Hopex IT Architecture

User Guide

Hopex Aquila

a Bizzdesign

Information in this document is subject to change and does not represent a commitment on the part of Bi-
zzdesign.

No part of this document is to be reproduced, transmitted, stored in a retrieval system, or translated into any
language in any form by any means, without the prior written permission of Bizzdesign.

© Bizzdesign, Paris, 1996 - 2026

All rights reserved.

Hopex IT Architecture and Hopex are registered trademarks of Bizzdesign.

Windows is a registered trademark of Microsoft Corporation.

The other trademarks mentioned in this document belong to their respective owners.

CONTENTS

Contentst iiinintnnnsnnensnsnsnsnsnsnsnsnssnnsnsnsnsnsss 3
Introduction TO HOPEX IT Architecture. s i i it it s s annnns 17
Presentation of HOPEX IT Architecture i it nnnnnnnnnsssnnnnnsns 19
The Scope Covered by HOPEX IT Architecture i i i e e e 19
Summary of Activities and Deliverables of HOPEX IT Architecture 20
Structure and positioning of the HOPEX IT Architecture solution 20
HOPEX IT Architecture Profiles. o i e e e e e e e e e 21
Business Roles of HOPEX IT Architecture. i i et e 22
The HOPEX IT ArchitectureMethod ittt it i s 23
Describing Application Architecture. e 23
Application system environment description 23
Describing application Systems i e e e 24
Describing Applications e e 25
Describing flow SCENArios i e e 25
Describing the structure of an application and its services. 26
Defining the Deployment Architecture of an Application 26
Building the Logical Architecture e 27
Structure diagram of the logical application system, 29
Logical application system environment diagram. 30
Analyzing the functional coverage of the architecture implemented 31
Describing Business Capabilities 31
Identifying the technological capabilities associated to business capabilities 32
Identifying the applications associated with functionalities 33
Defining the technical infrastructure. i e 33
Resource Architecture Environment Diagram. i 34
Describing Resource ArchiteCtures o i i e e e e et e e 34

IT infrastructure assembly structure diagram 35
Computing Device Assembly Diagram i e 37
Designing applications o e e e e 37
Using UML formalism 0 e e e e e et e e e e e e e 37

Describing batch proCessing o e e e e e e e 38

Describing the list of services and interfaces 38

Describing application proCesses i 39
Managing service catalogso e e e 40
HOPEX IT Architecture Desktop Presentation. it 43
Connecting to the solution e e 43
HOPEX IT Architecture Desktop Presentation 43
Presentation of the Solution Architect workspace 44
Presenting the Solution Architecture Functional Administrator workspace menus 51
Presentation of the Application Designer workspace i, 51
Presenting the Application Viewer workspace. 51
Switching between Profiles. e 51
Before starting with HOPEX IT Architecture. i ittt ittt i e 53
Defining the Work Environment it e 53
Accessing the list of libraries with HOPEX IT Architecture 53
Accessing the list of enterprises with HOPEX IT Architecture 53
UsiNng Org-Units o i e e e e e 54
Creating an org-unit e e e e e e 54
Internal org-unit/external entity. s 54
Using IT architecture diagrams. it e e e e e e e 54
Creating a structure diagram i e e 56
Diagram commands with HOPEX IT Architecture uiuiin... 57
Auto Layout in architecture diagrams i e e e 58
Environment diagram initialization 59
Creating a Sketching diagram with HOPEX IT Architecture. 60
Creating an ArchiMate@ diagram with HOPEX IT Architecture 61
Using diagram COmMPpPariSON. i i e et e e e e s 61
HOPEX IT Architecture properties pagescontent. i, 61
Using duplication with HOPEX IT Architecture. i e e 63
Using duplication with HOPEX IT Architecture in batchmode 64
Using service catalogs oottt e e 65
Implementation of service catalogs. s 65
Defining a service catalog e e e 66
Creating a technology services catalog it n 66
Adding a service catalog item e e 67
Service catalog reports e e e e 69
Using WoOrkflows oo e e 71
Define a Policy Framework with HOPEX IT Architecture 71
Defining a Business Policy with HOPEX IT Architecture u.... 71
Defining an Architecture Principle. e e e 72
Defining Data Categories oo it e e e e e e e 73
Defining Methodological Domains o e e 73
Importing components with HOPEX IT Architecture. 74
Structure of the import/export Excel templates of HOPEX IT Architecture 74
Importing computing devices or technologies with Excel 75
Using Tools of Conversion towards HOPEX Aquila i 77
About ThisGUIdE. . v v v vttt vt st s st s s e s s s s s s n s s ssnsssnssnsnnnnnnnnnnnnnnns 79
Guide Structure e e e e e 79
Additional ResOUICES 79
Conventions used inthe guide e 80

HOPEX IT Architecture

Contents .

Modeling Applications and System Architectures v an 83
HOPEX IT Architecture Concepts Overview ittt ennnrsnnnnsnnnnns 84
ADPPLICation e e e e e e 84
Application System e e e e e e e e 84
Describing an Application with HOPEX IT Architecture i i i i it e nn s 86
Creating an Application with HOPEX IT Architecture 86
The properties of an application with HOPEX IT Architecture 87
Defining Application Functional Scope. i i it e e 88
Describing structure and services of an application., 89
Describing an Application Environment with HOPEX IT Architecture 89
Describing an Application Environment. e 89
Accessing the List of Application Environments 90
Creating an application environment 90
Application environment properties e e e 90
Application Environment Diagram presentation 91
Specifying the Risks associated with an Application 92
Describing System architecture it it i r s s s s 93
Describing an Application System. e e e 93
Creating an Application System e 93
Application System Properties i 94
Creating an application system structure diagram i 95
Using a Scenario of Application System Flows i 97
Describing an Application System Environment with HOPEX IT Architecture 99
Accessing the list of application system environments 99
Creating an application system environment. e 99
Application system environment properties. i 99
Application system environment diagrams e 99
Modeling application architectures ittt ennnnsns 103
Describingdataflows. ittt i s s 104
Defining a data flow and its usages i 104
Flow qualification. i e e e e e e 104
Associating a Service Interface Used toa flow. s 104
Using a Scenario of Application Flows Diagram it 105
Creating a Scenario of Application Flows diagram 106
Adding an IT service to the scenario of application flows 106
Creating an Application FIOW e 107
Accessing Application Flow Properties. e ettt i 108
Accessing a flow properties. e e e e s 108
Creating an application flow channel s 109
Creating a System Triggering Event. it ii oo 110
Adding an application data store to the scenario of application system flows. 110
Creating an application data channel 111

Using communication systems. i e e 111
Accessing the list of communication Systems 111
Communication System Properties. i e e e e e 111

Using Software Communication Chains i ettt et ns 112

Using a flow scenario sequence diagram i ittt i e e 114
Creating a flow scenario sequence diagramo 115
Instances of applications, IT services orinterfaces. 115
Message inStancCe o o e e e e e e e 116
Describing the structure and services of an application. v 117
Application structure diagram. e e e e e 117
Creating an Application Structure Diagram ittt 117

The components of an Application Structure Diagram v uunn. 118
Adding an IT Service to an application structure diagram 118
Describing an IT Service with HOPEX IT Architecture. 118
IT Service diagrams i e et e e e e e e e 119
Accessing the list Of IT SEIVICES v v v i v i e e et e e e et ettt e e as 119

IT Service properties. i e e e e e 119

Using IT Service Structure Diagram i i e et e e et e e 120
Describing a microservice with HOPEX IT Architecture. 120
Microservice diagrams. i e e e e e e 121
Accessing the list of miCroservices i e e e s 121
Microservice properties with HOPEX IT Architecture 121
Using a Microservice Structure Diagram v ittt ottt 122
Creating an application Use Case Diagram ittt it i e e e e e e e e 122
Describing System Processest i ittt it sennnssan s sa s nnnnnnn 124
Managing System Processes with HOPEX IT Architecture 124
ACCESSING SYStEM PrOCESSES o i e e e e e e e e e e e e e e e e e e 125
Creating a system process diagram it e 125
Specifying the behavior of ataskina System Process, 127
Les comportements e e e e e e e e e e e e e e 128

Type de tAChe o i e e 128
Modeling Tasks of @ System Process i i it i e e e e e e e 129
Functional Modeling Example. e 129
Display the diagram describing a step in the system process in detail: 129
Modeling Tasks of @an IT Service it i e e e e e e e e 131
ManagingData ittt ae st ansssannnnssnnnnnnns 132
Using Data Stores. e e e e e 132
Introduction to the data store concept e 132
Usage CoNtexts e e e e e e e e e e e e e 133
Creating a local data store. e e s 133
Creating a external data store e 134
Describing access to a data store i e 134
Access Data Stores sUppoOrtS o i i e e e e e e 135
Accessing to data areas with HOPEX IT Architecture. 135
Accessing the list of file structures with HOPEX IT Architecture 135
Accessing to NoSQL data domains with HOPEX IT Architecture. 136
Accessing the list of relational schemes with HOPEX IT Architecture. 136
Modeling technical architectures. ittt it i nns e 137
Describing an Application Deployment Architecture it anns 138
Accessing the application deployment architectures 138

HOPEX IT Architecture

Describing an Application Deployment Architecture and its diagram. 138
Creating an Application Deployment Architecture. 139
Using an application deployment architecture diagram. 140
Adding a deployable application package in an application deployment architecture diagram

140
Adding technical ports e e e e e e s 141
Describing package connections i e e 141
Describing a Deployable Application Package. i 142
Describing an Application Deployment Environment.ttt eennrannnns 143
Accessing the list of application deployment environments 143
Describing an Application Deployment Environment 143
Creating an Application Deployment Environment, 144
Using an Application Deployment Environment Diagram 144
Describing an Application System Deployment Architecture........... .. vt 145
Accessing the list of application system deployment architectures 145
Describing an Application System Deployment Architecture. 145
Properties of an application system deployment architecture 146
Deployment ArchitectureTemplates ittt snnnnsannnns 149
Accessing the list of deployment architecture templates 149
Describing an Application Deployment Template 149
Components of an Application Deployment Template 149
Creating an Application Deployment Template., 150
Presentation of standard Deployment Architecture Templates 150
"3 Tiers Architecture (RDBMS)” Application deployment template 151
"Mobile Application Architecture” Application deployment template 151
"Standard Web Application Architecture” Application deployment template. 152
Using an Application Deployment Template 152
Describing Software Technologies ittt ittt nn e ssnnnnnns 154
Describing a Software Technology 154
Accessing the list of software technologies 154
The properties of a software technology i it i e 154
Describing a Technology Stack. i e e e e e e 155
Accessing the list of technology stacks. 155
Properties of a software technology stack. 155
UsingCloud ServiCes . . « v v s s v s s s s s s s ssssssssssssssssnnsnnnnnnnnnnnnnnns 156
Accessing the list of Cloud Services i e e e e 156
Cloud Service properti€s. o e e e e e e 157
Aligning ITand Businessttt rennennsnnnnnsnnsnnsnnsnns 159
Describing Logical Application Architecture. i iiien 160
Describing a Logical Application System with HOPEX IT Architecture 160
Accessing the list of logical application systems with HOPEX IT Architecture. 160
Creating a Logical Application Systemt et 160
Logical Application System Properties. i i e e 161
Describing a logical application system structure. 161
Describing Logical Applications with HOPEX IT Architecture. 163
Accessing the list of logical applications with HOPEX IT Architecture 163
Creating a logical application. e e e e s 163

Contents .

Logical Application Properties. i e 164

Logical Application System Environment Description. 164
Example of logical application system environment., 165
Accessing the list of logical application system environments. 165
Creating a logical application system environment 165
Logical application system environment properties. 166
Using the Logical Application System Environment Diagram 166

Describing Business Capabilities with HOPEX IT Architecture............... ..., 167

Business capabilities examples with HOPEX IT Architecture 167

Using the Business Capability Maps with HOPEX IT Architecture 168
Accessing the list of business capability maps 168
Creating a business capability map. i 168
The properties of a business capability map., 168
Creating a business capability map diagram it 169

Using Business Capabilities with HOPEX IT Architecture. 169
Accessing the list of business capabilities with HOPEX IT Architecture. 169
Creating a business capability e 170
Describing a business capability e e 170
Defining the functionalities associated with Business Capabilities 171

Using Functionalities with HOPEX IT Architecture. s v v v v v vt v s v e s e e nnnnnns 172

Describing a Functionality Map with HOPEX IT Architecture 172
Accessing the list of functionality maps with HOPEX IT Architecture 172
Creating a functionality map e e 173
Creating a functionality map diagram 173
The properties of a functionality map s 173

Describing functionalities with HOPEX IT Architecture 174
Creating a Functionality Diagram with HOPEX IT Architecture 174

Describing a Technology Capability Map with HOPEX IT Architecture. 174
Accessing the list of technology capability maps with HOPEX IT Architecture 174
Describing a technology capability 175
Describing a hardware capability e 175

Using fulfillment mechanisms. ittt it s s s s s s s s s s nnn s nnnns 176

Describing Fulfillment of a Business Capability, 176
Creating Fulfillment of a Business capability. i 176
Analyzing enterprise capability implementation, 177

Describing the fulfillment of a Functionality. 177
Creating Fulfillment of a Functionality e 177
Identifying the applications associated with functionalities. 178

Access to implementations from a service point oo 178

Modeling ITInfrastructures. i ittt ittt s s s s s s n s 179
Describing Resource Architectures. ittt ittt annss 180

Describing Resource Architectures i e e 180
Creating a Resource Architecture Assembly Diagram: 180
Using a Resource Architecture Assembly Diagramo, 180

Describing a Resource Architecture Environment 183
Creating a resource architecture environment s 183
The properties of a resource architecture environment, 184

HOPEX IT Architecture

To create a resource architecture environment diagram 184
Describing a resource architecture environment diagram 184
Describing a resource configuration e 185
Creating a resource configuration it et 186
Creating a resource configuration diagram ittt 186
Using a Resource Configuration Diagram ittt ittt neens 186
Describing an Hardware e e 187
Creating an Hardware e e e e 187
Creating a Hardware Assembly Structure Diagram. 187

Using a hardware assembly structure diagramo, 188
DescribingITInfrastructuresttt iiiennnennnnnennnnnnnnnnnnns 189
Describing an IT infrastructure. i e 189
Creating an IT infrastruCture. i e e et e et et e e e it ea s 189
Creating an Infrastructure Assembly Structure Diagram., 189

Using an infrastructure assembly structure diagram. 189
Describing an IT network 190
Creating an IT NetWOrK. i e e e e e et e e et e e e e 190
Creating an IT NetWOrK. i e e e e e e e e e e e e 190
Describing a Facility o e e e e 191
Creating a facility. e e e 191

To create a resource configuration diagram from a facility 191
Describingthe ComputingDevices. 1 sttt sttt nnn s nnnasnannsnnnnns 192
Describing a Computing Deviceo e e 192
Accessing the list of computing devices 192
Creating an Computer DEVICE i e e e 192
Creating a Computing Device Assembly Diagram., 193
Describing a Computer Network Device it it e e e e e e 194
Accessing the list of computer network devices. 194
Creating a Computer Network DevViCe. v i i e e e e et et et e e e e 194
Describing communications inan IT Infrastructure it 195
Describing the services communications ittt e e 195
Service Iinteractions e e e e e e e e e e 195
Service POINtS e e e e e e 196
ReqUESE POINES o e e e e e e e e e e e e e e e 196
Describing technical communications i e 197
Communication POItS v e e e e e e e e e e e e e e e e e 197
Network channels e e 197
Network communication protocols 197
Connecting a Service Interaction to a Network Channel 198
Accessingthe SoftwareDesign i it ennennsnnnnnsnnsnnsnns 199
UMLmModelingofdata. it iiinneessnnnneessnnnnnssnnnnnns 200
UML PacCKage . . . o v it e et e e e e e e e e e e 200
Data models . . . oo e e e e 201
Data @reas . . . v e e e e e 202
DescribingBatch Processing ittt nnnnnnnnnnnnsssnssnnsnnnsss 204
Defining @ Batch Process i i e e e e 204
Building a Batch Planning Structure Diagram ittt 204

Contents .

