

Primitive Type Name Class Target Dependency

 xmi_id Nested Class

 Visibility

 Abstract

 IsLeaf

 IsActive

Association xmi_id Connection

 Name Dependency (Target Association)

 Visibility Class via AssociationEnd

 Comment

 IsAssociationDerived

 IsNavigable

Association End xmi_id Association

 Name

 Aggregation:

Composite/Shared

Dependency

Association Class xmi_id Class Target Dependency

HOPEX XMI 2.1 Import for UML2 page 9/26

MEGA Concepts MetaAttribute MetaAssociation(End)

 Name Nested Class

 Visibility AssociationEnd

 Comment Association

 IsLeaf Association Class

 Abstract Class via AssociationEnd

 IsActive Attribute

 IsAssociationDerived Operation (UML)

 IsNavigable

Attribute xmi_id Dependency (Target Attribute)

 Name AttributType

 Visibility

 Comment

 IsLeaf

 IsOrdred

 Uniqueness

 ReadOnly

 IsDerived

 InitialValue

 Multiplicity: UpperValue,

LowerValue

Operation (UML) xmi_id Precondition

 Name Postcondition

 Visibility Parameter

 Comment ReturnType

HOPEX XMI 2.1 Import for UML2 page 10/26

MEGA Concepts MetaAttribute MetaAssociation(End)

 Abstract Target Dependency

 IsQuery

Dependency _Hexaidabs Class Source

 Name Class Target

 Visibility Stereotype

 Comment

Generalization xmi_id Super Class

 Name UML constraint

 Comment

GeneralizationSet xmi_id Generalization

 Name

 Comment

 IsComplete

 IsDisjoint

Constraint xmi_id ConstrainedClass

 Name ConstrainedGeneralization

 Comment ConstrainedElement

 MaxInt Actor (UML)

 MinInt Package

 Specification UseCase

 UseCaseParticipation

HOPEX XMI 2.1 Import for UML2 page 11/26

MEGA Concepts MetaAttribute MetaAssociation(End)

Parameter _Hexaidabs Parameter Type

 Name

 Comment

Behavior (UML) _Hexaidabs

 Name

Use Case Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

UseCase xmi_id UsesUseCase

 Name OwnedExtension

 Visibility ExtensionPoint

 Comment Behavior: State Machine

 Behavior: Protocol State Machine

 Behavior: Interaction UML

 Behavior: Activity UML

 Behavior: Collaboration UML

 Constraint

 Generalization

Actor (UML) xmi_id Participation

 Name Constraint

 Visibility Generalization

 Comment

 Participation xmi_id UseCase

HOPEX XMI 2.1 Import for UML2 page 12/26

 Name Actor (UML)

 Comment Constraint

 Multiplicity

Extension xmi_id Extended Use Case

 Name Extension Location

 Comment

Composite Structure and Communication Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

 Collaboration uml xmi_id CollaborationRole

 Name OwnedConnector

 Comment OwnedCollaborationUse

 IsAbstract

 IsLeaf

Collaboration use xmi_id Type

 Name

 Comment

 Part xmi_id
 ConnectorEnd (of the LifeLine who represents the

part)

 Name Dependency

 Visibility

 Client Dependency

 IsLeaf

 IsUnique

HOPEX XMI 2.1 Import for UML2 page 13/26

 IsOrdered

 Multiplicity

 Aggregation:

Composite/Shared

 Comment

Connector xmi_id OwnedConnectorEnd

 Name

 Connector Kind

 IsLeaf

ConnectorEnd xmi_id Connector

 Name

 Multiplicity

State Machine

MEGA Concepts MetaAttribut MetaAssociation(End)

 State Machine xmi_id DetailedState

 Name Region

 Comment

 Reentrant

Region xmi_id State

 Name PseudoState

 Comment

 Transition

State (UML) xmi_id Detailing Behavior

HOPEX XMI 2.1 Import for UML2 page 14/26

 Name Outgoing

 Comment Incoming

 OwnedRegion

 DoActivity

 ExitActivity

 EntryActivivity

 ConnectionPoint (Entry Point/ Exit Point)

Pseudo State xmi_id Outgoing Transition

 Name Incoming Transition

 Comment

 PseudoStateKind

 Transition (UML) xmi_id Source

 Name Target

 Comment Source Pseudo State

 Target Pseudo State

 Trigger

 Effect (Behavior)

 Constraint

 Event (UML) xmi_id EventKind

 Name

 Comment

 Protocol State Machine xmi_id Region

 Name

 Visibility

HOPEX XMI 2.1 Import for UML2 page 15/26

 Comment

Trigger (UML) xmi_id Event (UML)

 Name

 Comment

Sequence, Communication and Interaction Overview Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

Interaction UML xmi_id Gate

 Name Fragment (Combined Fragment, State Invariant, ...)

 Comment LifeLine

 Message

 Action

 Parameter

 Operation (UML)

 OwnedInteraction (UML)

 OwnedInteractionOperand

Interaction Operand xmi_id Fragment (Combined Fragment, State Invariant, ...)

 Name OwnedInteraction (UML)

 Comment OwnedInteractionOperand

OccurrenceSpecification xmi_id Event (UML)

 Name Message

 Comment

ExecutionSpecification xmi_id start

 Name finish

HOPEX XMI 2.1 Import for UML2 page 16/26

 Comment

LifeLine xmi_id ElementRepresentedByALifeline

 Name ElementCoveringLifeline

 Comment OwnedSelector

Combined Fragment xmi_id InteractionOperand

 Name CoveredLifeLine

InteractionOperatorKind

 Comment

Interaction Use xmi_id RefersTo

 Name CoveredLifeLine

 Comment

 State Invariant xmi_id InvariantConstraint

 Name CoveredLifeLine

 Comment

Gate xmi_id

 Name

 Comment

Message UML xmi_id Receiver Sender Connector

 Name

 MessageKind

 MessageSort

 Comment

HOPEX XMI 2.1 Import for UML2 page 17/26

Activity and Interaction Overview Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

 Action xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 ActionKind IncomingObjectFlow

 Comment OwnerGroup

 RequestOperation

 CalledBehavior

 StructuralFeatureElementManagedByAnAction

 RequestSignal

 Association

 ClassManagedByAnAction

 Variable

 InputPin

 OutputPin

 ProtectingExceptionHandler

 Trigger

 LocalPostCondition

 LocalPreCondition

Constraint

 Control Node xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 Comment IncomingObjectFlow