10

Creating a batch planning structure diagram i 205

Adding a call for batch processing in the diagram. 205
Defining batch seqUeNCINg. o i e e e e e s 206
Creating a Batch Program Structure Diagram i 206
Creating a batch program structure diagram v 206
Adding a programming call to the diagram 206
Using system process batch realizations i 207
DefiningUserInterfaces.ttt ittt nnnnnnnnnasssssssssssssss 208
Creatinga userinterface i e 208
Building a User Interface Diagram it i e e 208
Drawing the Interface Diagram ittt e e e e e e 209
User interface element e 209
Userinterface event 210
Describing informationexchangesttt annnnsnns 213
Managing ServiceInteractions it s ittt s s s e 214
Creating a Service interaction i e e e 215
Describing Service and Request POints i it 215
Service POINtS . . . o o o e e e e e e e e e e e 215
ReqUESE POINTS . . . o o o e e e e e e e e e 216
Creating a Service Point or a Request Point. i it n e 217
Describing a serviceinterface. i i i i i i i i s 218
Examples of Service Interface Diagrams (BPMN) i 218
Example of Service Interface Diagram (BPMN). i 219
Example of an advanced service interface communication. 220
Accessing the list of service interfaces. i i i e 220
Creating a service interface. i e 221
Creating a service interface in standard mode from a diagram. 221
Building a Service Interface Diagram (BPMN) it 221
Creating a Service Interface Diagram (BPMN) s 221
Defining a Service operation or a Service interface. 222
Describinga ServiceOperation. it nnnnnn s nnnnsns 223
Accessing the list of service operations i i e e 224
Creating a service operation. i e 224
Describing a Service Operation. i e 224
Creating a Service Operation Diagram (BPMN). i 224
Creating a message flow with content. s 225
Managing events, gateways and sequence flows 225
Using a ServiceInterfaceTemplate ¢ ittt nrnnrs s nnnnnnns 226
Presentation of standard service interface Templates., 226
The service interface template "One way communication”. 226

The service interface template "Request-Response” 227

The service interface template “"Publish-Subscribe”. 228
Accessing the list of service interface templates L. 228
Creating a service interface from a service interface template 228
Creating a Service Interface Template i 229
Creating a Service Operation Template i i it e 230
HOPEX IT Architecture

HOPEX IT ArchitectureReportsottt ennnnsannnnssns 231
Application Architecture Reportsttt i ittt sttt s 232
Technical Architecture MatrixX. i i e e e e e e e e 232
Application Exchange Density i 233
Exchange Consistency Structure Scenario. oottt i e e 233
Content Consistency (Structure) i i i i e e e e e e 234
Content Consistency (Scenario) v v vt it it e e e e e e e e 235
External Contents Matrix (Structure) i i 236
External Contents Matrix (Scenario) i e e 237
External Service Interface MatriX i i e e e 238
Graph of Flows between Agents. ittt ittt e e e e 239
Graph Flows of @an Agent. it e e e e e 240
Flow Process Rationalization i e e 242
Graph of Service Interactions between Agents. i e 242
Graph of Service Interactions of an Agent. i e 243
Reports on the Architecture FunctionalCoverage vttt s v st e nnnnnnnns 245
Building Block Breakdown report o i e e e e 245
Overlapping Applications. o i i e e e 248
Business Capability Breakdown Report oottt e e e 249
Infrastructures Reports ittt it s s s n s annnns 252
Infrastructure Description Report. e 252
Application Technology Requirements x IT Infrastructure Provided Technologies Matrix . . .253
Network Channel x Service Interactions i i 254
Network Channel x Package Connection Matrix o, 254
Deployment ArchitectureReports ittt eennnsannasnnnns 256
Deployment Architecture Report i i e 256
Deployment architecture matrix. 256
Package Connection x Service Interactions Matrix 257
Package Connection x Resource Flow Matrix i 258
AboutUMLimplementationttt rnnsnnsnnrsnnsnns 263
OVeIVIEW. & .t i it ittt i s s s s s s s s e s m s mn s s s s n s nnnnnnnnn 264
ANalyzing USE CASES o e 264
Identifying OBbJecCtS. i e e 264
Describing behaviors e e e e e 264
Representing interactions between objects e 264
Dividing classes between packages i e 265
Defining interfaces. 265
Specifying deployment e 265
Organizationof UML Diagrams. i st i e i st nnn e snnnnnssnnnnnsssnnnnss 266
General organization e e e s 266
Detailed specification e e e e e 266
Technical specification and deploymentt 267

UML diagram entry points. 0 i i et e e e e e e 267

Contents

11

12

UseCaseDiagramot ousennsnnsnnssnssnssnssnssnssnssnsnsns 269

CreatingaUseCaseDiagram uuuiierrtnnnnnsssannnnssnnnnnnssnnns 270
Creating a Package i e e e e e 270
Creating the Use Case Diagram of a Package 270
UseCaseDiagramElements it nnnnnnsssssssnssnnnnnnns 271
ACEOIS . . ot i e e e e e e e e e e 271
USE CaSBS . . v v i it e e et e e e e e e e e e e e e e e 271
ZOOMING iN ON @ USE CASE . . v v v v v et et ettt e ettt e et e et e et e 272
PacKages e e e e e e e 272
Participations e e e e e 273
Examples of participation e 274
Creating partiCipations o o i e e e e e 274
Multiplicities of a participation e 275
Use Case Associations: Extensionsand Uses ittt 275
Inclusion relationship e e e e e e 275
Extend Relation s 276
Generalizations. e e e e e 278
Interfaces . . . o e e e e e e e e e e 279
Creating an INnterface i i e e 279
Connecting an interface to @ USE CASE. v v v v i v ittt ettt e e s 279
TheClassDiagram vttt st vt n st ansansanssnssnssnssnssnssnnss 281
PresentationoftheClassDiagramt iiinneesnnnnnessnnnnnnss 282
The Class Diagram: SUMMACY v vt ettt et ettt et e ettt e e ettt en e 282
Creating a Class Diagram ittt e e e e e e e e e e 282
ClassSeS ii i i i s n s s s nnmnnan s asssssssssssssssssssssssssnnnnsnnnns 283
Definition: Class . . v v v it i s 283
Creating @ Class v i it e e e e e e e e e e 283
Finding an existing Class e 284
Class Properties 284
Class characteristiCs Page. i e e e e e e e e e 284
Other properties Pages o v v v i e et e e e e e e e e 285
Class Stereotype . . . o it e e e e e e e e 286

Stereotype display option e e e e e e e 287

Attributes i i i i i i s 288
Definition: Attribute e 288
Specifying Class Attributes 288

Creating a standard attribute. e 288

Creating a computed attribute e 289

Inherited attributes. e e e e e 289
Attribute Properties e e e e e 290

ALEribULE Ly pe . . . e e e e e e e e e 290

oOperations.ttt ittt st s s s E e E s a e EE s 292
Definition of an Operation i e e e 292
Specifying Class Operations i e e e e e e 292

Inherited operations e e e 292

HOPEX IT Architecture

Contents .

Operation Properties i e e e 292
Operation or Signal Signatures 293
Signature syntax e e e e e e e e e e e e 294
Operation Parameters e e e e e e e e e 294
Operation Methods (opaque behavior) i e e 295
Operation Conditions i e 295
Operation EXCEPLiONS e e e e e e 296
Displaying Class Attributes and Operations i e 296
Signalsi ittt s 297
Defining @ Signal o oo e 297
Specifying Class Signals it i e e e e e 297
Creating a sent or received signal 297
Signal Properties o i e e e e e e e e e e e e 297
Signal parameters e e e e e e e e e e e s 298
Associations i i i s s 299
Creating an AssoCiation e 300
Roles (or Association Ends) i e e 300
Multiplicity of @ Role 301
Specifying role multipliCity e e e 302
Association End Navigability e e 302
Specifying navigability fora role e 303
Association End Aggregation e e 303
Specifying role aggregation. e e e 303
Association End Composition e e 304
Role Changeability 304
ROlE Order . ..o e e e e e e e 305
Role Static Propertyo e e e e e e e 305
Role Qualifier e e e e e e e 305
Overloading @ Role e 306
AssoCiation Classes v vt e e e e e e 306
Displaying an N-ary Association 307
Reflexive ASSOCIations it e e e e e e e 307
Creating a reflexive association i e e e e 308
The Parts ittt in e st na e s nan s sannnsssnnnnsssnnns 309
Creating a Part between two Classes i i i i e e e e e 309
Defining the Identifierof a Class viaa Part i 309
Multiplicities of the Associated Classes i ittt it i e e e e 310
Multiplicity of the class referenced by the part. 310
Multiplicity of the owner class of thepart 311
Aggregation and Composition Relationships 311
Associated multipliCities e e e e e 312
Generalizations.ttt i s e 313
What is @ Generalization? e 313
Example e e e e e 314
Multiple Subclasses - Generalization i e 314
Advantages of Subclasses - Generalization e 315
Multiple Inheritance - Generalization 316
Creating a generalization i e e 316
Discriminator - Generalization 316
SpecifyingInterfaces v ittt s s st a e a s 318
Creating an Interface i i i i e e e e e e e e 318
Connecting an interface to @ Class o i i i i e e 318

13

14

SpecifyingDependenciesccuittennnrtnannnssannnssannssnnnnsnnnnns 319

Specifying Parameterized Classesttt nnnsennnrsnnnnsnnnnsnnnnsns 320
Constraints0 it nnnnnnnssssssssssnssssssssnnnnnnnnnnnnns 321
Object Diagram u i i it v s v nnmmnnnms s s s s sssssssssssssssssssssnssnssass 322
ObJeCtS . . o e e e e e e e e e 322
Creating an object (instance). e 322
Instance properties. o e e e e e e e e e 323

Value of an attribute. e e e e 323

LiNKS o e e e e e e e e e e e 324
Creating a link e e e e e e e s 324

Link properties. i e e e e e e e e e e e e e e e e 324

Role properties. e e e e e e 324
Structure and DeploymentDiagrams. . . .+« v s v s s v s an s an s ansannnnns 327
ThePackageDiagramttt nnssnssnnsnnnsnnnnnnnnns 328
Creating a Package Diagram it e e e e e e 328
Defining Packages ittt e e e e 329
Defining Classes . . v v v i it et e e e e e e e 329
Specifying Dependencies in @ Package Diagram it e 329
TheComponentDiagram. i ittt it nunnessnnnnnsssnnnnssssnnnnssssns 331
Creating a Component Diagramo it i e e e e 331
CoOMPONENES . . e e e e e e e e e e 332
Interfaces . . . o o e e e e e 332
Creating component interfaces. i i i e e s 332
Linking interfaces to other objects e 332
Connecting interfaces o e e 333

POES L L e e e e 333
CONNECEONS . . o i e e e e e e e e e e e e e e 333
Delegate connector. e e e e e e e 334
Assembly connNector e e e 334
CompositeStructure Diagram. sttt ittt st r s s s s s s a s aannnnnnnnns 335
Creating a Composite Structure Diagram i i e 335
PartS . . e e e e e e e 336
Collaborations o e e e 336
Collaboration USE i e e e e e 337
Collaboration use example. e e e 337
Dependency linKs o i e e e e e 337
StateMachine Diagramcu:cuuusennnnssnnnnssnnnnssnnnns 339
Presentation of the State MachineDiagram ittt innennnnnnnnns 340
Creating a State Machine Diagram i i e e e e e e 340

S - 1 = 342
Creating @ State o e e e 342

Y = 1= V7 2= 342

HOPEX IT Architecture

PSeUdO-StatesS e e e e e e e e e e e 343
Detailing Behavior of a State 344
State Properties o i e e e e e e e e e e 344

StateTransitionscciiiiinrrnnnrnnrrsr s nnsnnnsssnnnnnns 346
Creating a Transition i e e e e e 346
Transition TYPES & . v i i it e e e e e e e e e e e e 346

External transition e e 346

Internal transition e e e e e e e e e e e e 346

Local transition e e e e e e e e e e e e 347
Transition Effects i e e e e e 347

Transition Effect Display e e e 347
Transition Triggering Event e e 347

Activity Diagram st o v vt s s s s s s s nnnnsnnnnssssnnsssnnnssssnnss 349
Activity Diagram v v v vt s s st s s s s n s s snsssnsssssnsassnnnnnnsnnnnnnnns 350
Creating an Activity Diagram e e e e e e e e 350
Partitions0ttt ittt s st 351
Creating a Partition e e e e e e 351
Partition Properties e e 351
Nodes ittt nnnnnssnn s annnnnnnnnnnnnnnsssnsssssss 353
Object Nodes i e e e e e e e e e e 353

Creating an ACtion e e e e 353

Modifying the ACtion Type. o o e e e e e 353
Parameter NOdeS o i e e e e e 353
Control NOdes oo e e e e 353

Control NOde tyPES. o i e e e e e e e e e e e e 354
Object nodes: Input, Output and Exchange Pins 355

INpUE PN . o o e e e e e e e e e e e e 355

OULPUL PIN . o o e e e e e e e e e e 355

EXChange pin o e e e 355
0 355

Control flow o e e e e e e 355

ODJECt FlOWS . . . o o e e e e e e e e e e e 355

Interaction Diagrams s v v st c v s s s s nnnssnnnnssnnnsssnsnnsssns 357
Interactions it nnnnnnnnnnssnsssssssnssssssnnnnnnnnnsss 358
Creating an Interaction i e e e e e 358
Creating an Interaction Diagram ot it e e 358
Sequence Diagramttt e ittt s s s 359
Creating @ Sequence Diagram ottt it i e e e e 360
Lifelings . . . e e e e e e e 360

Creating a lifeline. e e e s 360

Lifeline properties i e e e e e e e e 360
MESSAGES . . v v i i e e e e e e e e e e e e e e e e e e 360

Contents

15

16

Examples of exchanged messages o v i i i i e e e 361

Creating @ MESSAGE o v v i v et e et e e e e e e e 361
MeSSage Ly pPES . . o o v e e e e e e e e e e e e 362
Execution Specification e e e 362
Creating an execution specificationttt 362
Occurrence specification e 362
Calculating sequence NUMDErS. i e e e e e e e 363
Combined Fragment 364
Creating a combined fragment. s 365
Interaction operator type e e e e e e e e 366
Interaction Operands. i e e e e e e e e e 368
Interaction Use e e e 368
Gate . . . e e e e e e e e e e e e 369
ContinUation e e e e e e 370
Communication Diagram. . . . v vt v s s n s s s s s s s ssssssssnssnssnnnnnnnnns 371
Example e 371
Diagram objects. e e e e e s 372
InteractionOverview Diagramottt nnnnessnnnnnassannnnsssnnnns 373
The deploymentdiagram: v nennsnnsnnsansnnsnnssnss 375
Presentation of the Deployment Diagram. v s v v v v v nn s s s s s s s sssnssnssss 376
Creating a Deployment Diagram 376
Deployment Diagram Objects i i e 377
NOdE. . . . e e e e e 377
Communication path. e e e e e e 377
ComPponeNt e e e e e e e e e e e 377
Artifact . . o e e e e e e e e e e e e e e e e s 377
Manifestation e e e e e e e 377
Deployment specification. i e e e e e e 378
Configuration o e e e e e e e e e e 378
Attribute type. ittt i s s i s s s e s 379
Primitive Types i i i i i e 380
Prerequisite: Importing the Primitive Types o oo i it it et as 380
Defining @ Primitive Type . . i et 380
Packages and Primitive Types.t st ittt it v s s s s nnnnssnnnnsnnnnnnnnns 382
Packages i e e e e e e e e 382
Defining New Primitive Types.ttt i ittt st s s s s s nnnnnnnnns 385
Compound Primitive TypPe ittt e s e e e e e e e e e e 386

HOPEX IT Architecture

INTRODUCTION

Hopex IT Architecture allows IT managers to formalize business needs in order to define the
architecture of the information system that meets them, from the logical architecture to the
technical infrastructure.

Hopex IT Architecture offers facilities for different analysis perspectives:

v Information System management and upgrading: a description of service
and city planning architectures are two approaches that simplify IS upgrading by
providing a frame of reference for planning your systems and analyzing your
upgrading scenarios.

v Application mapping: a description of application architecture that offers a
detailed view of information exchanges between applications, services, databases
and organizational units.

v Application deployment: a description of the information system technical
infrastructure to monitor application deployment on the different enterprise sites.
The technical infrastructure takes account of the main hardware of your
organization such as networks, servers, workstations, printers, firewalls and
concentrators.

v The representation of resource architectures: a description of complex
systems involving different types of IT resources.

In addition to Hopex IT Architecture, Hopex IT Business Management allows organizations to
manage their information system transformation by offering possibilities to define steps and to
manage assessments for each of the steps.

Hopex IT Architecture also offers a tool used to import configuration elements from CMDB
(Configuration Management DataBase) and align them with modeling objects described in Hopex
IT Architecture. For more information, see the "CMDB Import" documentation.

The purpose of this guide is therefore to present how to make best use of these functionalities for
the successful evolution of your information system.

The following points are covered in Hopex IT Architecture:

Modeling Applications and System Architectures.
Modeling application architectures.

Modeling technical architectures.

Aligning IT and Business.

Modeling IT Infrastructures.

Accessing the Software Design.

Describing information exchanges.

About UML implementation.

SNENENENENENENEN

Introduction

17

PRESENTATION OF HOPEX IT ARCHITECTURE

Combined with the products of the Hopex suite, Hopex IT Architecture supports
a methodology and the tools used to describe, analyze and plan your information
system transformation.

The Scope Covered by Hopex IT Architecture

The modules offered in standard mode are used to follow a top-down approach,
beginning with a review of the business capabilities of the enterprise and its
strategy, and ending with a precise definition of the components of the existing or
future information system.

Each module addresses specific user profiles. Standard reports are offered to
simplify analysis of the subjects handled.
The method described in this guide is represented by the modules described below.
w The order of use of these modules is given by way of information.
Describing and analyzing flows: this step is based on scenario diagrams that
represent the flows between the components of your information system.
w For more details, see Describing flow scenarios.
Analyzing the functional coverage of the technical architecture: during this
step the reports proposed by Hopex IT Architecture are used to analyze the links

between the components of the described application architecture and the expected
functionalities.

w For more details on modeling applications and services, see
Describing Application Architecture and Describing Applications.

Describing the upgrade strategy of the information system and
architecture: this step consists in describing what the information system is able
to deliver, through business capabilities, and how it plans to deliver them using the
architectures.

w For more details, see Analyzing the functional coverage of the
architecture implemented and Building the Logical Architecture.

Describing the application environment: this step consists in describing the
deployment architecture and all the elements that compose it.

w For more details, see Defining the Deployment Architecture of an
Application.

Describing the technical infrastructure: this module allows to manage
deployment constraints and to associate adapted solutions to them.

w For more details, see Defining the technical infrastructure.

Using UML formalism: furthermore, you can use the UML (Unified Modeling
Language) modeling Inaguage to model your IS.

w For more details, see About UML implementation.

Introduction

Presentation of Hopex IT Architecture

Summary of Activities and Deliverables of Hopex IT Architecture

Activities are associated with each of the modules of the method we recommend for

managing the evolution of your information system.

The Hopex IT Architecture solution offers the tools to carry out these activities,

which are materialized by deliverables.

Activities

Main deliverables

Defining the logical architecture

Logical architecture structure diagrams, see Describing
Logical Application Architecture.

Building the application architecture

Application architecture structure diagrams and flow sce-
nario diagrams, see Describing an Application with Hopex
IT Architecture.

Analyzing the functional coverage of the
application architecture

Assessing the functional coverage by software resources,
see Describing the fulfillment of a Functionality.
Assessing the coverage of technical functionalities by
technical resources, see Describing the fulfillment of a
Functionality.

Defining the deployment architecture

Description of the technical requirements for the applica-
tion deployment, see Modeling technical architectures.

Defining the infrastructure

Description of the technical requirements for the applica-
tion deployment, see Modeling IT Infrastructures.

Managing service catalogs

Description of service catalogs and recommended solu-
tions, see Using service catalogs.

Presentation of the Hopex IT Architecture deliverables

Structure and positioning of the Hopex IT Architecture solution

Hopex IT Architecture can be used with other products in the Hopex suite.

Hopex IT Business Management

Hopex IT Business Management Solution provides Hopex IT Architecture with
method and tools for business transformation planning. Both solutions share the

mapping functionality for business capabilities.

Hopex Business Process Analysis

In addition to Hopex IT Business Management,
Analysissolution provides the possibility to describe the organizations and
processes that implement the business capabilities identified in Hopex IT

Architecture;

Hopex Business Process

19

20

Hopex IT Architecture Profiles

In Hopex IT Architecture,there are profiles associated to specific activities.

Presentation of the solution interface depends on the profile selected by the user on
connection to the application; the tree of menus and functions varies from one

business role to another.

w For more details on the Desktops connected to each of the profiles,
see Hopex IT Architecture Desktop Presentation.

Profiles

Tasks

Solution Architecture Functional
Administrator

In addition to the Solution Architect’s functional rights, the
Solution Architecture Functional Administrator has rights over
all objects, methods, projects and workflows.

He/she prepares the work environment and creates the ele-
ments required to manage the modeled elements.

He/she manages the environment objects (application environ-
ments, infrastructures, reports, etc.),

For more details, see Presenting the Solution Architecture
Functional Administrator workspace menus.

Solution Architect

The Solution Architect has rights over all objects, methods,
projects and assessments.

The IT architect is responsible for building architecture models
for the applications, IT technologies and IT infrastructures
assigned to him/her. He/she can manage transformation proj-
ects.

The Solution Architect is in charge of detailing the system spec-
ifications and designing UML diagrams.

For more details, see Presentation of the Solution Architect
workspace.

Application contributor

The Application contributor is in charge of validating the design
of the applications assigned to them.

For more details, see Presentation of the Application Designer
workspace.

Application Viewer

The Application Viewer has read-only rights over the repository
objects.

For more details, see Presenting the Application Viewer work-
space.

Introduction
Presentation of Hopex IT Architecture

Business Roles of Hopex IT Architecture

In Hopex IT Architecture, there are, by default, business roles that can be
assigned to certain users. These roles are:

e Software Designer: used to assign a user to software elements. The
software designer is responsible for designing the software assigned to
him/her.

e Data Designer , who is responsible for managing data.

e Local Application Owner used to assign a user to applications. The
Local Application Owner is responsible for the following tasks:

e Identifying risks

e Responding to Questionnaires

e Defining and implementing action plans,

e Validating the modifications made by the architect in the context of
object review workflows.

e The Business Owner specifies the characteristics for the software
installations and applications they are in charge of at the business level.

e The IT Owner specifies the characteristics of the IT resources they are
in charge of.

21

THE HOPEX IT ARCHITECTURE METHOD

The method described in this paragraph is given by way of information. Depending
on your work context, you can sequence differently the described steps.

Describing Application Architecture

Hopex IT Architecture offers the means to represent different levels of application
architectures: from the description of the application environment to the technical
components to be implemented.

These representations make it possible to define the software and hardware
components and to identify in a consistent way the data exchanged between them.
w For more information about the use of an application architecture,
see Modeling Applications and System Architectures.
The description of application systems can be done according to a top-down
approach, starting by describing the company's main application systems, or
according to a unitary approach by describing only certain application systems.
An application system is an assembly of other application systems,

applications and end users interacting with application components to
implement one or several functions.

Application system environment description

If you use a unitary approach, you must describe the application system
environment to provide a context to the used application system and its service
interactions with external components.

An application system environment allows presenting the other

application systems, applications or microservices with which this
application system can interact.

w For more details on application system environments, see
Describing an Application System Environment with Hopex IT
Architecture.

In addition to a precise description of the application architecture to be

implemented, this step covers the following points:

e Identify precisely the exchanges between the different software and
hardware components, and formalize them through service interfaces.

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations

[v;/hich c)an be triggered trough messages exchanged by roles (vendor,
uyer..).

w For further details about service interfaces, see Describing
information exchanges.

e Verify that the application architecture covers the functional
requirements identified in the business capability maps.

w For more details on the functional analysis, see Analyzing the
functional coverage of the architecture implemented.

Introduction
The Hopex IT Architecture Method

Describing application systems

In a top-down approach, the main application system structure diagram is the entry
point for the description of the existing or planned application system.

w For more details on application systems, see Describing an
Application System.

The following diagram describes the application system
corresponding to purchasing requests processing.

-.» Payment requests processing

End User Call Center Sales assistant
A AA A A A
Customer Info Customer Information Customer Information
Error Meszage -
= Error Meszage Error Meszage

Information requirement

Information about customer

Information requirement

Customer identification Internal Purchasing Service

Information about

; Q
(’) Purchase

Call

MyCompany. Management
com o management
d Customer identification d a
- Information about custonisr I ’1‘ A
fl\ fl\ Customer Information - Payment
Error Meszage P‘ .
Ordering e
: Ordering
Payment interface Ordering
A Order numbar Order number
Order number v L]

Payment

Global Payment Management Platform

‘e
.
1 l \ Order number
Payment Management 1‘?’\‘01\’-‘9 mumber
List of refuzad products
Y

Payment Management

-

The following diagram describes the application system corresponding to purchasing requests processing.

Purchasing requests can be formulated by external customers
via an Internet purchasing application or indirectly via a
call center. Internal users have to call a “Sales assistant”
who uses the “Office Supplies Purchasing Management”
application.

The application subsystems can then be described hierarchically by showing at each
level the points of exchange with the outside world.

The data stores are used to represent the data that will be stored in databases.

A data store provides a mechanism to update or consult data that
will persist beyond the scope of the current process. It enables storage

23

24

of input message flows, and their retransmission via one or several
output message flows.

w For more information on data stores, see Managing Data.

Describing Applications

With Hopex IT Architecture an application is described by:
e The information flows it processes and transports, see Describing flow
scenarios,
* The elements that provide the services associated with the

functionalities it covers, see Describing the structure of an application
and its services.

These complementary approaches help to draw up an exhaustive list of the
components of an application (services and APIs) and the components of its
environment interacting with it.

Describing flow scenarios

Hopex IT Architecture offers flow scenario facilities to describe precisely data
exchanged.

At each level of the application architecture, it is possible to define flow scenarios
between system components in specific contexts.

The objective of flow scenarios is to verify that content is correctly conveyed
between components.

The scenario of application flow diagram below describes
the "Purchase request management" application.

Purchase Request Display Purchase
Request List

P

Purchase
requests list
Purchase Requisition
[Denied]
Adtributed Purchase
Requisiion
A

Excel Bills to print Assign & Handle Order Orller

Purchase Request O
* o

=

Example of a Scenario of Application Flows for "Managing Purchase Orders".

w for more details on flow scenarios, see Creating a flow scenario
sequence diagram.

Introduction
The Hopex IT Architecture Method

Describing the structure of an application and its services

Structure diagrams use service interactions to describe the data exchanged
between the components.

ol Purchasing Management

Display Purchase

Request List
= TR EEEEPEEEE | =

Servicg achat ‘

intgrme
a ~

Internal Purchasing Service

Purchase Request

Excel Due Amaourt Assign & Handle

O } Purchase Request {
* Z: . > *

Ordering

Version Number = 6.3

“Purchasing Request Management" application structure diagram

The “Purchase Request Management” application uses two IT
Services: “Display purchase request list” and “Assign and
handle purchase request”. The IT Service “Assign and handle
DA” uses the Excel microservice.

Defining the Deployment Architecture of an Application

An application deployment architecture allows to represent Deployable Application
Packages and Deployable Data Packages as well as the Technical Communication
Lines necessary for their exchanges.

A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/... or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/Paa$S cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).

A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

25

26

Several viewpoints are proposed in Hopex IT Architecture:

e The Application Deployment Environment used to represent of the
deployments of partner applications as well as microservices identified
around the subject application, see Describing an Application
Deployment Environment.

e The Application System Deployment Architecture used to represent the
set of Application Deployment Architectures that must be coordinated to
cover required dependencies between them, see Describing an
Application System Deployment Architecture.

e The Application Deployment Architecture used to represent the
deployment packages list and the module lines, see Describing an
Application Deployment Architecture.

Travallar Friand - Mobils Deployment Architecture

| <)
|

Loy
ez aco e n
— L s ko0 et e

L tabase Serwer
{modium size])
TelepiTce FCustomer Management
#Fight Baokeg Backend
FTravel Mansgement Bachond

Application Deployment Architecture Diagram

To facilitate the creation of your application deployment architecture, Hopex IT
Architecture provides standard deployment architecture diagrams.

w For more details, see Deployment Architecture Templates.

Building the Logical Architecture

Hopex IT Architecture provides ways to define logical application architectures
that represent ideal architectures. These representations make it possible to design
logical structures for application architectures, to rationalize exchanges between
these structures and to identify the data used. Logical application architectures can
then be compared with the implemented architectures to detect gaps between the
real and the ideal.

w For more details on use of a logical application system, see
Describing Logical Application Architecture.

Introduction

The Hopex IT Architecture Method

Logical application systems can be described using a top-down approach, starting
with a description of the company's main application systems, or a unitary
approach, describing only some logical application systems.

A logical application system is an assembly of other application
architectures, logical applications and end users, interacting with
application components to implement one or several functions.
If you use a unitary approach, you must describe the Application Logical System
Environement to provide a context to the use of the logical system and its service
interactions with exeternal, logical components.

A logical application system environment presents a logical
application system use context. It describes the service interactions
between the logical application system and its external partners, which
allows it to fulfill its mission and ensure the expected functionalities.
At this level of the method, this step, which is not mandatory, covers the following
points:

e Identify the exchanges between the logical components and formalize
them through service interfaces.

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

w For further details about service interfaces, see Describing
information exchanges.

e Verify that the logical architecture covers the functional requirements
identified in the business capability maps.

27

28

Structure diagram of the logical application system

The logical application system components are described in a diagram featuring:

e the services offered or required;
e the processes handled, the components and their interactions service;
e the end users interacting with the application components.

The following diagram describes the structure of the
logical application system "Purchase request processing"”
offered to customers.

uPurchasing Requests Processing

Customer Call Center End User

~ ~ A

Customer identification Information requirement Internal Purchasing Service
Purchasing
Purchasing External Web Access Management
AN B oo
Ordering Ordering

Payment interface

Payment & Order Platform

“Purchase Request Processing” Logical application system structure diagram

“Internet Purchase Requests" are offered to customers
either directly or through a "Call Center".

Requests made by customers are processed by a "Internet
Purchase Requests" logical application system.

The logical application system structure diagram, for
managing “Purchasing Requests”, presents different logical
applications, access to a logical database as well as

The Hopex IT Architecture Method

service and request points for “Internal request service"
or "Order".

uPurchasing Management

Internal Purchasing Service Supply & Equipment Ordering

Purchase
—O0 C

Intgmal
Purcliasing }
Serpice (1\

Order number s

Ordgring

Product Information - Payment

Get Product
Information

“ Purchasing request Management” Logical application system structure diagram

w For more details on use of a logical application system, see
Describing a Logical Application System with Hopex IT Architecture.

Logical application system environment diagram

A logical application system environment presents a logical
application system use context. It describes the service interactions
between the logical application system and its external partners, which
allows it to fulfill its mission and ensure the expected functionalities.

Introduction

29

30

The components of a /logical application system environment are presented in an
application system environment diagram that describes the internal logical

application systems as well as the partner logical application systems.
S

@& Purchasing Environment

Customer

Sales
{ ‘Customer identification

Boutique Sub- Purchase request Finance
System managing

,k' o]

.
Customer identification

CRM Sub-System

Logical application system environment diagram

Purchasing requests are formulated by users in conditions
specified by Sales service and also the Finance service
which are external to the described environment.

w For more details on use of a logical application environment
system, see Logical Application System Environment Description.

Analyzing the functional coverage of the architecture implemented

The goal of this step, on a strategic level, is to check the suitability between the
business capabilities of the enterprise, the functionalities required and the
applications that deliver them.

Describing Business Capabilities

w For more details on managing business capabilities with Hopex IT
Architecture, see Describing Business Capabilities with Hopex IT
Architecture.

A business capability defines an expected skill.

A business capability represents a specific ability that an

organization possesses or needs to develop to deliver a particular
business outcome.

Introduction

The Hopex IT Architecture Method

A business capability map describes what the enterprise is capable of producing for
its internal needs or for meeting the needs of its clients. It is thus based on the main
business capabilities of its activity at a given moment.