 ControlNodeType OwnerGroup

HOPEX XMI 2.1 Import for UML2 page 18/26

 Input Pin xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 InputPinKind IncomingObjectFlow

 ControlType Constraint

 OrderingKind

 Comment

 Output Pin xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 OutputPinKind IncomingObjectFlow

 ControlType Constraint

 OrderingKind

 Comment

 Exchange Pin xmi_id OutgoingObjectFlow

 Name IncomingObjectFlow

 IsLeaf OwnerGroup

 ControlType

 OrderingKind

 Comment

 Central Buffer Node xmi_id OutgoingObjectFlow

 Name IncomingObjectFlow

 IsLeaf OwnerGroup

HOPEX XMI 2.1 Import for UML2 page 19/26

 ControlType

 OrderingKind

 Comment

 Data Store Node xmi_id OutgoingObjectFlow

 Name IncomingObjectFlow

 IsLeaf OwnerGroup

 ControlType Constraint

 OrderingKind

 Comment

 Activity Partition xmi_id ContainedElement

 Name Constraint

 IsDimension

 IsExternal

 Comment

 Object Flow xmi_id Guard

 Name Weight

 IsLeaf SourceElement

 Comment TargetElement

 Constraint

Control Flow xmi_id Guard

 Name Weight

 IsLeaf SourceElement

 Comment TargetElement

HOPEX XMI 2.1 Import for UML2 page 20/26

 Constraint

 Exception Handler xmi_id ProtectedNode

 Name ExceptionInput

 Comment
 Constraint

Activity UML xmi_id ElementOwnedByAnActivityUML

 Name Constraint

 Reentrant

 SingleExecution

 IsLeaf

 Comment

Activity Parameter Node xmi_id OutgoingObjectFlow

 Name IncomingObjectFlow

 IsLeaf Constraint

 ControlType

 OrderingKind

 Comment

Structured Activity Node xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 MustIsolate IncomingObjectFlow

 Comment OwnerGroup

 ContainedElement

 InputPin

HOPEX XMI 2.1 Import for UML2 page 21/26

 OutputPin

 Constraint

Expansion Node xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 ControlType IncomingObjectFlow

 OrderingKind Region

 Comment

 Constraint

 Expansion Region xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 MustIsolate IncomingObjectFlow

 ExpansionKind OwnerGroup

 Comment ContainedElement

 ExpansionNode

 InputElement

 OutputElement

 Interruptible Activity Region xmi_id OwnerGroup

 Name ContainedElement

 Comment

 Constraint

Loop Node xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

HOPEX XMI 2.1 Import for UML2 page 22/26

 MustIsolate IncomingObjectFlow

 TestedFirst OwnerGroup

 Comment ContainedElement

 InputPin

 OutputPin

 Constraint

 Test

Conditional Node xmi_id OwnerGroup

 Name ContainedElement

 IsLeaf InputPin

 MustIsolate OutputPin

 Assured Constraint

 Determinate OutgoingControlFlow

 Comment OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

Sequence Node xmi_id OutgoingControlFlow

 Name OutgoingObjectFlow

 IsLeaf IncomingControlFlow

 MustIsolate IncomingObjectFlow

 Comment OwnerGroup

 ContainedElement

 InputPin

 OutputPin

 Constraint

HOPEX XMI 2.1 Import for UML2 page 23/26

Package Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

Package Name Client Dependency

 xmi_id Package Target Dependency

 Visibility Owned Class

 Comment Owned Package

 Owned Association

 Association Class

 Owned Dependency

 Owned Element (UML): Generalization

 Owned Use Case

 Owned Actor (UML)

 Constraint

 Behavior: State Machine

 Behavior: Protocol State Machine

 Behavior: Activity Uml

 Behavior: Interaction Uml

 Behavior: Collaboration Uml

 Owned Component

 Owned Event

Component Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

Component xmi_id required Interface

 Name provided

 Comment Port

HOPEX XMI 2.1 Import for UML2 page 24/26

 Isleaf OwnedPart

 Visibility

 Client Dependency

Port xmi_id

 Name

 Comment

 Client Dependency

Interface xmi_id Class Target Dependency

 Name Nested Class

 Visibility Association

 Comment Association Class

 Abstract Attribute

 IsLeaf Operation (UML)

 Client Dependency Generalization

 RequiredInterface

 SpecificationInterface

Deployment Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

 Artifact UML xmi_id Target Dependency

 Name OwnedAttribute

 Comment OwnedOperation

 Client Dependency

 NestedArtifact

 Node UML xmi_id Deployment

HOPEX XMI 2.1 Import for UML2 page 25/26

 Name

 Comment

 Client Dependency

Device xmi_id Deployment

 Name

 Comment

 Client Dependency

Execution Environment xmi_id Deployment

 Name

 Comment

 Client Dependency

Deployment Specification xmi_id Target Dependency

 Name

 Comment

 Client Dependency

 Instance (Node

UML/Device/Execution

Specification/Component)

 xmi_id Instantiated Element

 Name Target Dependency

 Comment

 Client Dependency

Communication Path xmi_id Communication Path End

 Name

 Comment

HOPEX XMI 2.1 Import for UML2 page 26/26

 Deployment xmi_id Deployed Element

 Name Deployment Configuration

 Comment

Manifestation xmi_id Multiplicity

 Name Deployed Element

 Comment Deployment Configuration

Object Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)

Instance xmi_id

 Name

 Comment

Link xmi_id LinkEnd

 Name

 Comment

LinkEnd xmi_id Instance

 Name

 Comment

HOPEX XMI 2.1 Export for UML2

HOPEX XMI 2.1 Export for UML2 page 2/34

XMI EXPORT OVERVIEW

The XML Metadata Interchange XMI is an OMG standard for exchanging UML Models between different

UML products such as modeling tools and UML Design.

The XMI 2.1 Export project aims at exporting the content of HOPEX Diagrams as .xmi files so that models

modeled in HOPEX can be imported by UML tools such as Eclipse EMF.

Prerequisites

The XMI 2.1 export feature is available with HOPEX UML, and supports XMI version 2.1 with UML 2.3.