A business capability map is a set of business capabilities with their
dependencies which define a framework for an enterprise stage.
For example, the standard ability to manage "Operational
Activities"™ 1s based on the business capabilities to
process "Supply", "Sales" and "Complaints", "Order
Management" and "Customer Management".

Information Technology Human Resources

= Enterprise Architecture Manage Knowledge

« IT Service Support Manage Payroll

« Portfolio Management Manage the Timetable

= Technology Strategy Track Employee's Time Off

- Business Administration
Core Operations

= Investments

« Legal

« Reserves Management Management
= Accounting
« Billing

= Claims

- Customer Management
« Manage Fulfillment

« Procurement

= Sales

Financial

Example of a business capability map

w For more details on managing a business capability map, see
Describing Business Capabilities with Hopex IT Architecture.

Identifying the technological capabilities associated to business capabilities

The aim here is to connect technological capabilities — corresponding to what is
expected to achieve a goal - to the actual means of production, i.e. Applications or
Application Systems on a conceptual level.

An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.
By constructing the functionality map on the one hand and the application system
environment on the other hand, you can check that the functionalities are
implemented by application components.
w For more details on the logical applications associated with business
capabilities, see Describing the fulfillment of a Functionality.
Hopex IT Architecture provides a report that presents the result of the
implementation of business capabilities by applications or application systems
physical or logical.

w For more details on implementation of business capabilities, see
Business Capability Breakdown Report.

31

32

A technological capability defines the expected capacity of an equipment.

A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.

A functionality map describes all the functionalities the enterprise is able to cover
for its internal needs or for meeting the needs of its clients.

A technology capability map is a set of technology capabilities and
their dependencies that, together, defines the scope of a hardware or
software architecture.

i |

Sales

IT Functionalities

« Add Information into a Repository
« Dispatch Commercial Offering « Allow Service Accesses Through the Web
« Display the Catalog Content - Control Application Accesses Depending on Licenses
« Get customer information « Control Network Input-Output
= Get stock infermation « Ensure the Email Transmission
« Manage the Contacts « Ensure the Information Confidentislity
« Provide Key Performance Indicators « Install an Application
« Read of a Customer Properties « Maintain the Applications
« Read of the Customer Credit History « Prevent Malicious Software Intrusion

| . Determine client situation

y : Human Resources
Financial
« Identify Employees

- Geérer les factures en attente
M n I « Manage Knowledge
snage | Ao + Manage Payroll
+ Printthe Invoices - Manage the Timetable
« Provide Agency Revenue Statictics . Track Employee's Time Off
E =

Example of a functionality map

w For more details on managing a functionality map, see Describing a
Functionality Map with Hopex IT Architecture.

The description of business capabilities and functionalities is particularly interesting
if business capabilities are associated with the functionalities that fulfill them.

w For more details on this analysis, see Describing Fulfillment of a
Business Capability.

Identifying the applications associated with functionalities
Applications cover functionalities associated with business capabilities. In Hopex IT
Architecture, a report allows to check the functional coverage of your applications.

w For more details on this functional coverage, see Describing
Fulfillment of a Business Capability.

Defining the technical infrastructure

Describing the technical infrastructure helps to design deployable application and
data packages to prepare their deployment.

Technical infrastructure elements are identified and characterized by technologies
and hosted IT services.

Introduction

The Hopex IT Architecture Method

With Hopex IT Architecture the infrastructure can be described in a bottom-up
approach, from the most detailed to the most conceptual, or top-down, from the
most conceptual to the most detailed. Presentation of these functionalities is based
on the example of a call center.

Resource Architecture Environment Diagram

A business architecture environment represents the relationships of
a business functional area with its partners.

The following diagram describes the environment of a support center.

Call Center Environment

Information Request

Customer

Phone channel

Purchase request

HTTPS

Purchase requests management

2

The call center responds to customer requests. It is based
on an external service to fulfill any purchasing requests.

w For more details, see Describing IT Infrastructures.

Describing Resource Architectures

The Resource Architecture Assembly Diagram describes the hardware and
organizational resources required for handling service requests.

m For more details, see Describing Resource Architectures.

33

In the call center example, we consider only the operator and the IT infrastructure
that represents its equipment.

- Information Request | -C—Fn_ chase request

Servicg Point Pur:
Operator req

Ph§ne

Phéne Inte

Call Center IT
Infrastructure

A team of operators handles all requests, whatever their
nature, by telephone or by e-mail.

The operator identifies the caller, records the request,
applies a first filter (in case of error) and if necessary
records a purchasing request via request points.

This diagram contains a Request Point from which the operators make purchasing
requests.

A request point is a point of exchange by which an agent requests a
service from potential suppliers.

IT infrastructure assembly structure diagram

This diagram presents an IT infrastructure. It contains Infrastructure IT component
such as: computers or IT equipments.

w For more details, see Describing IT Infrastructures.

Introduction
The Hopex IT Architecture Method

Phone

[EMail application
[Hoffice applications
[EwWeb Applications

Intefnet

s
Intefn
ntefnet =

Operator Post

The basic hardware architecture of a call center includes
two link points to the outside: a telephone link, a link to
a private network that enables the HTTP link for the

purchasing request.

Note that the used communication protocols are mentioned on the network

channels.
A communication protocol is a set of standardized rules for
transmission of information (voice, data, images) on a communication
channel. The different layers of protocols can handle the detection and
processing of errors, authentication of correspondents, management of

routing.

35

36

Computing Device Assembly Diagram

The computing device assembly diagram presented below describes the software

technologies, the deployable application packages and the IT devices installed on a
standard PC.

w For more details, see Describing the Computing Devices.

Intefnet

Apﬁimiuns
Intenet

Computing device assembly diagram of a standard PC.

A standard PC is equipped with office system applications
and electronic mail applications.

A standard PC also has an HTTP connection to access Web
applications to manage purchase requests.

Designing applications
Hopex IT Architecture offers the tools to assist architects in specifying updates to
their IT system.
m To access this UML feature, you must sign-in as an IT Application

Designer or a Solution Architecture Functional Administrator.

Using UML formalism

Hopex IT Architecture provides the tools required to model logical data via class
diagrams and data models.

w For more details on UML main concepts, see UML modeling of data.

The Hopex IT Architecture Method

Describing batch processing

The sequencing of automated processes can be described in a batch planning
structure diagram.

= [izplay Invoice Forms @ dnaica Foerm

| nvoice
" preparation

.”.
3
z
=3
o
@
2
o
L
&\

]

w For more details on describing batch processing, see Describing
Batch Processing.

Describing the list of services and interfaces

It is possible to describe interfaces connecting services or operations with the
exterior. This description is carried out in a user interface diagram.

Introduction

37

An interface diagram is used to describe the planned interfaces.

¥
"y

Departure fram Paris
Destination Rome

Flight date 09/31/2002

A
| o

Cancel Propose flights...

lights proposal

w For more details on describing interfaces, see Defining User
Interfaces.

Describing application processes

Hopex IT Architecture offers the possibility to check that the processes performed
by the application system are correctly covered by describing Application processes.

A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which
the tasks follow each other, the information flows exchanged with the

participants.
w For more details on system processes, see Describing System
Processes.

Introduction

The Hopex IT Architecture Method

Analyze Purchase Reguest

o—
Start

Referenced Products
[Requested] Referenced product

Spare Parts
[Availzble]

Product in stock

Request to make!
available

Supplier Contracts

Purchase Order
Preparation
Stock = Stock mini

End

Application process diagram

Managing service catalogs

L A service catalog contains a list of key service offers for which
solutions are recommended.

A service catalog describes the list of services provided to an Enterprise. These
services are defined by their functional coverage (the capacity they provide), the
solutions that can be implemented to deliver the service (the available agents) and
the status of each agent within the catalog (this solution is norm, accepted,
tolerated, prohibited, etc.).

Defining a service catalog requires defining the functional scope covered via a
reference capability map.

39

Capabilities (or functionalities) associated to services are implemented by one or
several technical elements that are considered as solutions. The solution status
helps the user to select the better solution for his context.

Business Service Catalog

Airport Business Services Catalog

=2
Solution Status Action
B M Airport Business Services Catalog e = 2 ®
[-] Analytics
a Airline Safety
‘ * AirportMega.com Norm
[-] Non-Aviation Business Management
-] Food and Beverage Managment
‘ Airport Mobile v1.0 Accepted
Safety & Security Management

Presentation of a Business service catalog

This presentation of a business service catalog enables the
identification of the business capabilities associated with
the services, the technical solutions that implement the
capabilities, and the status of these solutions in the
context of the catalog's use

Hopex IT Architecture offers the following service catalogs:
e business service catalogs,

A business service catalog provides a centralized information
source for the business services offered by the service provider
organization. It contains a customer-oriented view of the services
associated to business capabilities, how they are supposed to be used,
the processes that they support as well as the expected service quality
level. The business service catalog presents the list of functionalities
mentioned as well as implementation recommendations.

e (Cloud services catalogs,

An information service catalog provides a centralized information
source for the information services offered by the service provider
organization. It contains a customer-oriented view of the information
services used, how they are supposed to be used, the processes that
they support as well as the expected service quality level. The
information service catalog presents the list of functionalities mentioned
as well as implementation recommendations.

e Technology service catalogs,

A technology service catalog provides a centralized information
source for the technology services offered by the service provider
organization. It contains a customer-facing view of the technology
services in use, how they are intended to be used, the process they
enable, and the levels and quality of service the customer can expect
from each service. The technology service catalog provides the list of

40

Introduction
The Hopex IT Architecture Method

reference technology capabilities and their recommended
implementation.

information service catalogs,

An information service catalog provides a centralized information
source for the information services offered by the service provider
organization. It contains a customer-oriented view of the information
services used, how they are supposed to be used, the processes that
they support as well as the expected service quality level. The
information service catalog presents the list of functionalities mentioned
as well as implementation recommendations.

hardware service catalogs.

A hardware service catalog provides a centralized information
source for the hardware services offered by the service provider
organization. It contains a customer-oriented view of the hardware
used, how they are supposed to be used, the processes that they
support as well as the expected service quality level. The hardware
service catalog presents the list of hardware functionalities mentioned
as well as implementation recommendations.

w For more details on the use of service catalogs, see Using service
catalogs.

41

42

HOPEX IT ARCHITECTURE DESKTOP PRESENTATION

w Hopex IT Architecture is mainly intended for web users.
Desktops described in this guide are accessible only to Web desktop
users.

Connecting to the solution

To connect to Hopex IT Architecture, see Hopex Common Features, "Hopex
Desktop".

Hopex IT Architecture Desktop Presentation

The menus and commands available in Hopex IT Architecture depend on the
product licenses that you have and on the profile with which you are connected.

m For more details on the use of the HOPEX interface, see the chapter
“"Interface Presentation” of the Hopex Common Features guide.

All users signed-in to the Hopex IT Architecture Solution dispose of the same
desktop containing several navigation menus.

Introduction

Hopex IT Architecture Desktop Presentation

Presentation of the Solution Architect workspace

Users connected to the Solution Architect profile can use several navigation
menus giving access to all the features provided in the Hopex IT Architecture
Solution.

Home. A Qs D A k@ 0F

Search

2

Our Objectives ¥ Need Help?

]
Application
Systems

Accelerate transition toward Modern Architecture Ask the community

Go Full Cloud Share your ideas

Reduce IS carbon footprint
®,
£ <3

capabilitios

My scope
a
oo MyScope (<} oo Inventory (<} o's Reference Resources e}
O EAProjects 199 Applications 11 Business Capability Maps
Q Favorite Applications Tl Microservices 7 Technology Capability Maps
t
MuEuMu O Favorite Application Systems 9 Software Technology Stacks 139 Sservice Interface Templates
B O Favorite Microservices 2 EAProjects 4 Deployment Templates
422 Technologies 646 Cloud Service Catalogues

The Applications menu

The Applications menu gives access to all the repository applications.

w For more information about the description of applications, see
Describing an Application with Hopex IT Architecture.

The Application Systems menu
The Application Systems menu gives access to all the repository application
systems.

w For more information about the description of applications, see
Describing System architecture.

43

44

The Capabilities menu

The Capabilities menu gives access to the following subjects.
e Business capability, to describe business capabilities and business
capability maps.

w For more details on logical architectures, see Describing Business
Capabilities with Hopex IT Architecture.

e Functionalities, to describe the functionality maps of the information
system.

w For more details on functionalities, see Using Functionalities with
Hopex IT Architecture.

The Infrastructure menu

The Infrastructure menu gives access to subjects related to infrastructures.

w for more details on infrastructures, see Modeling IT
Infrastructures.

e IT infrastructure, to describe the IT infrastructure elements.

w for more details on infrastructures elements, see Describing IT
Infrastructures.

e Resource architecture, to describe the elements constituting a
resource architecture.

w For more details on resource architectures, see Describing
Resource Architectures.

e Resource configuration, to describe the server and network technical
elements.

w For more details on resource configuration, see Describing a
resource configuration.

The Inventories menu

The Inventories menu gives access to the following subjects.
e Software theme, giving access to the following elements:
e Application services,

An IT service is a software component of an application, that can't
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

w For more details on applications services, see Describing an IT
Service with Hopex IT Architecture.

e Microservices,

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

w For more details on microservices, see Describing a microservice
with Hopex IT Architecture.
e System processes,

A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which

Introduction
Hopex IT Architecture Desktop Presentation

the tasks follow each other, the information flows exchanged with the
participants.

w For more details on system processes, see Describing System
Processes.

* Business Service Catalogs to describe the services provided by the
businesses to the users.
w For more details on service catalogs, see Using service catalogs.
e Communication systems

A communication system helps to identify and describe the main
integration processes using several Software Communication Chains as
well as communication services.

w For more details on communication systems, see Using
communication systems.

¢ Logical software architecture, to describe the elements contained
in the information system logical architecture.

w For more details on logical architecture, see Describing Logical
Application Architecture.

e Deployment to describe the elements linked to the deployment of an
information system.
e Technology Capabilities

A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.

w For more information on the use of technology capabilities, see
Describing a technology capability.

e Software Technologies to describe the technical elements of the
information system.

m For more details on software technologies, see Describing Software
Technologies.

e Cloud service catalogues

w For more details on Cloud service catalogues, see Using Cloud
Services.

e Technology service catalogues

m For more details on technology services catalogs, see Using Cloud
Services.

e Infrastructure theme, giving access to the following themes:
¢ Facilities,

A facility is a model of site of interest for the enterprise. Examples:
Data Center, Factory or Outlet

w For more details on facilities, see Describing a Facility.
e Computing Networks,

An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between

45

computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.

w for more details on computing networks, see Describing an IT
network.

e Computing Devices
An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between

computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.

w For more details on computing devices, see Describing a Computing
Device.

e Network Devices,
An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between

computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.

w for more details on computing networks, see Describing a
Computer Network Device.

e Data, to describe the business data.

w For more details on business data management, see Managing
Data.

e Business dictionaries
A business dictionary collects and structures a set of concepts that
expresses the knowledge of a particular area.

w For more details on business dictionaries, see the Hopex Data
Governance guide.

e Data Dictionaries
A data dictionary describe all the elements defining your logical
data architecture.

w For more details on data dictionaries, see the Hopex Data
Governance guide.

¢ Information Service Catalogs to describe the user services offered
by the information system.
w For more details on service catalogs, see Using service catalogs.

e Hardware to describe all hardware elements of the information system.
e Hardware Capabilities, to access the functionalities related to
hardware elements.

A hardware capability is the ability to deliver a physical outcome
which is required by an organizational resource in order to perform its
work. This hardware capability is generally necessary within a
computing process in order to execute a specific operation.

w For more information on the use of technology capabilities, see
Describing a hardware capability.

e Hardware,

Non-IT Hardware can embed computers. Together with their
embedded computers, they provide information and IS services.
Examples: Connected Truck with Delivery Calendar Application and
connected Drone with Online Payment Application. Hardware device can
also provide hardware functionalities. Example: Connected fridge

Introduction

Hopex IT Architecture Desktop Presentation

providing ordering functionalities and of course a freezing hardware
functionality and connected drones fly and provide Online Payment.

w for more details on computing networks, see Describing an
Hardware.

e Hardware services Catalogs.

w For more details on hardware services catalogs, see Using Cloud
Services.

e All Sketches, to access all the skectches of your repository.

w For more details on the use of sketches with Hopex IT
Architecture, see Creating a Sketching diagram with Hopex IT
Architecture.

The Design (UML) menu

The Design (UML) menu gives access to the following submenus:

e 0O Implementation (UML), to design you IS using the UML
formalism.

w For more details on the use of UML concepts, see About UML
implementation.

Depending on the options selected, two submenus are also available:

w To see these submenus, open the Options window and check that

IT Architecture > User Interface and Batch Features (ADES) is
selected.

e Submenu Batch and Program Implementation,
w For more details, see Describing Batch Processing.
e Submenu User Interfaces.

w For more details on describing user interfaces, see the Defining
User Interfaces.

The Reports menu

The Reports menu gives access to all the reports contained in each Solution.
~

w For more details on the use of these reports, see "Generating
Reports” chapter in Hopex Common Features guide.

w For more information on Hopex IT Architecture reports, see
HOPEX IT Architecture Reports.

47

The Governance menu

Governance gives access to the following submenus.
e Policy framework, to access the frameworks that define the company
policy.
w For more details on Policy Frameworks, see Define a Policy
Framework with Hopex IT Architecture
e EA Projects, to access the project management features.
w For more details on project management, see "The Enterprise
g\lrfl;gét.ecture (EA) Projects in Hopex" in the Hopex Common Features
e Action Plans, to describe and manage the action plans linked to the
transformation of the information system.

w For more details on managing action plans, see “"Using Action
plans” in Hopex Common Features guide.

The Environment menu

The Environment menu gives access to the following submenus:
e Containers, to access the Libraries and Enterprises management

features.
w For more details on Containers and Organization, see Defining
the Work Environment.
e Organization, to access the main objects handled in the Hopex IT

Architecture Solution.
e Business Lines,

A business line is a high level classification of main enterprise
activities. It corresponds for example to major product segments or to
distribution channels. It enables classification of enterprise processes,
organizational units or applications that serve a specific product and/or

specific market.
* Process Categories,

A process category defines a group of processes. It is linked to a
Process Map or higher level Process Category. It regroups several
processes and/or other categorized elements (e.g. Value Streams,
Applications). It serves as an intermediate categorization level in the
process hierarchy, so as to provide a guided and progressive access to

finer grained processes.
e Processes

A process is a set of operations performed by org-units within a
company or organization, to produce a result. It is depicted as a
sequence of operations, controlled by events and conditions. In the
BPMN notation, the process represents a sub-process from the
organizational point of view.

e Sites
A site is a geographical location of an enterprise. Examples: Boston

subsidiary, Seattle plant, and more generally the headquarters,
subsidiaries, plants, warehouses, etc.

e Org-Units.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level

48

Introduction
Hopex IT Architecture Desktop Presentation

depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.

Example: customer, supplier, government office.

w For more details on the use of Org-units, see Using Org-units.
My RFC’s
Ideas, to access the features of library and environment management.
If you own the associated license, Ideas provides access to idea
management facilities.

w For more details ideas management, see «Submitting and
evaluating ideas» chapter in the Hopex Common Features guide .

~
~
e Common, to access to following objects:
e Tags
A tag is a classifying description used to characterize objects.

w For more details on the use of tags, see Platform - Common
Features > Collaboration Tools > Communicating in HOPEX.
¢ Report DataSets

A Report DataSet is a set of data extracted from the HOPEX
repository and used as a data source in reports.

w For more information, see Platform - Common Features >
Documentation > Generating Documentation > Managing Report
DataSets.

e All Sketches, to access all the skectches of your repository.
A sketching diagram is a drawing that enables you to exchange
with your coworkers without an issue of methodology or formalism.

w For more details on the use of sketches with Hopex IT
Architecture, see Creating a Sketching diagram with Hopex IT
Architecture.

Administration Menu

The Administration menu gives access to the following submenus:
e Templates giving access to templates associated with the following

components:

e Service Interfaces, see Using a Service Interface Template.

e Service Operations, see Using a Service Interface Template.

¢ Contents, see Using a Service Interface Template

e Deployment Architecture, see Deployment Architecture Templates.
e Categorization Schemas, see Defining Data Categories.
e Methodological Domains, see Defining Methodological Domains.

49

50

Presenting the Solution Architecture Functional Administrator workspace
menus

The activities offered only to users connected with the Solution Architecture
Functional Administrator profile are:

e Administration, via the Administration menu,
e the creation of objects from the Environement menu, see The
Environment menu

Presentation of the Application Designer workspace

The menus offered when using the Application Designer profile are similar to the
ones of the Solution Architect profile.

However, the users signed-in as an Application Designer can modify object
properties but can not modify diagrams.

Presenting the Application Viewer workspace

The navigations menus available for the users signed-in as Application Viewer are
identical to the menus available in the Solution Architect profile.

However, users signed-in as Application Viewer can only access objects in read-
only mode.

Switching between Profiles

Using the Hopex IT Architecture desktop, you can access to any Hopex solution
desktop, without logging out, just by switching to another profile.

For example, you can switch to a specific profile:
1. Select Main Menu > Switch Profile.
2. Select the profile with which you want to connect.
3. (If you made modifications in your private workspace) Click:
* Yes, to save your modifications in the repository.
e No, if you do not want to save in the repository the modifications you

made since your last dispatch. Modifications to your desktop are also
lost.

The desktop associated with the selected profile is displayed.
w (Click Cancel to stay in your private workspace.

Introduction
Before starting with Hopex IT Architecture

BEFORE STARTING WITH HOPEX IT ARCHITECTURE

Defining the Work Environment

In the context of the Hopex IT Architecture solution, a library can hold all the
elements of your project: processes and org-units, for example.

Libraries are collections of objects used to split repository content
into several independent parts. They allow creation of virtual partitions
of the repository. In particular, two objects owned by different libraries
can have the same name.

Using Enterprise enables preparation of a transformation project.

An Enterprise is a purposeful undertaking, conducted by one or
more organizations, aiming at delivering goods and services, in
accordance with the enterprise mission in its changing environment.
During its development over time, an enterprise has to adapt to its
environment and sets up transformation goals and objectives along with
course of action to achieve these objectives. The design and realization
of the resulting transformation stages may transcend organizational
boundaries and consequently require an integrated team working under
the direction of a governing body to involve stakeholders in
transformation initiatives. This requires the implementation of an
integrated team, under the responsibility of a governing body, to
involve the stakeholders in the transformation.

w For more details on managing containers, see the "Enterprises and
Libraries" chapter in the Hopex Common Features guide.

Accessing the list of libraries with Hopex IT Architecture

To access the list of libraries from the Environment navigation menu:

[J Select Containers > Libraries.
The library tree appears.

Accessing the list of enterprises with Hopex IT Architecture

To access the list of enterprises from the Environment navigation menu:
[J Select Containers > Enterprises.
The list of enterprises is displayed.
In the context of Hopex IT Architecture solution, Enterprise characteristics are
simplified as related to Hopex IT Business Management solution.

w For more details on using Enterprise in a transformation context,
see "The strategic elements of a transformation phase” chapter of
Hopex IT Business Management guide.

51

52

Using Org-units

Org-Units are used in several diagrams. The main points concerning this object type
are reminded in this section.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

Creating an org-unit

To create an org-unit from the Environement navigation menu:

1.
2,
3.
4

5.

Select Organizations > Org-Units.

The list of org-units displays in alphabetical order.

Select the Org-unit file and click New.

In the wizard window, select Org-units.

In the Creation of an Org-Unit window, enter the name of the org-unit
you want to create.

Click OK.

The org-unit appears in the list.

Internal org-unit/external entity

During creation, org-units are considered as elements internal to the company.

To specify that an org-unit is not part of the company, you must modify the org-unit
properties and enter the "External" status.

To assign the "External" characteristic to the org-unit:

1.
2,
3.

Right-click the org-unit and select Properties.

Open the Characteristics property page of the org-unit.

In the Identification section, select the External org-unit field.

This characteristic is represented graphically and is automatically
displayed in the diagrams.

Using IT architecture diagrams

w for more details on the use of diagrams, see user diagrams”
chapter in the Hopex Common Features guide.

With Hopex IT Architecture, an application object may be described by different
diagrams. Each diagram type corresponds to a specific view of the object: internal
architecture, deployment architecture, flows exchanged inside the object and flows

exchanged outside depending on the context of use of the object. Depending on the

Introduction

Before starting with Hopex IT Architecture

described object, each representation is associated to a diagram type.

External data flows are represented in an Environment Diagram. This

diagram type contains the described application object and the

application flows exchanged with partners (other application systems,

applications, data stores, org-units or

position type).

The internal architecture is described by a structure diagram

representing the object components their exchanges. A structure

diagram can be designed for an application, an application environment,

an application system, an application system environment, a logical

application system, a logical application, an application service or a

microservice.

The deployment architecture is described by a diagram representing

the deployable application packages, the microservices and the

deployable data package used as well as the required communication

techniques.

The Internal Data Flows are represented in a scenario of flow diagram

describing the messages exchanged between the object components.

With Hopex IT Architecture, you can design two types of scenario of

flow diagram:

e The Scenario of flows diagrams that describe the flows exchanged in

different use scenarios of the object described.
e Scenario of sequence diagrams that describe the chronology of the
flows exchanged in different use scenarios of the object described.

w To use Scenario of Application Flows Diagrams, open the Options
window and check that IT Architecture > Activate Flow Scenario
Sequence Diagrams option is activated.

The external interactions are represented in a Scenario of Flow

Diagram describing the external service interactions of an application

object in a specific environment. This diagram contains the described

object and the service interactions with partners (other systems).

53

54

Representation

List of involved diagrams

Internal Architecture

Application structure diagram
Architecture

Application System Structure Diagram
IT Service Structure Diagram
Microservice structure diagram
Application System Structure Diagram
Logical application structure diagram
Structure diagram of the logical application system
Deployable Application Package Diagram
Resource Architecture Assembly Diagram
Hardware Assembly Diagram

IoT Device Assembly Diagram

Internal Data Flows

Scenario of Application Flow Diagram

Scenario of Application System Flows Diagram

Scenario of IT Service Flow Diagram

Scenario of Microsystem Flows Diagram

Scenario of Logical Application System Flows Diagram

Scenario of Application Flows Sequence Diagram (UML)
Scenario of Application System Flows Sequence Diagram (UML)

External Data Flows

Scenario of Application Environment Flows Diagram

® Scenario of Application System Environment Flows Diagram

® Scenario of Logical Application System Environment Flows
Diagram

® Scenario of Application Environment Flows Sequence Diagram
(UML)

® Scenario of Application System Flows Sequence Diagram (UML)

External Interactions

Application Environment Diagram

Application system environment diagram
Logical application system environment diagram
Resource Architecture Environment Diagram

Deployment Architec-
ture

Application Deployment Architecture Diagram
® Application System Deployment Architecture Diagram
® Microservice Deployment Architecture Diagram

Creating a structure diagram

To create a, Application system structure diagram, for example:

1.

Open the Diagrams property page of the application system and click
Create a diagram.

Before starting with Hopex IT Architecture

2. In the choice window, select Structured diagram > Internal

Architecture.
The diagram opens in the edit area. You are now in the Hopex graphic
editor. The frame of the described object appears in the diagram.

Example of an application system structured diagram

@ ¢ B @ 23 v @ Q 100% ¥ B O =8 @ A % T Arial
L
|
"

& &

]

©w B
gre
B v

By default, the diagram is initialized with the described object, represented by a
frame; the components of the described object are positioned at the top of the
diagram.

If the described object is represented in a higher level diagram, the new diagram is
initialized taking into account participants and flows that are represented in the
higher level diagram.

Diagram commands with Hopex IT Architecture

Depending on their type, Hopex IT Architecture diagrams propose specific
commands.

Introduction

55

56

Icon

Description

Refresh channels
Allows to update the content of the channels described in a scenario of
flows. See Creating an application flow channel.

Reinitialize components
Add, in the diagram, the components of the first level of the described
object.

Auto Layout
Enables to organize automatically the described object components in
the diagram. See Auto Layout in architecture diagrams.

@

Add Items

Enables to complete the current diagram with the elements defined in
other diagrams. See Environment diagram initialization.

Available only for application environment and application system
environment diagrams.

Auto Layout in architecture diagrams

If the environment contains components and interactions between components,
each new diagram is initialized with these components displayed at the top left of

the frame of the described environment.

The Auto Layout button allows you to reorganize the diagram elements taking into

account the exchanged flows.

The Diagram compression/dilatation coefficient enables the specification of

the distance to be expected between elements.

When you use the Auto Layout function, the previous presentation of your diagram

is lost.

Introduction
Before starting with Hopex IT Architecture

The auto layout facility is proposed for the following diagrams:
e Application Environment
e Application Environment Diagram
e Scenario of Application Environment Flows Diagram
Application
e Scenario of Application Flows Diagram
e Application Structure Diagram
e Application Deployment Environment Diagram
Application System Environment
e Scenario of Application System Environment Flows
e Application System Environment Diagram
Application System
e Scenario of Application System Flows
e Application System Structure Diagram
IT Service
e Scenario of IT Service Flow Diagram
e IT Service Structure Diagram
Logical Application
e Scenario of Logical Application Flows Diagram
e Logical application structure diagramme
e Logical Application Deployment Environment Diagram
Logical Application System Environment
e Logical Application System Environment Diagram
e Scenario of Application System Environment
Logical application system
e Structure diagram of the logical application system
e Scenario of Logical Application System
e Resource Architecture Environment
e Resource Architecture Environment Diagram

Environment diagram initialization

An environment diagram represents a use context of an application or an application
system.

An application environment is used to represent a use context of an

application. An application environment allows presenting the other
application systems, applications, microservices or actors with which
this application can interact.

An application system environment allows presenting the other
application systems, applications or microservices with which this
application system can interact.
In order to simplify the description of a specific use context of an application system,
for example, Add Items button provides the list of components with which the
application system interacts and helps you to select the objects you wish to add in
your diagram.

57

58

Application Environment Diagram Initialization

Auta Layout

Select sub-elements Expand the selected items

20 Application System Environment-1 - Application System Environment Diagram
B & @@ Purchasing Management Platforme Applicatior
B & & call managementm ‘a Payment req
B % Consumed Interactions
W € Orderingm ‘a Payment rec
B @ B Internet Purchasingm Environnem
B % Consumed Interactions
W € Orderingm ‘a Payment rec

@ <o Orderingm Environnem

The Sub-Elements selection and Expand selected elements buttons help you
in your selection.

Creating a Sketching diagram with Hopex IT Architecture

A sketching diagram is a drawing that enables you to exchange with your coworkers
without an issue of methodology or formalism.

Sketching diagrams can then be reworked and transformed into diagrams
recognized by an Hopex Solution.
w For more details ont the use of skecthing diagrams, see "Use a
sketching diagram” in the Hopex Common Features guide.
To create a sketching diagram for an application, for example, with Hopex IT
Architecture:
1. From the Applications navigation menu, select the application of
interest to you and click Create a diagram.
2. In the wizard window, select Sketching diagram.
The diagram opens in the edit area. You are now in the Hopex graphic
editor.

Introduction

Before starting with Hopex IT Architecture

Creating an ArchiMate@ diagram with Hopex IT Architecture

Hopex for the ArchiMate® Framework product provides facilities to use the set
of concepts defined by the Open Group for ArchiMate®. ArchiMate® concepts are
mapped with Hopex Enterprise Architecture building blocks so as to manage
compatibility and continuity with other models.

You can associate a diagram based on ArchiMate@ formalism to an application, for
example.

w For more details, see "Using ArchiMate Diagrams in an Enterprise
Architecture solution™ chapter of the Hopex IT Business
Management guide.

Using diagram comparison

The comparison of diagrams of an application system or architecture of an
application system deployment enables to compare different versions of the same
object.

w For more details on the use of a diagram comparison, see

"qumparing diagrams” chapter in the Hopex Common Features
guide.

Hopex IT Architecture properties pages content

Hopex IT Architecture provides properties pages available for each object type.