 Scope of XMI Export

The purpose of XMI export is to translate the specification of HOPEX Class Diagrams, Use Case Diagrams,

Component Diagram, Composite Structure Diagram, Activity Diagram, Communication Diagram, Sequence

Diagram and State Machine Diagrams into XMI. Diagrams and diagrams drawings are not considered except

with UML2 plugin for Eclipse.

The tool handles translation of the concepts of the above HOPEX diagrams that have a correspondence in

UML 2.0. The list of supported mappings is detailed below.

HOPEX XMI 2.1 Export for UML2 page 3/34

EXPORTING XMI FILES

Depending on the destination tool, the XMI export tool produces two types of file. For Eclipse with UML

plugin, the export will produce one .uml file for data and some .umlclass, .umlusc and/or .umlstm files for

diagrams (each file represents an HOPEX diagram).

For other modeling tools, as Enterprise Architect or MagicDraw UML, the export will produce one .xmi file

for data but no diagram description files will be generated.

Export for Eclipse with UML2 plugin

To export HOPEX data for Eclipse with UML2 plugin:

1. In HOPEX, select Main Menu > Export > XMI Export.

The export dialog box appears.

2. Select the Package to be exported.

3. Specify the name and path of the file to be exported.

4. Under Options, check the Export for Eclipse parameter.

5. Click Next.

HOPEX XMI 2.1 Export for UML2 page 4/34

The window shows the export process progression.

Then the window showing the report of all exported data appears.

Export for other tools

Because many modeling tools do not support the UML Diagram Interchange Specification, the MEGA XMI

2.1 Export feature exports .xmi file for data but no diagram description files for other tools than Eclipse.

To export HOPEX data for modeling tools such as Enterprise Architect or MagicDraw UML:

1. In HOPEX, select Main Menu > Export > XMI Export.

The export dialog box appears.

2. Select the Package to be exported.

3. Specify the name and path of the file to be exported.

4. Uncheck the Export for Eclipse parameter.

5. Click Next >.

The window that appears shows the export process progression.

Then the window showing the report of all exported data appears.

HOPEX XMI 2.1 Export for UML2 page 5/34

HOPEX/XMI OBJECT MAPPING

The XMI export feature translates a class diagram or use case diagram or state machine diagram or even

protocol state machine diagram specified in HOPEX into an XMI compliant output file.

The following paragraph indicates what kinds of objects are exported by UML2 diagram types. Only objects

belonging to the selected package are exported.

Class Diagram

Packages, classes, interfaces, enumerations, literal strings (expression text), associations, association roles,

generalizations, constraints, required interfaces (link), provided interfaces (supported interface link), data

types (class stereotype), primitive types (class stereotype), attributes, operations.

Use Case Diagram

Use cases, actors, packages, constraints, extension points (text), participations, extensions (link), inclusions

(link), generalization, dependencies.

State Machine Diagram

State machines, regions, states, pseudo states, transitions, constraints

Protocol State Machine Diagram

Protocol state machines, regions, states, pseudo states, transitions, constraints

Activity UML Diagram

Actions, control nodes, Input Pins, Output Pins, Exchange Pins, central buffer nodes, data store nodes,

activity partitions, control flows, object flows, exception handlers, activities uml, activity parameter nodes,

structured activity nodes, expansion regions, expansion nodes, interruptible activity regions.

Component Diagram

Classes.

Elements such Components, ports packages, interfaces, required interfaces, provided interfaces, Connectors or realized

elements may be imported.

HOPEX XMI 2.1 Export for UML2 page 6/34

Composite Structure Diagram

Collaborations UML, collaboration uses, parts, dependencies, connectors, interfaces, classes, provided

interfaces, required interfaces.

Sequence Diagram

Life lines, combined fragments, interaction uses, gates, states invariant, messages UML, constraints.

Messages include those exchanged directly between lifelines as well as messages exchanged through execution specification.

Communication Diagram

Life lines, connectors, messages UML.

Deployment Diagram

Packages, components, artifacts UML, nodes UML, devices, execution environments, interfaces,

deployment specifications, deployments, manifestations, deployment configurations, component instances,

device instances, node instances, execution environment instances, communication paths.

 Only objects owned by the selected package or its sub-packages are exported.

Objects that are linked to objects contained in the selected export package but owned by another

package are also exported in order to ensure links. However, they will be owned by the exported

package.

HOPEX XMI 2.1 Export for UML2 page 7/34

The following table indicates concepts managed by the export tool:

HOPEX Concepts

 Package

 Name

 _Hexaidabs

 Visibility

 Comment

 Client Dependency

 Package Target Dependency

 Owned Class

 Owned Package

 Owned Association

 Association Class

 Owned Dependency

 Owned Element (UML): GeneralizationSet

 Owned Use Case

 Owned Actor (UML)

 Constraint

 Behavior: State Machine

 Behavior: Protocol State Machine

 Behavior: Activity Uml

 Behavior: Interaction Uml

HOPEX XMI 2.1 Export for UML2 page 8/34

HOPEX Concepts

 Behavior: Collaboration Uml

 Owned Component

 Owned Event

 Class

 Name

 _Hexaidabs

 Visibility

 Comment

 Abstract

 IsLeaf

 IsActive

 Client Dependency

 Class Target Dependency

 Realization Class

 Nested Class

 Association

 Connector

 Association Class

 Attribute

 Operation (UML)

 Generalization

 Required Interface

HOPEX XMI 2.1 Export for UML2 page 9/34

HOPEX Concepts

 Provided Interface

 Constraint

 Method

 Port

 AssociationEnd

 Owned Part

 Behavior: State Machine

 Behavior: Activity Uml

 Behavior: Interaction Uml

 Behavior: Collaboration Uml

 Data Type

 Name

 _Hexaidabs

 Visibility

 Abstract

 IsLeaf

 IsActive

 Client Dependency

 Class Target Dependency

 Nested Class

 Interface

 _Hexaidabs

HOPEX XMI 2.1 Export for UML2 page 10/34

HOPEX Concepts

 Name

 Visibility

 Comment

 Abstract

 IsLeaf

 Client Dependency

 Class Target Dependency

 Nested Class

 Association

 Association Class

 Attribute

 Operation (UML)

 Generalization

 RequiredInterface

 SpecificationInterface

 Enumeration

 _Hexaidabs

 Name

 Visibility

 Comment

 Client Dependency

 Class Target Dependency

HOPEX XMI 2.1 Export for UML2 page 11/34

HOPEX Concepts

 Attribute

 Operation (UML)

 Literal Value

 RequiredInterface

 Specification Interface

 Expression

 _Hexaidabs

 Name

 Visibility

 Comment

 Client Dependency

 Class Target Dependency

 Specification Interface

 Primitive Type

 Name

 _Hexaidabs

 Visibility

 Abstract

 IsLeaf

 IsActive

 Class Target Dependency

 Nested Class

HOPEX XMI 2.1 Export for UML2 page 12/34

HOPEX Concepts

 Association

 _Hexaidabs

 Name

 Visibility

 Comment

 IsAssociationDerived

 IsNavigable

 Connection

 Dependency (Target Association)

 Class via AssociationEnd

 Association Class

 _Hexaidabs

 Name

 Visibility

 Comment

 IsLeaf

 Abstract

 IsActive

 IsAssociationDerived

 IsNavigable

 Class Target Dependency

 Nested Class

HOPEX XMI 2.1 Export for UML2 page 13/34

HOPEX Concepts

 AssociationEnd

 Association

 Association Class

 Class via AssociationEnd

 Attribute

 Operation (UML)

 Attribute

 _Hexaidabs

 Name

 Visibility

 Comment

 IsOrdred

 Uniqueness

 ReadOnly

 IsDerived

 InitialValue

 Multiplicity : UpperValue, LowerValue

 Dependency (Target Attribute)

 AttributType

 OverloadedAttribute

 Operation (UML)

 _Hexaidabs

HOPEX XMI 2.1 Export for UML2 page 14/34

HOPEX Concepts

 Name

 Visibility

 Comment

 Abstract

 IsQuery

 Precondition

 Postcondition

 Method

 Parameter

 ReturnType

 Target Dependency

 Dependency

 _Hexaidabs

 Name

 Visibility

 Comment

 Class Source

 Class Target

 Generalization

 _Hexaidabs

 Name

 Comment

HOPEX XMI 2.1 Export for UML2 page 15/34

HOPEX Concepts

 Super Class

 UML constraint

 GeneralizationSet

 _Hexaidabs

 Name

 Comment

 IsComplete

 IsDisjoint

 Target Dependency

 Generalization

 Constraint

 _Hexaidabs

 Name

 Comment

 MaxInt

 MinInt

 ConstrainedClass

 ConstrainedGeneralization

 ConstrainedElement

 Actor (UML)

 Package

 UseCase

HOPEX XMI 2.1 Export for UML2 page 16/34

HOPEX Concepts

 UseCaseParticipation

 Parameter

 _Hexaidabs

 Name

 Comment

 Parameter Type

 Behavior (UML)

 _Hexaidabs

 Name

 Specification

 UseCase

 _Hexaidabs

 Name

 Visibility

 Comment

 UsesUseCase

 OwnedExtension

 ExtensionPoint

 Behavior: State Machine

 Behavior: Protocol State Machine

 Behavior: Interaction UML

 Behavior: Activity UML

HOPEX XMI 2.1 Export for UML2 page 17/34

HOPEX Concepts

 Constraint

 Generalization

 Actor (UML)

 _Hexaidabs

 Name

 Visibility

 Comment

 Participation

 OwnedExtension

 Constraint

 Generalization

 Participation

 _Hexaidabs

 Name

 Comment

 Multiplicity

 UseCase

 Actor (UML)

 Constraint

 Extension

 _Hexaidabs

 Name

HOPEX XMI 2.1 Export for UML2 page 18/34

HOPEX Concepts

 Comment

 Extended Use Case

 Extension Location

 State Machine

 _Hexaidabs

 Name

 Comment

 Reentrant

 DetailedState

 Region

 Region

 _Hexaidabs

 Name

 Comment

 State

 PseudoState

 Transition

 State (UML)

 _Hexaidabs

 Name

 Comment

 Detailing Behavior

HOPEX XMI 2.1 Export for UML2 page 19/34

HOPEX Concepts

 Outgoing

 Incoming

 OwnedRegion

 OwnedRegion

 DoActivity

 ExitActivity

 EntryActivivity

 Pseudo State

 _Hexaidabs

 Name

 Comment

 PseudoStateKind

 Outgoing Transition

 Incoming Transition

 Transition (UML)

 _Hexaidabs

 Name

 Comment

 Source

 Target

 Source Pseudo State

 Target Pseudo State

HOPEX XMI 2.1 Export for UML2 page 20/34

HOPEX Concepts

 Trigger

 Effect (Behavior)

 Constraint

 Event (UML)