L

w For more details on the access to property pages , see the chapter
“"Handling an object properties” in the Hopex Common Features
guide.

w Using the facilities described in the Hopex Power Studio guide,
you can customizing the properties pages of your solution.

59

The pages below are common to main Hopex IT Architecture objects.
e the Components page gives access to the list of the described object

components defined in the different diagram types.

e the Data Store section gives access to the described object specific
data stores.

w For more information on data stores, see Managing Data.

e the Internal components section gives access to the list of object
components defined in the workflow scenario.

¢ the Boundary Components section gives access to the list of
components in the structure diagrams of the described object.

w For more details an application object components, see Application
structure diagram.

e the Scenario of flows page displays the representations of the
described object internal flows.
w For more details on flow scenarios, see Describing data flows.

e the Environments page displays the described object contexts of
usage.

w For more details on environments, see Describing an Application
Environment with Hopex IT Architecture.

e The Deployment Architecture property page provides access to the
list of components required for the architecture deployment.

w For more information on the components of a deployment

architecture diagram, see Using an application deployment architecture
diagram.

e the Usage page displays information related to the described object
context of usage in the different taypes of diagrams.
e the Scenario section displays the list of elements containing the
described object in the scenarios of flows.

w For more information on a scenario of flow, see Using a Scenario of
Application Flows Diagram.

e the Structure section displays the list of elements having the
described object in their environment.

w for more information on the components of an application structure
diagram, see Application structure diagram.

e the Qualification page provides access to the category of the described
object.
™ For more details on categories, see Defining Data Categories.
e the Executed process page provides access to the application
processes executed by the described object.

m For more details on system processes, see Describing System
Processes.

e The Gouvernance page enabling to enter the architecture Decisions
specific the application.
~
w For more information on Decisions, see "Drawing up an Application

Inventory > Recording Architecture Decisions” chapter of the Hopex IT
Portfolio Management guide.

The page also displays the list of Enterprise policies the described object
must comply to.

60

Introduction
Before starting with Hopex IT Architecture

w For more details on business policies management with Hopex IT
Architecture, see Define a Policy Framework with Hopex IT Architecture.

e the Reports page provides access to the reports available for the
described object.
w For more information on Hopex IT Architecture reports, see
HOPEX IT Architecture Reports.
[]

the Diagrams page displays the described object diagrams and enables
to create new diagrams.

w For more information on diagram types proposed by Hopex IT
Architecture,see Using IT architecture diagrams.

Using duplication with Hopex IT Architecture

Hopex IT Architecture solution provides facilities for specific building blocks
duplication such as applications, application systems or deployment architectures.

To duplicate an application system, for example:

1. Right-click the application system you want to duplicate to open its pop-
up menu.

2. Select Manage > Duplicate.

A dialog box opens to display the list of elements connected to the object
to be duplicate.

Duplication of Media Library IT System

E Creation of a building block by duplication of an existing one.The new building black can be a new version of source or just a copy.

Owner

Enterprise Oakland City - Media Library

I+

_ puplication Mode riew name for created object

B 43 Media Library IT System®

= New copy Media Library IT System -1
B @ Components
fa Accounting® X 1gnore X
B @ Components
) Keep
& Member & Loans Presentation Module m <
&l New copy
& Members & Loans data module® <
X Ignore
F@ Boundary Components
B @ Realizations
Media provision O keep
%2 work & Inventories® O keep
F@ Boundary Components
-]

Integration Contexts (Environments) and Scenarios of Flows
Hopex IT Architecture duplication dialog box

3. Select the new building block owner.

61

62

4. For each component, the Duplication Mode column proposes the
following options:
e Create a New copy of the selected component. In this case, the name
of the new component appears in the New name for created object.
e Keep the component that will be owned by the source and the target
building blocks.
e Ignore the component that will not be duplicated or referenced.
5. Click Launch Duplication to validate your choices.
The new building block can be accessed from its owner.

Using duplication with Hopex IT Architecture in batch mode

A building block and the connected objects defined in the MetaModel, can be
duplicated in batch mode.

The SmartDuplicate function provide the reference to the created building block.

The parameters of the SmartDuplicate function are defined in the sOptions string
as follows:
e The function SmartDuplicate(ByVal sOptions As String) As
MegaObject
e sOptions is definied with the following format "K1=V1,K2=V2, ..., the

proposed value are:
* Root=[NewCopy] - Default: NewCopy
ORoot relates to the duplicated building block
e Components=[Keep|NewCopy|Ignore] - Default: Keep
Components relate to the components of the building block which is
duplicated.Components relate to the components of the building block
which is duplicated.
e Boundaries=[Keep|Ignore] - Default: Keep
Boundaries relate to the components of the building block which is
duplicated.Boundaries relate to the components of the building block
which is duplicated.
° Scenarios=[Keep|Ignore] - Default: Keep
Scenarios relate to the components of the building block which is
duplicated.Scenarios relate to the components of the building block
which is duplicated.
e Environments=[Keep|Ignore] - Default: Keep
Environments relate to the components of the building block which is
duplicated.Environments relate to the components of the building block
which is duplicated.

Example of use:
Set newObject=

myApplication.SmartDuplicate ("Root=NewCopy, Components=Keep,
Environments=Ignore")

Introduction

Before starting with Hopex IT Architecture

Using service catalogs

Implementation of service catalogs

In Hopex IT Architecture, a service catalog is made of service catalog item. For
example, a hardware services catalog is made up of several hardware service
catalog items.

A hardware service catalog provides a centralized information
source for the hardware services offered by the service provider
organization. It contains a customer-oriented view of the hardware
used, how they are supposed to be used, the processes that they
support as well as the expected service quality level. The hardware
service catalog presents the list of hardware functionalities mentioned
as well as implementation recommendations.

A hardware service catalog item defines which hardware
functionality is in the catalog and which hardware artifacts provide the

hardware functionality.
A Service catalog item represents a service which is associated with a capability or
a functionality, depending on the type of catalog. The capabilities associated to the
services of a service catalog are connected to a capability map (or a functionality
map) which is associated to the service catalog.

With Hopex IT Architecture, the technical solution providing a service is
represented by an Implementation.

An implementation describes the relationship between a logical

entity and a physical entity that implements it. The physical entity gives
the list of logical entities that it implements.

The table below draws up the summary of objects that implement the service
catalog items according to their category.

Type of service cata-
log

Type of service ele-
ments

Type of service solutions

Business function Business capability All types of technical and functional objects
that implement a business capability with
Hopex IT Architecture. For more details,

see Describing Fulfillment of a Business

Capability.
Cloud Technology Capability Map Cloud Services, see Using Cloud Services.
Technical Technology Capabilities Software technologies, see Describing a
Software Technology.
Hardware Hardware capabilities Hardware and IoT Device, see Using Cloud

Services.

63

Defining a service catalog

The management principle of a service catalog is identical for all types of service
catalogs. The types of service catalogs offered are:

e business service catalogs,

L A business service catalog provides a centralized information

source for the business services offered by the service provider
organization. It contains a customer-oriented view of the services
associated to business capabilities, how they are supposed to be used,
the processes that they support as well as the expected service quality
level. The business service catalog presents the list of functionalities
mentioned as well as implementation recommendations.

e (Cloud services catalogs,

L An information service catalog provides a centralized information

source for the information services offered by the service provider
organization. It contains a customer-oriented view of the information
services used, how they are supposed to be used, the processes that
they support as well as the expected service quality level. The
information service catalog presents the list of functionalities mentioned
as well as implementation recommendations.

e Technology service catalogs,

A technology service catalog provides a centralized information

source for the technology services offered by the service provider
organization. It contains a customer-facing view of the technology
services in use, how they are intended to be used, the process they
enable, and the levels and quality of service the customer can expect
from each service. The technology service catalog provides the list of
reference technology capabilities and their recommended
implementation.

® hardware service catalogs.

A hardware service catalog provides a centralized information
source for the hardware services offered by the service provider
organization. It contains a customer-oriented view of the hardware
used, how they are supposed to be used, the processes that they
support as well as the expected service quality level. The hardware
service catalog presents the list of hardware functionalities mentioned
as well as implementation recommendations.

This chapter is based on the example of an technology service catalog.

Creating a technology services catalog

To create a Technology service catalog:

1. From the Inventories navigation menu, select Deployment >
Technology Service Catalogs.
The service catalogs access page opens.

2. Click on the arrow to the left of the Business service catalog field and
select New.
A creation dialog box opens.

3. Enter the Name of your catalog and its Owner.

4. Select the Technology capability map associated to the service
catalog and click OK.
A new service catalog appears in the edit area.

w [jkewise, you can create a business service catalog or a hardware
service catalog.

64

Introduction

Before starting with Hopex IT Architecture

Adding a service catalog item

The Characteristics page of a service catalog provides access to:

e its Name,

e its Owner, by default, during creation of the logical application system,
the current library.

e To access the list of service catalog items owned:

To add a Business service catalog item:

1. From the Inventories navigation menu, select Software > Business
Service Catalogs.
The service catalogs access page opens.

2. From the drop-down list of the Business Service Catalog field, select
the Business Service Catalog that interests you.
The list of service catalog items is displayed in the form of a tree that
presents the capabilities associated to the services already declared as
well as technical objects that represent the implemented solutions.

Catalogue de service métier

Airport Business Services Catalog (EN)

=
Solution Status Action
B M Airport Business Services Catalog (EN) e =@ : ®
-] Analyse

a Evaluation du risque et Finance
‘ Risk Management Standard

a Gestion Reporting Stratégique
‘ e-Strategy Tolére

3. In the New column of a business service catalog, click the Add button.
A business service catalog item creation window opens.

65

66

4. Expand the tree branches to find the business capability that interests

you.

HITA - Service Catalog Item Creator - Service Catalog Item Creation 7

=2
B M Airport Business Services Catalog (EN)
-] ﬁ Carte de capacités
a Carte des capacités aéroportuaires @™
Analyse
Approvisionnement et logistique
[-] Business Support
a Administration garantie

ﬂ Claims Administration

n Annuter

5. Select the object that implement the capability in the context of your

business catalog.

m For more details on implementation creation, see Using fulfillment

mechanisms.

Before starting with Hopex IT Architecture

6. Click Next.
A new page opens to specify the status of the object that represents the
solution in the context of the service catalog.

Norm: first choice, this choice is mandatory.

Accepted: other choice accepted when it is not possible to use the
Norm (please justify).

Tolerated: tolerated for existing installations but for new uses.
Prohibited: no installation should use this solution (existing or
future).

Emergent: for a solution currently under study.

To be defined: for a solution to be defined.

HITA - Service Catalog Item Creator - Solution Status Selection 2

HITA - Created Catalog Items

Rapport instantané [} H Y

Name

Statut de la solution

Claims Administration

Standard
Accepté
Toléré
Interdit

Emergent
Page 1 surl Page courante 1-1sur 1

A définir

Select a status and click OK.

The catalog item pops up in the list with the associated technology
capability.

Service catalog reports

The Services Coverage Matrix is a report presenting a list of service catalogs, the
list of capabilities (or functionalities) covered, and for each of them, the
implementation means.

Introduction

67

68

Report parameters

This consists of defining report input data.

Settings Parameter type Constraints

List of service All types of service | A mandatory catalog.
catalogs catalogs:

- Business,

- information,
- technical,

- hardware.

Accessing a service catalog report

To access a service catalog report:
1. Open the Reports page of a service catalog.
2. Select the Services coverage matrices report.
3. In the Parameters section, select the service catalogs that you want to
present in your report.
4. Click Refresh the Report.
The new report appears.

Using Workflows

With Hopex IT Architecture you can use standard workflows to manage:
e Validation requests;

w For more details on validation requests workflows, see "Using
validation requests” in Hopex Common Features guide.

e Review requests.

w For more details on the review process, see Process Validation
Workflow.

Define a Policy Framework with Hopex IT Architecture

A business policy is a directive whose purpose is to govern or to
guide the enterprise.

A policy framework consists of a number of business policies. It is
composed of sections and sub-sections that represent categories of
business policies. Under these sections you can define the business
policies, the assets constrained by the policies in question and their
implementation.

w For more details on Policy Frameworks, see Hopex Data
Governance guide.

You can import in your Hopex repository some Policy Frameworks.

w The Policy Frameworks are provided by your administrator in a
package. For more details, see "Importing a module in Hopex” chapter
in the HOPEX Administration guide.

Introduction

Before starting with Hopex IT Architecture

Defining a Business Policy with Hopex IT Architecture

A business policy is a directive whose purpose is to govern or to
guide the enterprise.

Accessing Business Policies with Hopex IT Architecture

To access the list of Business Policies:

1. From the Governance navigation menu, select Policy Framework.
The Policy Framework tree appears.

2. Expand the folders to see Business Policies.

Creating a business policy

To create a Business Policy:

1. From the Governance navigation menu, select Policy Framework.
The Policy Framework tree appears.
Expand the folder of the Policy Frameworks that interests you.
3. Select the Policy Framework Section that interests you and click New >
Business Policy.
The new Business Policy appears in the tree.

N

Connect a business policy to an application

To identify the Business Policies that your applications needs to comply with:
1. Open the Governance property page of the application that interests
ou.

2. }/n the Policy to comply with section, click Connect.
A window opens providing a tree of policy frameworks and the associated
business policies.

3. Select the business policies that interest you and click Connect.
The selected business policies appear in the Policy to comply section.

Assessing an application compliance with a business policy

The last compliance assessment result appears at the top of the application
Governance property page.

Possible results are the following:
e Full Compliance: if all the business policies connected to the
application are compliant.
* No Compliance: if all the business policies connected to the
application are not compliant.
e Partial Compliance: if all the business policies connected to the
application are assessed at different compliance levels.

To assess the compliance level of an application with a business policy:
1. Open the Governance property page of the application that interests
you.

2. In the Policy to comply with section, select business policies you want
assess.

69

70

In the Policy Compliance Assessment section, click Evaluate.
A Governance Assessment window opens providing a tree of policy
frameworks and the associated business policies to be assessed.

Specify the Measure Date.

In the Compliance column, select the compliance level you wish to
assign to the application.

Click OK.

The compliance level appears at the top of the property page.

Defining an Architecture Principle

An Architecture Principle is a general guideline that informs,
supports and constrains the way in which an organization will design
and construct architectures.

Accessing to Architecture Principles

To access the list of Architecture Principles:

1.

2,

From the Governance navigation menu, select Policy Framework.
The Policy Framework tree appears.

Expand the folders to see the list of Architecture Principle Categories.

An Architecture Principle Category enables a grouping of
Architecture Principles for ease of management.

Creating an Architecture Principle

An Architecture Principle is owned by an Architecture Principle Category.

To create an Architecture Principle:

1.

From the Governance navigation menu, select Policy Framework.
The Policy Framework tree appears.

Expand the folder of the Policy Frameworks that interests you.

Select the Architecture Principle Category that interests you and click
New > Architecture Principle.

The new Architecture Principle appears in the tree.

Defining an architecture principle scope

To define the scope of an Architecture Principle:

1.

2,

Open the Characteristics property page of the architecture principle
that interests you.

In the Scope section, click New.

A Creation of Regulatory Requirement window opens.

Select the Object Type that interests you, for example Application
Deployment Architecture.

Select the Element Subject to Regulation and click Add.

A new fulfillment of architecture principle element is created.

Introduction

Before starting with Hopex IT Architecture

Defining Data Categories

Hopex IT Architecture Solution enables data classification using Data Categories.

w For more information on Data Categories see the Hopex Data
Governance guide.

To access the list of data categories from the Administration navigation menu:

[0 Select Categorization Schemas > Data Categories.
The list of Categorization Schemas appears.

L

w For more information on Categorization Schemas, see "Defining
Categorization Schemas” chapter in the Hopex IT Business
Management guide.

Defining Methodological Domains

Each Hopex Solution offers its own methodological domains defining all Solution
users’ common goals.

The methodological domains available in Hopex IT Architecture concern:

e The use of Cloud Services,
e Transition to a modern architecture,
e Reducing the IT carbon print.

Importing components with Hopex IT Architecture

Hopex IT Architecture uses Excel data exchange wizards to export import and
export existing architecture components.
w For more details on Excel data exchange wizards, see the

“"Exchanging Data with Excel” chapter in the Hopex Common Features
guide.