 _Hexaidabs

 Name

 Comment

 Protocol State Machine

 _Hexaidabs

 Name

 Reentrant

 Comment

 Region

 Action

 _Hexaidabs

 Name

 IsLeaf

 ActionKind

 Comment

 OutgoingControlFlow

 OutgoingObjectFlow

HOPEX XMI 2.1 Export for UML2 page 21/34

HOPEX Concepts

 IncomingControlFlow

 IncomingObjectFlow

 OwnerGroup

 RequestOperation

 CalledBehavior

 StructuralFeatureElementManagedByAnAction

 RequestSignal

 Association

 ClassManagedByAnAction

 Variable

 InputPin

 OutputPin

 ProtectingExceptionHandler

 Trigger

 LocalPostCondition

 LocalPreCondition

 Control Node

 _Hexaidabs

 Name

 IsLeaf

 Comment

 OutgoingControlFlow

HOPEX XMI 2.1 Export for UML2 page 22/34

HOPEX Concepts

 OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

 OwnerGroup

 Input Pin

 _Hexaidabs

 Name

 IsLeaf

 ControlType

 OrderingKind

 Comment

 OutgoingControlFlow

 OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

 Output Pin

 _Hexaidabs

 Name

 IsLeaf

 ControlType

 OrderingKind

 Comment

HOPEX XMI 2.1 Export for UML2 page 23/34

HOPEX Concepts

 OutgoingControlFlow

 OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

 Exchange Pin

 _Hexaidabs

 Name

 IsLeaf

 ControlType

 OrderingKind

 Comment

 OutgoingControlFlow

 OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

 OwnerGroup

 Central Buffer Node

 _Hexaidabs

 Name

 IsLeaf

 ControlType

 OrderingKind

HOPEX XMI 2.1 Export for UML2 page 24/34

HOPEX Concepts

 Comment

 OutgoingObjectFlow

 IncomingObjectFlow

 OwnerGroup

 Data Store Node

 _Hexaidabs

 Name

 IsLeaf

 ControlType

 OrderingKind

 Comment

 OutgoingObjectFlow

 IncomingObjectFlow

 OwnerGroup

 Activity Partition

 _Hexaidabs

 Name

 IsDimension

 IsExternal

 Comment

 ContainedElement

 Object Flow

HOPEX XMI 2.1 Export for UML2 page 25/34

HOPEX Concepts

 _Hexaidabs

 Name

 IsLeaf

 Comment

 Guard

 Weight

 SourceElement

 TargetElement

 Control Flow

 _Hexaidabs

 Name

 IsLeaf

 Comment

 Guard

 Weight

 SourceElement

 TargetElement

 Exception Handler

 _Hexaidabs

 Name

 Comment

 ProtectedNode

HOPEX XMI 2.1 Export for UML2 page 26/34

HOPEX Concepts

 ExceptionInput

 Activity UML

 _Hexaidabs

 Name

 Reentrant

 SingleExecution

 IsLeaf

 Comment

 ElementOwnedByAnActivityUML

 Activity Parameter Node

 _Hexaidabs

 Name

 IsLeaf

 ControlType

 OrderingKind

 Comment

 OutgoingObjectFlow

 IncomingObjectFlow

 Structured Activity Node

 _Hexaidabs

 Name

 IsLeaf

HOPEX XMI 2.1 Export for UML2 page 27/34

HOPEX Concepts

 MustIsolate

 Comment

 OutgoingControlFlow

 OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

 OwnerGroup

 ContainedElement

 Expansion Node

 _Hexaidabs

 Name

 IsLeaf

 ControlType

 OrderingKind

 Comment

 OutgoingControlFlow

 OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

 Region

 Expansion Region

 _Hexaidabs

HOPEX XMI 2.1 Export for UML2 page 28/34

HOPEX Concepts

 Name

 IsLeaf

 MustIsolate

 ExpansionKind

 Comment

 OutgoingControlFlow

 OutgoingObjectFlow

 IncomingControlFlow

 IncomingObjectFlow

 OwnerGroup

 ContainedElement

 ExpansionNode

 Interruptible Activity Region

 _Hexaidabs

 Name

 Comment

 ContainedElement

 Collaboration uml

 _Hexaidabs

 Name

 Comment

 IsAbstract

HOPEX XMI 2.1 Export for UML2 page 29/34

HOPEX Concepts

 IsLeaf

 CollaborationRole

 OwnedConnector

 OwnedCollaborationUse

 Collaboration use

 _Hexaidabs

 Name

 Comment

 Type

 Dependency

 Part

 _Hexaidabs

 Name

 Visibility

 Client Dependency

 IsUnique

 IsOrdered

 Multiplicity

 Comment

 ConnectorEnd (of the LifeLine who represents the part)

 Dependency

 Connector

HOPEX XMI 2.1 Export for UML2 page 30/34

HOPEX Concepts

 _Hexaidabs

 Name

 Connector Kind

 IsLeaf

 Comment

 OwnedConnectorEnd

 LifeLine

 _Hexaidabs

 Name

 Comment

 ElementRepresentedByALifeline

 ElementCoveringLifeline

 OwnedSelector

 Combined Fragment

 _Hexaidabs

 Name

 InteractionOperatorKind

 Comment

 InteractionOperand

 CoveredLifeLine

 Interaction Use

 _Hexaidabs

HOPEX XMI 2.1 Export for UML2 page 31/34

HOPEX Concepts

 Name

 InteractionOperatorKind

 Comment

 RefersTo

 CoveredLifeLine

 State Invariant

 _Hexaidabs

 Name

 Comment

 InvariantConstraint

 CoveredLifeLine

 Gate

 _Hexaidabs

 Name

 Comment

 Message UML

 _Hexaidabs

 Name

 MessageKind

 Comment

 Receiver

 Sender

HOPEX XMI 2.1 Export for UML2 page 32/34

HOPEX Concepts

 Connector

 Artifact UML

 _Hexaidabs

 Name

 Comment

 Client Dependency

 Target Dependency

 Node UML

 _Hexaidabs

 Name

 Comment

 Client Dependency

 Deployment

 Device

 _Hexaidabs

 Name

 Comment

 Client Dependency

 Deployment

 Execution Environment

 _Hexaidabs

 Name

HOPEX XMI 2.1 Export for UML2 page 33/34

HOPEX Concepts

 Comment

 Client Dependency

 Deployment

 Deployment Specification

 _Hexaidabs

 Name

 Comment

 Client Dependency

 Target Dependency

 Instance (Node UML/Device/Execution Specification/Component)

 _Hexaidabs

 Name

 Comment

 Client Dependency

 Instantiated Element

 Target Dependency

 Communication Path

 _Hexaidabs

 Name

 Comment

 Communication Path End

 Target Dependency

HOPEX XMI 2.1 Export for UML2 page 34/34

HOPEX Concepts

 Communication Path

 _Hexaidabs

 Name

 Comment

 Multiplicity

 Deployment Target

 Deployment

 _Hexaidabs

 Name

 Comment

 Multiplicity

 Deployed Element

 Deployment Configuration

	Hopex IT Architecture
	Contents
	Introduction
	Presentation of Hopex IT Architecture
	The Scope Covered by Hopex IT Architecture
	Summary of Activities and Deliverables of Hopex IT Architecture
	Structure and positioning of the Hopex IT Architecture solution
	Hopex IT Architecture Profiles
	Business Roles of Hopex IT Architecture

	The Hopex IT Architecture Method
	Describing Application Architecture
	Application system environment description
	Describing application systems

	Describing Applications
	Describing flow scenarios
	Describing the structure of an application and its services

	Defining the Deployment Architecture of an Application
	Building the Logical Architecture
	Structure diagram of the logical application system
	Logical application system environment diagram

	Analyzing the functional coverage of the architecture implemented
	Describing Business Capabilities
	Identifying the technological capabilities associated to business capabilities
	Identifying the applications associated with functionalities

	Defining the technical infrastructure
	Resource Architecture Environment Diagram
	Describing Resource Architectures
	IT infrastructure assembly structure diagram
	Computing Device Assembly Diagram

	Designing applications
	Using UML formalism
	Describing batch processing
	Describing the list of services and interfaces
	Describing application processes

	Managing service catalogs

	Hopex IT Architecture Desktop Presentation
	Connecting to the solution
	Hopex IT Architecture Desktop Presentation
	Presentation of the Solution Architect workspace
	Presenting the Solution Architecture Functional Administrator workspace menus
	Presentation of the Application Designer workspace
	Presenting the Application Viewer workspace

	Switching between Profiles

	Before starting with Hopex IT Architecture
	Defining the Work Environment
	Accessing the list of libraries with Hopex IT Architecture
	Accessing the list of enterprises with Hopex IT Architecture

	Using Org-units
	Creating an org-unit
	Internal org-unit/external entity

	Using IT architecture diagrams
	Creating a structure diagram
	Diagram commands with Hopex IT Architecture
	Auto Layout in architecture diagrams
	Environment diagram initialization
	Creating a Sketching diagram with Hopex IT Architecture
	Creating an ArchiMate@ diagram with Hopex IT Architecture
	Using diagram comparison

	Hopex IT Architecture properties pages content
	Using duplication with Hopex IT Architecture
	Using duplication with Hopex IT Architecture in batch mode

	Using service catalogs
	Implementation of service catalogs
	Defining a service catalog
	Creating a technology services catalog
	Adding a service catalog item
	Service catalog reports

	Using Workflows
	Define a Policy Framework with Hopex IT Architecture
	Defining a Business Policy with Hopex IT Architecture
	Defining an Architecture Principle

	Defining Data Categories
	Defining Methodological Domains
	Importing components with Hopex IT Architecture
	Structure of the import/export Excel templates of Hopex IT Architecture
	Importing computing devices or technologies with Excel

	Using Tools of Conversion towards Hopex Aquila

	About This Guide
	Guide Structure
	Additional Resources
	Conventions used in the guide

	Architecture Specification
	Modeling Applications and System Architectures
	Hopex IT Architecture Concepts Overview
	Application
	Application System

	Describing an Application with Hopex IT Architecture
	Creating an Application with Hopex IT Architecture
	The properties of an application with Hopex IT Architecture
	Defining Application Functional Scope
	Describing structure and services of an application
	Describing an Application Environment with Hopex IT Architecture
	Describing an Application Environment
	Accessing the List of Application Environments
	Creating an application environment
	Application environment properties
	Application Environment Diagram presentation

	Specifying the Risks associated with an Application

	Describing System architecture
	Describing an Application System
	Creating an Application System
	Application System Properties
	Creating an application system structure diagram
	Using a Scenario of Application System Flows
	Describing an Application System Environment with Hopex IT Architecture
	Accessing the list of application system environments
	Creating an application system environment
	Application system environment properties
	Application system environment diagrams

	Modeling application architectures
	Describing data flows
	Defining a data flow and its usages
	Flow qualification
	Associating a Service Interface Used to a flow

	Using a Scenario of Application Flows Diagram
	Creating a Scenario of Application Flows diagram
	Adding an IT service to the scenario of application flows
	Creating an Application Flow
	Accessing Application Flow Properties
	Accessing a flow properties
	Creating an application flow channel
	Creating a System Triggering Event
	Adding an application data store to the scenario of application system flows
	Creating an application data channel

	Using communication systems
	Accessing the list of communication systems
	Communication System Properties
	Using Software Communication Chains

	Using a flow scenario sequence diagram
	Creating a flow scenario sequence diagram
	Instances of applications, IT services or interfaces
	Message instance

	Describing the structure and services of an application
	Application structure diagram
	Creating an Application Structure Diagram
	The components of an Application Structure Diagram
	Adding an IT Service to an application structure diagram

	Describing an IT Service with Hopex IT Architecture
	IT Service diagrams
	Accessing the list of IT services
	IT Service properties
	Using IT Service Structure Diagram

	Describing a microservice with Hopex IT Architecture
	Microservice diagrams
	Accessing the list of microservices
	Microservice properties with Hopex IT Architecture
	Using a Microservice Structure Diagram

	Creating an application Use Case Diagram

	Describing System Processes
	Managing System Processes with Hopex IT Architecture
	Accessing system processes
	Creating a system process diagram

	Specifying the behavior of a task in a System Process
	Les comportements
	Type de tâche

	Modeling Tasks of a System Process
	Functional Modeling Example
	Display the diagram describing a step in the system process in detail:

	Modeling Tasks of an IT Service

	Managing Data
	Using Data Stores
	Introduction to the data store concept
	Usage contexts
	Creating a local data store
	Creating a external data store
	Describing access to a data store

	Access Data Stores supports
	Accessing to data areas with Hopex IT Architecture
	Accessing the list of file structures with Hopex IT Architecture
	Accessing to NoSQL data domains with Hopex IT Architecture
	Accessing the list of relational schemes with Hopex IT Architecture

	Modeling technical architectures
	Describing an Application Deployment Architecture
	Accessing the application deployment architectures
	Describing an Application Deployment Architecture and its diagram
	Creating an Application Deployment Architecture

	Using an application deployment architecture diagram
	Adding a deployable application package in an application deployment architecture diagram
	Adding technical ports
	Describing package connections

	Describing a Deployable Application Package

	Describing an Application Deployment Environment
	Accessing the list of application deployment environments
	Describing an Application Deployment Environment
	Creating an Application Deployment Environment

	Using an Application Deployment Environment Diagram

	Describing an Application System Deployment Architecture
	Accessing the list of application system deployment architectures
	Describing an Application System Deployment Architecture
	Properties of an application system deployment architecture

	Deployment Architecture Templates
	Accessing the list of deployment architecture templates
	Describing an Application Deployment Template
	Components of an Application Deployment Template
	Creating an Application Deployment Template

	Presentation of standard Deployment Architecture Templates
	“3 Tiers Architecture (RDBMS)” Application deployment template
	“Mobile Application Architecture” Application deployment template
	“Standard Web Application Architecture” Application deployment template

	Using an Application Deployment Template

	Describing Software Technologies
	Describing a Software Technology
	Accessing the list of software technologies
	The properties of a software technology