Two Excel templates are proposed:

e Hardware_Functionalities_Template.xlsx for infrastructure
elements import/export : computing devices connected to the
breakdown of hardware functionalities they implement.

e Technical_Functionalities_Template.xlIsx for technology elements
import/export : technologies connected on one side to vendors, and on
the other side to the breakdown of technical functionalities they
implement.

71

72

Structure of the import/export Excel templates of Hopex IT Architecture

Hopex IT Architecture Exel templates that enable import of harware or technical
elements are dentically presented.
e At the level hardware, the elements are as follows: Hardware, IoT
Device, Server and It Device.

An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight
history management

w For more details on hardware elements, see Describing a
Computing Device.
e At the level of technologies, the elements are as follows: Vendor (Org-
Unit) andSoftware technology.

A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.
w For more details on technologies, see Describing a Software
Technology.
e At the level of hardware of technical Capabilities, the elements are as

follows:

e Hardware or technical Capabilities
A hardware capability is the ability to deliver a physical outcome
which is required by an organizational resource in order to perform its

work. This hardware capability is generally necessary within a
computing process in order to execute a specific operation.

e Hardware or Technical Capabilities maps,

A technology capability map is a set of technology capabilities and
their dependencies that, together, defines the scope of a hardware or
software architecture.
e Sub-functionalities, which define the link between a functionality and
the functionality map (or the functionality) in which it is referenced.
w For more details on functionalities, see Using Functionalities with
Hopex IT Architecture.
e Functionality fulfillments, which define the link between a functionality
and the hardware or technical object that implements it.

Introduction
Before starting with Hopex IT Architecture

The list of information provided for in the Excel template delivered with Hopex IT
Architecture is presented in the following order:

For elements of type: Hardware or technical Capability map, Computing
device (IoT device, Server, It device):

Short Name : name of the object concerned.
Comment : object comment.

For elements of type Technology:

Short Name : name of the object concerned.
Technology Code.

Comment : object comment.

Vendor.

For elements of type Org Unit :

Short Name : name of the object concerned.
Internal/External.

Org-Unit Type.

Comment : object comment.

For each element of Functionality Composition type:

Name of the composite object: functionality map or functionality,
Name of the owned functionality.

For each element of Functionality Implementation type:

Fulfilled Hardware/Technical Functionality: name of the
implemented functionality.

Name of the object (computing device or technology) that implements
the functionality.

Importing computing devices or technologies with Excel

w For more information on the structure of the Excel template, see
Importing components with Hopex IT Architecture.

If you want to export computing devices or technologies or functionality maps that
exist in another repository than your current one, for example, you can use the
Excel template of Hopex IT Architecture.

Several steps must be followed in order for the Excel import of a business capability
breakdown to be performed correctly:

(optional) Specifying the current library,

Exporting data from your repository with Hopex IT Architecture,
Completing the import file for Hopex IT Architecture,

Import your new file into your repository.

PON=

w For more details on Excel data exchange wizards, see the
“"Exchanging Data with Excel” chapter in the Hopex Common Features
guide.

Specifying the current library

This optional stage enables to connect imported objects to the current library.

A library and an enterprise are used to represent a unique work context.

Libraries are collections of objects used to split repository content
into several independent parts. They allow creation of virtual partitions
of the repository. In particular, two objects owned by different libraries
can have the same name.

73

74

In order for the data you import with Excel to be linked to a specific container, you
must specify the current library.

w For more details, see Defining the Work Environment.

Exporting data from your repository with Hopex IT Architecture

If you want to export technical or hardware functionality maps that exist in another
repository than your current one, for example, you can use the Excel template of
Hopex IT Architecture.
w For more details on Excel data exchange wizards, see the
“Exghanging Data with Excel” chapter in the Hopex Common Features
guide.
When the Excel file is filled with the names of the objects you want to import, you
must complete the necessary information for import into Hopex IT Architecture.

w For more details, see Completing the import file for Hopex IT
Architecture.

Completing the import file for Hopex IT Architecture

To get a correct import/export file, you must have specified the following elements:

e For each element of type hardware or technical capability map, hardware
or technical functionality map, Vendor, Technology, (IT, Server,
connected device) Computing device, you must enter the name of each
object.

e For each breakdown (Technical Function_Composion or
Functionality Composition Excel sheet), you must indicate:

e The name of the composite object: functionality map or functionality,
e The name of the owned functionality.

e To specify that a technology implements a functionality for example, you
must indicate in the Technical Function_Fulfillment sheet:

e the name of the functionality implemented in the Fulfilled
Hardware/Technical Functionality column.

e Name of the object (computing device or technology) that implements
the functionality.

& The first two lines of each Excel worksheet are reserved for
file configuration; ensure that the first two lines of the imported
file remain identical to those obtained after an export.

w For more information on the structure of the Excel template, see
Structure of the import/export Excel templates of Hopex IT
Architecture.

Using Tools of Conversion towards Hopex Aquila

If you use Hopex Aquila and if your administrator had carried out the conversion
of Business Person instances coming from a repository previous to Hopex V5 into
Person (System) instances, you must make sure that assignments have been
created between the new Person (System) instances and the objects that was
under Business Person instances responsibility.

w For more information on repository conversion, consult the
technical note How to migrate to HOPEX .

Introduction

Before starting with Hopex IT Architecture

The conversion tool "Mega Repository - Convert Person and ARC Responsibility into
Person (System) and Assignment” must be activated by your administrator using
the Environment automatic update facility.

The principle of this Hopex IT Architecture conversion tool is as follows:

1. A new Person (System) instance must be created for each Business
Person instance with a Responsibility link with an Application, a
Database, a Network, a Node, a Server, a IT Service or a
Workstation.
2. For each Responsibility link between an asset and a previous Business
Person instance, an assignment is created between the asset and the
new Person (System) instance for each case described in the table of
responsibilities to be replaced by assignments.
m The Business Roles table used for assignments(below) specify the
assignment to be created between a new Person (System) instance
and an asset depending on the type of Responsibility link betwwen the
converted Business Person instance and the asset type. If no business
role is specified, no assignment is created and the Business Person
instance is not converted.
Asset Type IT Manager Process Quality Man- Risk Manager
manager ager or Provider
Application Local Application Business User - -
Owner
Database Data owner - Data Quality Man- | -
ager
Network - - - -
Node - - - -
Server - - - _
IT service Local Application - - -
Owner
Workstation - - - -

Table of business roles used for created assignments

75

76

ABOUT THIS GUIDE

This guide explains how to make best use of Hopex IT Architecture to ensure
efficient management of IT Architecture.

Guide Structure

The first part of the Hopex IT Architecture guide is composed of following
chapters:
®* Modeling Applications and System Architectures ; presents the
functionalities offered by Hopex IT Architecture to describe the IT
components of your enterprise.
e Aligning IT and Business ; explains how Hopex IT Architecture helps
you in analyzing your Logical Architecture.
e Modeling technical architectures; explains how to prepare the
deployment of your IS components.
e Modeling IT Infrastructures; describes the fonctionalities proposed by
Hopex IT Architecture to take into account systems using resources
other than software.

The second part of the Hopex IT Architecture guide comprises the chapters
dedicated to UML.

Additional Resources

This guide is supplemented by:

e the Hopex Common Features guide describes the Web interface and
tools specific to Hopex solutions.

w]t can be useful to consult this guide for a general presentation of
the interface.

e The Hopex Business Process Analysis guide, which describes the
functionalities proposed to manage processes;

e The Hopex IT Portfolio Management guide, which describes
functions proposed to manage all your applications;

e The Hopex IT Business Management guide, which describes
functionalities proposed to manage your architecture transformation
projects;

e the Hopex Power Supervisor administration guide.

Introduction

About This Guide

Conventions used in the guide

w Remark on the preceding points.
Definition of terms used.

© a tip that may simplify things.

J/ Compatibility with previous versions.
& Things you must not do.

I Very important remark to avoid errors during an operation.

Commands are presented as seen here: File > Open.

Names of products and technical modules are presented in bold as seen here:
Hopex.

77

Architecture Specification

81

82

HOPEX IT Architecture

MODELING APPLICATIONS AND SYSTEM
ARCHITECTURES

Hopex IT Architecture enables representation and documentation of IT architectures according
to a service-oriented architecture.

Modeling an architecture according to a service-oriented approach facilitates the analysis of
communications between architectures. Thus, the description of architectures is based on concepts
that enable a more generic use of the tool.

Les points traités ici sont les suivants :

v' Hopex IT Architecture Concepts Overview ;
v Describing an Application with Hopex IT Architecture ;
v Describing System architecture.

83

HOPEX IT ARCHITECTURE CONCEPTS OVERVIEW

The information system can be broken down according to two levels of detail: the
application and the application system.

Application

An application is a set of software components constituting a coherent whole
regarding deployment, functional coverage and IT techniques used.

The application is the management and deployment unit of a set of software
components. An application can be deployed on one or several machines. An
application meets:

e business requirements

Examples: billing, accounting, equipment management, load/
capacity calculation.

e technical requirements

Examples: specific communication interface, access control.

e transverse requirements

Examples: electronic mail, directories, office system
applications.

For the creation of applications, see Describing an Application with Hopex IT
Architecture.

Application System

An application system is an assembly of applications responding to a coherent set
of functionalities, implemented by the applications making up the system.

An application system can comprise a suite of applications
grouped for commercial reasons (integrated management
software packages such as SAP, Oracle Applications,
Siebel..).

An application system can also correspond to a group of
applications that have the same functional objectives
(accounts and financial management system integrating all
accounting applications: general, suppliers, analyses, as
well as financial and budgetary analysis modules, human
resources management systems integrating salaries, time
management, career management, etc.).

The application system, like an application, can be the subject of specific
developments (carried out internally or bought-in/sub-contracted) or they can be
proprietary market products (software packages).

The logical organization and structure of application systems and applications,
together with description of their exchanges, constitutes the foundations of the
application architecture. Thus, the representation of flows in an application system

84

Modeling Applications and System Architectures
Hopex IT Architecture Concepts Overview .

enables identification of the impact of the retirement of an application on the entire
system.

For the creation of an application system, see Describing System architecture.

85

86

DESCRIBING AN APPLICATION WITH HOPEX IT

ARCHITECTURE

A project for describing the functional architecture of an information system is used
to inventory the existing applications and their interactions.

An application is a software component that can be deployed and
provides users with a set of functionalities.

Creating an Application with Hopex IT Architecture

To create an application:

1.

ook wN

Click the Applications navigation menu.

The list of applications appears in the edit area.
Click New.

The Creation of Application dialog box appears.
Enter the Name of your application.

(Optional) Select the Owner.

Click OK.

The new application appears in the list.

Modeling Applications and System Architectures
Describing an Application with Hopex IT Architecture

The properties of an application with Hopex IT Architecture

The Characteristics property page of an application provides access to different
sections.

e The Identification section provides access to the following information:
e the Name
e its Owner, by default during creation of the application, the current

library.
e the text of its Description.
e the internal Code.
e the Version number.
e the Application Type.
e the Cloud Computing.
e Description.

e the Service Level Agreement provides the Maximum Tolerable
Downtime (MTD) as welle as the SLA Level of the application, from
the following informations:

e Recovery Point Objective (RPO),
e Recovery Time Objective (RTO),
e Work Recovery Time (WRT).

e the Functional scope section of the application, see Defining
Application Functional Scope.

Specifications section, see Creating an application Use Case Diagram.
the Responsibility: it relates to the person(s) responsible for the
application.

e Local Application Owner,

e IT Owner,

e Business Owner.

m For more details on these roles, see Business Roles of Hopex IT
Architecture..

e the Technologies section provides access to the list of Software
Technology and the list of Software Technology Stacks used by the
application.

A software technology is a basic component necessary for operation

of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software

87

88

components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

A software technology stack is a set of software technologies.
w For more details on software technologies, see Describing Software
Technologies.
the Exchange section describes the application flows emitted and
received by the application. See Using a Scenario of Application Flows
Diagram.
for more details on Data section, see Managing Data.
the Risks section presents the risks associated with the application, see
Describing an Application Environment with Hopex IT Architecture.
associated Attachments.

w For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

With Hopex IT Architecture an application is described by other property pages,
see Hopex IT Architecture properties pages content.

Defining Application Functional Scope

To indicate the objects that define application functional coverage:

1.
2,

Open the Characteristics property page of the application.

Expand the Functional Scope section.

The types of data that define functional coverage of the application are:
Process Categories using the application

A process category defines a group of processes. It is linked to a

Process Map or higher level Process Category. It regroups several
processes and/or other categorized elements (e.g. Value Streams,
Applications). It serves as an intermediate categorization level in the
process hierarchy, so as to provide a guided and progressive access to
finer grained processes.

Business capabilities covered by the application
A business capability represents a specific ability that an

organization possesses or needs to develop to deliver a particular
business outcome.

w For more details on business capabilities, see Describing Business
Capabilities with Hopex IT Architecture.

w A report covers distribution of applications in business capabilities,
see Reports on the Architecture Functional Coverage .

The Implemented Functionalities fulfilled by the application.

A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute
a specific operation. If it is a software functionality, it can be provided
by an application.

w For more details on functionalities, see Describing a Functionality
Map with Hopex IT Architecture.

w For more details on fulfillments, see Using fulfillment mechanisms.
Logical Fulfillments of the application are the logicial application or logical
application systems fulfilled by the application.

w For more details on fulfillments, see Using fulfillment mechanisms.

Modeling Applications and System Architectures
Describing an Application with Hopex IT Architecture

Describing structure and services of an application

At first, an application can be described from a logical point of view, see Describing
Logical Application Architecture.

However, and from a concrete point of view, an application is described by several
types of diagram;

an application structure diagram is used to represent the service
interactions between the application components using service
interfaces.

w For more details, see Application structure diagram.

A Scenario of application flows describes the flows exchanged between
the IT services or the microservices used by the application. A scenarios
can represent a particular application use case or more globally all the
flows exchanged within this application.

w For more details, see Using a Scenario of Application Flows

Diagram.
Scenario of sequence of flows presents the agents necessary for the
scenario (IT services, microservices, data stores) and exchanged
sequenced application flows.

w For more details, see Creating a flow scenario sequence diagram.

an application deployment architecture used to represent technical
elements that support the application.

w For more details, see Describing an Application Deployment
Architecture.

A Use Case Diagram used to represent the exchanges between the
application and actors, according an UML approach.

w For more details, see Creating an application Use Case Diagram.

For more details on modeling applications with Hopex IT Architecture, see
Modeling application architectures.

Describing an Application Environment with Hopex IT Architecture

An application environment is used to represent a use context of an
application. An application environment allows presenting the other
application systems, applications, microservices or actors with which
this application can interact.

Describing an Application Environment

An application environment is used to represent a use context of an
application. An application environment allows presenting the other
application systems, applications, microservices or actors with which
this application can interact.

89

90

An application environment is described by several types of diagrams:
e An Application Environment diagram describes the exchanges between
the subject application and its partners in a specific context.

w For more details, see Application Environment Diagram
presentation.

e a scenario of application environment flows describes the flows
exchanged between the described application and its partners:
applications, application systems, IT services or microservices used by
the described application in a specific context.

w For more details, see Using a Scenario of Application Flows
Diagram.

e a scenario of sequences of flows presents the agents necessary for the
scenario (application, IT services, microservices, data stores) and
sequence application flows exchanged.

w For more details, see Using a flow scenario sequence diagram.

Accessing the List of Application Environments

To access the list of application environments from the Applications navigation
menu:
) Open the Environments page from the application of you interest.
The list of application environments appears in the edit area.

Creating an application environment

To create an Application environment::
1. Open the Environments page from the application of you interest.
The list of application environments appears in the edit area.
2. Click New.
The new application environment appears in the list under the name
“Environment” followed by the name of the application.

Application environment properties

The Characteristics properties page of an application environment provides access
to:
e its Owner, by default during creation of an application system
environment, the current library.
its Name,
the text of its Description.

w For more details on other property pages of the application
environment, see Hopex IT Architecture properties pages content.

Modeling Applications and System Architectures
Describing an Application with Hopex IT Architecture

The Components property page of the application environment provides access to
partners elements:
e Applications
e Microservice,
e IT Services,
e System users.
w For more information on the components of an application

environment diagram, see Application Environment Diagram
presentation.