	Describing a Technology Stack
	Accessing the list of technology stacks
	Properties of a software technology stack

	Using Cloud Services
	Accessing the list of Cloud Services
	Cloud Service properties

	Aligning IT and Business
	Describing Logical Application Architecture
	Describing a Logical Application System with Hopex IT Architecture
	Accessing the list of logical application systems with Hopex IT Architecture
	Creating a Logical Application System
	Logical Application System Properties
	Describing a logical application system structure

	Describing Logical Applications with Hopex IT Architecture
	Accessing the list of logical applications with Hopex IT Architecture
	Creating a logical application
	Logical Application Properties

	Logical Application System Environment Description
	Example of logical application system environment
	Accessing the list of logical application system environments
	Creating a logical application system environment
	Logical application system environment properties
	Using the Logical Application System Environment Diagram

	Describing Business Capabilities with Hopex IT Architecture
	Business capabilities examples with Hopex IT Architecture
	Using the Business Capability Maps with Hopex IT Architecture
	Accessing the list of business capability maps
	Creating a business capability map
	The properties of a business capability map
	Creating a business capability map diagram

	Using Business Capabilities with Hopex IT Architecture
	Accessing the list of business capabilities with Hopex IT Architecture
	Creating a business capability
	Describing a business capability
	Defining the functionalities associated with Business Capabilities

	Using Functionalities with Hopex IT Architecture
	Describing a Functionality Map with Hopex IT Architecture
	Accessing the list of functionality maps with Hopex IT Architecture
	Creating a functionality map
	Creating a functionality map diagram
	The properties of a functionality map

	Describing functionalities with Hopex IT Architecture
	Creating a Functionality Diagram with Hopex IT Architecture

	Describing a Technology Capability Map with Hopex IT Architecture
	Accessing the list of technology capability maps with Hopex IT Architecture
	Describing a technology capability
	Describing a hardware capability

	Using fulfillment mechanisms
	Describing Fulfillment of a Business Capability
	Creating Fulfillment of a Business capability
	Analyzing enterprise capability implementation

	Describing the fulfillment of a Functionality
	Creating Fulfillment of a Functionality
	Identifying the applications associated with functionalities

	Access to implementations from a service point

	Modeling IT Infrastructures
	Describing Resource Architectures
	Describing Resource Architectures
	Creating a Resource Architecture Assembly Diagram:
	Using a Resource Architecture Assembly Diagram

	Describing a Resource Architecture Environment
	Creating a resource architecture environment
	The properties of a resource architecture environment
	To create a resource architecture environment diagram
	Describing a resource architecture environment diagram

	Describing a resource configuration
	Creating a resource configuration
	Creating a resource configuration diagram
	Using a Resource Configuration Diagram

	Describing an Hardware
	Creating an Hardware
	Creating a Hardware Assembly Structure Diagram
	Using a hardware assembly structure diagram

	Describing IT Infrastructures
	Describing an IT infrastructure
	Creating an IT infrastructure
	Creating an Infrastructure Assembly Structure Diagram
	Using an infrastructure assembly structure diagram

	Describing an IT network
	Creating an IT network
	Creating an IT network

	Describing a Facility
	Creating a facility
	To create a resource configuration diagram from a facility

	Describing the Computing Devices
	Describing a Computing Device
	Accessing the list of computing devices
	Creating an Computer Device
	Creating a Computing Device Assembly Diagram

	Describing a Computer Network Device
	Accessing the list of computer network devices
	Creating a Computer Network Device

	Describing communications in an IT Infrastructure
	Describing the services communications
	Service interactions
	Service points
	Request points

	Describing technical communications
	Communication ports
	Network channels
	Network communication protocols

	Connecting a Service Interaction to a Network Channel

	Accessing the Software Design
	UML modeling of data
	UML package
	Data models
	Data areas

	Describing Batch Processing
	Defining a Batch Process
	Building a Batch Planning Structure Diagram
	Creating a batch planning structure diagram
	Adding a call for batch processing in the diagram
	Defining batch sequencing

	Creating a Batch Program Structure Diagram
	Creating a batch program structure diagram
	Adding a programming call to the diagram

	Using system process batch realizations

	Defining User Interfaces
	Creating a user interface
	Building a User Interface Diagram
	Drawing the Interface Diagram
	User interface element
	User interface event

	Describing information exchanges
	Managing Service Interactions
	Creating a Service interaction
	Describing Service and Request Points
	Service points
	Request points
	Creating a Service Point or a Request Point

	Describing a service interface
	Examples of Service Interface Diagrams (BPMN)
	Example of Service Interface Diagram (BPMN)
	Example of an advanced service interface communication

	Accessing the list of service interfaces
	Creating a service interface
	Creating a service interface in standard mode from a diagram

	Building a Service Interface Diagram (BPMN)
	Creating a Service Interface Diagram (BPMN)
	Defining a Service operation or a Service interface

	Describing a Service Operation
	Accessing the list of service operations
	Creating a service operation
	Describing a Service Operation
	Creating a Service Operation Diagram (BPMN)
	Creating a message flow with content
	Managing events, gateways and sequence flows

	Using a Service Interface Template
	Presentation of standard service interface Templates
	The service interface template “One way communication”
	The service interface template “Request-Response”
	The service interface template “Publish-Subscribe”

	Accessing the list of service interface templates
	Creating a service interface from a service interface template
	Creating a Service Interface Template
	Creating a Service Operation Template

	Hopex IT Architecture Reports
	Application Architecture Reports
	Technical Architecture Matrix
	Application Exchange Density
	Exchange Consistency Structure Scenario
	Content Consistency (Structure)
	Content Consistency (Scenario)
	External Contents Matrix (Structure)
	External Contents Matrix (Scenario)
	External Service Interface Matrix
	Graph of Flows between Agents
	Graph Flows of an Agent
	Flow Process Rationalization
	Graph of Service Interactions between Agents
	Graph of Service Interactions of an Agent

	Reports on the Architecture Functional Coverage
	Building Block Breakdown report
	Overlapping Applications
	Business Capability Breakdown Report

	Infrastructures Reports
	Infrastructure Description Report
	Application Technology Requirements x IT Infrastructure Provided Technologies Matrix
	Network Channel x Service Interactions
	Network Channel x Package Connection Matrix

	Deployment Architecture Reports
	Deployment Architecture Report
	Deployment architecture matrix
	Package Connection x Service Interactions Matrix
	Package Connection x Resource Flow Matrix

	UML modeling
	About UML implementation
	Overview
	Analyzing use cases
	Identifying objects
	Describing behaviors
	Representing interactions between objects
	Dividing classes between packages
	Defining interfaces
	Specifying deployment

	Organization of UML Diagrams
	General organization
	Detailed specification
	Technical specification and deployment
	UML diagram entry points

	Use Case Diagram
	Creating a Use Case Diagram
	Creating a Package
	Creating the Use Case Diagram of a Package

	Use Case Diagram Elements
	Actors
	Use Cases
	Zooming in on a use case

	Packages
	Participations
	Examples of participation
	Creating participations
	Multiplicities of a participation

	Use Case Associations: Extensions and Uses
	Inclusion relationship
	Extend Relation

	Generalizations
	Interfaces
	Creating an Interface
	Connecting an interface to a use case

	The Class Diagram
	Presentation of the Class Diagram
	The Class Diagram: summary
	Creating a Class Diagram

	Classes
	Definition: Class
	Creating a Class
	Finding an existing class

	Class Properties
	characteristics page
	Other properties pages

	Class Stereotype
	Stereotype display option

	Attributes
	Definition: Attribute
	Specifying Class Attributes
	Creating a standard attribute
	Creating a computed attribute
	Inherited attributes

	Attribute Properties
	Attribute type

	Operations
	Definition of an Operation
	Specifying Class Operations
	Inherited operations

	Operation Properties
	Operation or Signal Signatures
	Signature syntax

	Operation Parameters
	Operation Methods (opaque behavior)
	Operation Conditions
	Operation Exceptions

	Displaying Class Attributes and Operations

	Signals
	Defining a Signal
	Specifying Class Signals
	Creating a sent or received signal
	Signal Properties
	Signal parameters

	Associations
	Creating an Association
	Roles (or Association Ends)
	Multiplicity of a Role
	Specifying role multiplicity

	Association End Navigability
	Specifying navigability for a role

	Association End Aggregation
	Specifying role aggregation

	Association End Composition
	Role Changeability
	Role Order
	Role Static Property
	Role Qualifier
	Overloading a Role
	Association Classes
	Displaying an N-ary Association
	Reflexive Associations
	Creating a reflexive association

	The Parts
	Creating a Part between two Classes
	Defining the Identifier of a Class via a Part
	Multiplicities of the Associated Classes
	Multiplicity of the class referenced by the part
	Multiplicity of the owner class of the part

	Aggregation and Composition Relationships
	Associated multiplicities

	Generalizations
	What is a Generalization?
	Example

	Multiple Subclasses
	Advantages of Subclasses
	Multiple Inheritance
	Creating a generalization
	Discriminator

	Specifying Interfaces
	Creating an Interface
	Connecting an interface to a class

	Specifying Dependencies
	Specifying Parameterized Classes
	Constraints
	Object Diagram
	Objects
	Creating an object (instance)
	Instance properties
	Value of an attribute

	Links
	Creating a link
	Link properties
	Role properties

	Structure and Deployment Diagrams
	The Package Diagram
	Creating a Package Diagram
	Defining Packages
	Defining Classes
	Specifying Dependencies in a Package Diagram

	The Component Diagram
	Creating a Component Diagram
	Components
	Interfaces
	Creating component interfaces
	Linking interfaces to other objects
	Connecting interfaces

	Ports
	Connectors
	Delegate connector
	Assembly connector

	Composite Structure Diagram
	Creating a Composite Structure Diagram
	Parts
	Collaborations
	Collaboration use
	Collaboration use example

	Dependency links

	State Machine Diagram
	Presentation of the State Machine Diagram
	Creating a State Machine Diagram

	States
	Creating a State
	State types
	Pseudo-states

	Detailing Behavior of a State
	State Properties

	State Transitions
	Creating a Transition
	Transition Types
	External transition
	Internal transition
	Local transition

	Transition Effects
	Transition Effect Display

	Transition Triggering Event

	Activity Diagram
	Activity Diagram
	Creating an Activity Diagram

	Partitions
	Creating a Partition
	Partition Properties

	Nodes
	Object nodes
	Creating an Action
	Modifying the Action Type

	Parameter nodes
	Control nodes
	Control node types

	Object nodes: Input, Output and Exchange Pins
	Input pin
	Output pin
	Exchange pin

	Flows
	Control flow
	Object flows

	Interaction Diagrams
	Interactions
	Creating an Interaction
	Creating an Interaction Diagram

	Sequence Diagram
	Creating a Sequence Diagram
	Lifelines
	Creating a lifeline
	Lifeline properties

	Messages
	Examples of exchanged messages
	Creating a message
	Message types

	Execution Specification
	Creating an execution specification

	Occurrence specification
	Calculating sequence numbers

	Combined Fragment
	Creating a combined fragment
	Interaction operator type
	Interaction operands

	Interaction Use
	Gate
	Continuation

	Communication Diagram
	Example
	Diagram objects

	Interaction Overview Diagram

	The deployment diagram
	Presentation of the Deployment Diagram
	Creating a Deployment Diagram
	Deployment Diagram Objects
	Node
	Communication path
	Component
	Artifact
	Manifestation
	Deployment specification
	Configuration

	Appendix: Attribute type
	Primitive Types
	Prerequisite: Importing the Primitive Types
	Defining a Primitive Type

	Packages and Primitive Types
	Packages

	Defining New Primitive Types
	Compound Primitive Type

	HOPEX XMI 2.1 Import for UML2
	XMI Import Overview
	Prerequisites
	Scope of XMI Import

	Importing XMI and UML Files
	HOPEX/XMI Object Mapping
	Class Diagram
	Use Case Diagram
	Composite Structure and Communication Diagram
	State Machine
	Sequence, Communication and Interaction Overview Diagram
	Activity and Interaction Overview Diagram
	Package Diagram
	Component Diagram
	Deployment Diagram
	Object Diagram

	HOPEX XMI 2.1 Export for UML2
	XMI Export Overview
	Prerequisites
	 Scope of XMI Export

	Exporting XMI Files
	Export for Eclipse with UML2 plugin
	Export for other tools

	HOPEX/XMI Object Mapping