Application Environment Diagram presentation

With Hopex IT Architecture, an application environment is entirely described by
a an application environment diagram that is used to describe the service
interactions between the environment applications described, its users and the
external applications.

An application environment diagram includes:
e applications that represent the environment described.

In the example, this concerns the applications used for
buying spare parts.

An application is a software component that can be deployed and
provides users with a set of functionalities.

e applications, application services or microservice partners that represent
the external elements used in the described environment.

This example concerns automated Web services.

An IT service is a component of an application made available to
the end user of the application in the context of his/her work.

e org-units or type positions that represent the users or the suppliers of
the environment described.

This example concerns local participants.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

e Service interactions between components.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

e request and service points

91

92

Specifying the Risks associated with an Application

Hopex IT Architecture is used to identify the risks associated with an application,

and to

retrieve the evaluations defined in the Hopex Enterprise Risk

Management solution. You can define a new risk using the application or connect
a previously defined risk.

To connect a risk to an application:

1.
2,
3.

4,

Open the Characteristics property pages of the application.
Expand the Risk section.

Click Connect.

The query dialog box appears.

Find and select the risk required and click OK.

For more details on risks and their evaluation, see Hopex Enterprise Risk
Management.

Modeling Applications and System Architectures
Describing System architecture

DESCRIBING SYSTEM ARCHITECTURE

Describing an Application System

A project for describing the functional architecture of an information system is also
used to inventory the existing application systems and their interactions.

An application system is an assembly of other application systems,

applications and end users interacting with application components to
implement one or several functions.

An application system is described by several types of diagrams:

e An application structure diagram is used to represent the service
interactions between the application components using service
interfaces.

w For more details, see Creating an application system structure
diagram.

e An Application System Deployment Architecture. used to represent the
technical architecture chosen for the deployment of each component that
support the application system as well as the techniques used for their
communications .

w For more details, see Describing an Application System Deployment
Architecture.

e A scenario of application system flows presents the flows exchanged
between the application systems, the applications or the microservices
used by this application system. A scenario can represent a particular
use case of the application system or more globally all the flows
exchanged within this application system.

w For more details, see Using a Scenario of Application System Flows.

e Scenario of sequence of flows presents the agents necessary for the
scenario (IT services, microservices, data stores) and exchanged
sequenced application flows.

w For more details, see Using a flow scenario sequence diagram.

Creating an Application System

To create an application system:
1. Click Application Systems navigation menu.
The list of application systems appears.
2. Click New.
The Creation of Application System dialog box appears.
3. Enter the Name of your application system and click OK.
The new application system appears in the list.

93

94

Application System Properties

The Characteristics property page for an application system provides access to
several sections.

¢ The Identification section provides access to the following information:

the Name,

its Owner, by default during creation of the application system, the
current library.

the text of its Description

the internal Code,

the Version number,

Description.

e About the Functional Scope section of the application system, see
Defining Application Functional Scope.

e the Use Cases section, see Creating an application Use Case Diagram.

e The Responsibility section relates to the person(s) responsible for the
application system.

Software Designer
Local Application Owner

w For more details on these roles, see Business Roles of Hopex IT
Architecture..

The Attachments section is limited to associated attachments.

w For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

With Hopex IT Architecture an application system is described by other property
pages. See Hopex IT Architecture properties pages content.

Modeling Applications and System Architectures
Describing System architecture

Creating an application system structure diagram

This diagram describes the internal structure of an application system:
e services offered or required,
e the application components and their interactions; these are application
systems service, applications and microservices,
e the end users interacting with the application components.

The following diagram describes the application system
corresponding to purchasing requests processing.

.+ Payment requests processing
End User Call Center Sales assistant
A AA A A A
Customer Info Customer Information Customer Information
Error Meszage -
= Error Meszage Error Meszage

Information requirement

Information about customer

Information requirement

Customer identification Internal Purchasing Service

Information about custos
v 9
call Purchase
MyCompany. Management
com O management
d Customer identification d a
- Information about custonisr (l\
fl\ fl\ Customer Information - rl\ Fayment
Error Meszage P‘ :
Crdering e .
Crdering Ordering

Payment interface

A Order number Order numbar
Order number L]
Payment Y

Global Payment Management Platform

‘e
~ "
l Order number
Payment Management 1‘?’\‘01\’-‘9 mumber
List of refuzad products
Y

Payment Management

-

The following diagram describes the application system corresponding to purchasing requests processing.

To create an application system structure diagram:
1. Open the Diagrams page of the application system of your choice and
click Create a diagram.
2. Select Structured diagram > Internal Architecture.
The application system structure diagram appears.

95

96

Adding an application system to an application system structure
diagram

To describe an application system that implements another application system, you
can add an application system of the application system structure diagram.

For example, the purchasing requests processing system uses
the "Purchasing Management Platform" and "Payment
Management" application system services.

To add an Application System:
1. In the objects toolbar of the application system structure diagram, click
i3 Application System.

2. Click in the frame of the described application system.
An addition window box prompts you to choose the application system
implemented (for example "Payment management").

3. Select an application system.

4. Click OK.
The application system appears in the diagram.

Adding an end user to an application system structure diagram

To specify that an application system, such as purchasing request processing, is
activated by internal or external org-units, you will add an associated end user.

The end user represents an organizational unit interacting at the
boundaries of an application system or a logical application system.

To add an end user:

1. In the application system structure diagram objects toolbar, click

End User and click in the frame of the diagram.
An addition window prompts you to choose the Object Type that you
wish to use: Org-Unit or Position type.

2. For example, select the Org-unit object type.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

3. Select the org-unit that interests you and click OK.
The actor appears in the diagram.

Modeling Applications and System Architectures
Describing System architecture

Using a Scenario of Application System Flows

w For more details on the use of a scenario of flows, see Using a
Scenario of Application Flows Diagram.

A scenario of application system flows represents the flows exchanged between
certain elements of the application system in a given context. The elements
represented are:

application systems,

applications,

Microservices

organization org-units,

internal or external local application data stores,
input or output application ports.

The interactions offered between these elements:

flows that carry a content,

flow channels that group a number of application flows on a single link,
application data channels that represent the interactions between the
application data stores.

The scenario of application system flows below describes
the interactions between a client and the eCommerce
application.

2 Purchasing Management

Customer Info

Customer MyCompany.
% com Mobile
+ Commande
¢ Order confirmed a
A
Client 1D
Customer Info
Y
Customers
Management
=
a3
“a

Customers

Information B

Example of scenario of application system flows for "Purchasing Requests Processing".

To create a scenario of application system flows diagram:

1.

2,

Open the Diagrams page of the application system of your choice and
click Create a diagram.

Select Structured Diagram > External Data Flows.

The Scenario of application system flows diagram appears.

97

Adding an org-unit to the Scenario of Application System Flows

An org-unit is represented by an Org-Unit or by a Position type.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.
To add an organization unit:
1. In the scenario of application system flows object toolbar, Org Unit.
2. Click in the frame of the described application system.
An addition window prompts you to choose the org-unit name you wish to
use:
3. Select the org-unit that interests you and click OK.
The actor appears in the diagram.

m To create a new org-unit, enter his name and click OK.

Adding a scenario of application system flows

An application is a software component that can be deployed and
provides users with a set of functionalities.
To add an application:
1. In the scenario of application system flows object toolbar, click
Application.
2. Click in the frame of the described application system.
An addition dialog box prompts you to choose the application that you
want to use (for example "eCommerce purchase").
3. Select the application and click OK.
The application appears in the diagram.

In the same way you can add:
e an application system

An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

® a microservice.

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

If the component we have added in the scenario of application system flows is

already described by a scenario of flows, a new section is created in the

Characteristics property page of the component.

For more details, see Reinitializing components in a scenario of flows.

98

Modeling Applications and System Architectures
Describing System architecture

Describing an Application System Environment with Hopex IT
Architecture

An application system environment allows presenting the other
application systems, applications or microservices with which this
application system can interact.

Accessing the list of application system environments

To access the list of application system environments from System the Application
Systems navigation menu:
) Open the Environments page of the application system of your choice.
The list of application system environments appears in the edit area.

Creating an application system environment

To create an Application System Environment from the Application Systems
navigation menu:
1. Open the Environments page of the application system of your choice.
The list of application system environments appears in the edit area.
2. Click New.
The new application system environment appears in the list, it has the
name of the application system followed by "Environment".

Application system environment properties

The Characteristics properties page for an application system environment
provides access to:

e its Owner, by default during creation of an application system
environment, the current library.

e jts Name,

e the text of its Description.

With Hopex IT Architecture an application system environment is described by
other property pages. See Hopex IT Architecture properties pages content.

Application system environment diagrams

An application system environment is described by several types of diagram:

e an Application System Environment diagram describes the exchanges
between the subject application system and its partners in a specific
context.

w For more details, see Describing an application system environment
diagram.

e a scenario of application system environment flows presents the flows
exchanged between the application services or the microservices used by
the described application system in a specific context.

w For more details, see Describing a Scenario of Application System
Environment Flows.

99

100

Describing an application system environment diagram

An application system environment is described by an application system
environment diagram that describes the service interactions between the internal
application systems, its users and the partner application systems.

w For more details on use of a structure diagram, see Application
structure diagram

Customer World@Hand
Employee

‘ot
N Pevmet o 1)
Payment
Ordering Ordering
]
Ondex b = Order mumber
v
Purchasing Management Payment
Platform Management
2
a il
"l
M Y
- I Trvoics mumber
Delivery Service - List of refused products Order gumber
Payment Mangement Service
Deliver
.
ull

Application system environment diagram for the Purchasing Requests

Purchase requests are formulated by clients or employed
using the "Purchasing Management Platform".

The "Purchasing Management Platform” application system
uses an internal application system for the “Payment
management” and a partner application system for the
“Delivery”.

The elements of an application system environment diagram are:
e the main application system principal described by the environment.
An application system is an assembly of other application systems,

applications and end users interacting with application components to
implement one or several functions.

e partner application systems that represent the other application system
with which the main application system described by the environment
interacts.

In this example, this concerns two loan services offered to
individuals and companies.

A partner application system is an application system external to
the environment of the described application service. The partner

Modeling Applications and System Architectures
Describing System architecture

application system can be a service supplier or a service consumer with
respect to application system users.

e The categories of users of services provided by the environment are
represented either by an Org-Unit or by a Position Type.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

This concerns two user categories: individuals and
companies.
e Service interactions between components

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Describing a Scenario of Application System Environment Flows

A scenario of application system environment represents the flows exchanged
between the components of the application system environment.

w For more details on use of a scenario of flows, see Using a Scenario
of Application Flows Diagram

The elements of a scenario of application system environment are:
e the main application system principal described by the environment.

An application system is an assembly of other application systems,
applications and end users interacting with application components to
implement one or several functions.

e partner application systems that represent the other application system
with which the main application system described by the environment
interacts.

A partner application system is an application system external to

the environment of the described application service. The partner
application system can be a service supplier or a service consumer with
respect to application system users.

e End User Participants that represent the categories of users of
application system provided by the environment.

e The categories of users of services provided by the environment are
represented either by an Org-Unit or by a Position Type.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external

101

org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

e Service interactions between components

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction

is described in a service interface.

102

MODELING APPLICATION ARCHITECTURES

With Hopex IT Architecture, an application is described by the application flows processed, the
components (services and API) providing the functionalities expected by the business and the
environment components interacting with it.

After describing the functionalities requested by an application to meet business requirements, this
chapter describes how to describe the flows and the structure of applications.

The following points are covered here:

Describing data flows.

Describing the structure and services of an application;
Describing System Processes;

Managing Data.

SSENENEN

103

DESCRIBING DATA FLOWS

Defining a data flow and its usages

A flow represents the circulation of information between two agents

in the Information System (for example, two applications, an application
and an actor, etc.). This flow is defined by a sender, a receiver, and
exchanged content, symbolizing the data being transported. A flow is
defined in absolute terms.

An application flow represents the use of a flow between two
agents (e.g., applications) in a usage context (represented by a
scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.
A scenario of flows represents a context in which an agent is used: an application
or an IT system, for example. An application flow describes the exchange of data in
a unique usage context. However, the same exchange of data can be described in

another usage context by another application flow.
An application flow is owned by a single flow scenario and refers to a single flow.

A flow enables the representation of data exchanges common to several contexts,
i.e., several flow scenarios. A flow can be connected to several application flows.

Flow qualification

Measure Schemes Categorization enable the definition of parameters that
characterize the flows.

To qualify a flow from a Flow measure:
1. Open the Qualification page of the flow that interests you.
2. In the Flow Qualification section, click the Connect button.
A selection dialog box opens displaying the tree of existing Measure
Schemes Categorizations.
3. Select the flow measures that interests you and click Add.
w To access the list of Application Flow Categories: using the
Administration navigation menu, select Categorization and unfold

the Measure schemes Categorization. The list of Application Flow
Categories appears.

w For more details on the Application Flow category concept, see
Defining Data Categories.

Associating a Service Interface Used to a flow

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

A service interface use is associated to a service interface. It
enables representation of complex exchanges.

w For more details on service interfaces, see Describing a service
interface.

104

Modeling application architectures
Describing data flows

A service interface can be connected to a flow. This enables the identification of the
API used in a flow context, for example.

There are two ways to use a service interface within a flow:

e The flow triggers the service interface (API). It is then of Call/Request
type.

e The flow is the result of the service interface (API). It is then of Result/
Provision type.

To associate a service interface to a flow:

1. Open the Service Interface Used page of the application flow that
interests you.

2. Click New.
A dialog box opens proposing a list of service interfaces used whose
content is a request point or a result.

Using a Scenario of Application Flows Diagram

The scenario of flows diagram describes the flows exchanged between the system
elements represented.

Two types of diagrams are proposed:

e The Scenario of flows diagrams that describe the flows exchanged in
different use scenarios of the object described.
e Scenario of sequence diagrams that describe the chronology of the flows
exchanged in different use scenarios of the object described.
w To use Scenario of Application Flows Diagrams, open the Options
window and check that IT Architecture > Activate Flow Scenario
Sequence Diagrams option is activated.
A Scenario of Application Flows Diagram can be built for an application environment,
an application, an application system, an IT service or a microservice. This diagram
is used to describe the exchanges inside the described object in a specific context.

105

106

The scenario of application flow diagram below describes the "Purchase request
management" application.

Purchase Request Display Purchase

Request List
—

Purchase

A requests list

Purchase Requisiion
[Denied]

Adtributed Purchase
Requisition
v

Excel _ Assign & Handle Order Orger
Bils to print Purchase Request
—_—

* L2

&
Example of a Scenario of Application Flows for "Managing Purchase Orders".

In a scenario of application flows diagram, the elements represented are:
e IT Services,services, see Describing an IT Service with Hopex IT

Architecture,
e Microservices, see Describing a microservice with Hopex IT Architecture,

internal or external local application data stores, see Using Data Stores,
System Triggering Events and System Triggered Events, see Creating a
System Triggering Event.

The interactions offered between these elements:
e application flows connected to flows,
e application flow channels that group a number of application flows on a
single link,
e application data channels that represent the interactions between the
application data stores.

Creating a Scenario of Application Flows diagram

To create a scenario of application flows from the Applications navigation menu:
1. Right-click the application that interests you and click Create Diagram.
2. In the Create a diagram window, select Structured diagram >

Internal Architecture.
The Scenario of Application Flows Diagram appears.

Adding an IT service to the scenario of application flows

An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

Modeling application architectures
Describing data flows

To add an IT service:

1. In the objects toolbar of the scenario of application flows, click IT
Service.

2. Click in the described application frame.
An addition window box prompts you to choose the IT Service
implemented (for example "Customer management").

3. Select the IT Service required and click OK.
The IT Service appears in the diagram.

You can add a micoservice in the same way.

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

Creating an Application Flow

An application flow represents the use of a flow between two
agents (e.g., applications) in a usage context (represented by a
scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.
The application flows exchanged between IT services, microservices, or application
ports in a scenario of application flows are associated with a flow, which is itself
associated to a communication system and a content.

A flow represents the circulation of information between two agents
in the Information System (for example, two applications, an application
and an actor, etc.). This flow is defined by a sender, a receiver, and
exchanged content, symbolizing the data being transported. A flow is
defined in absolute terms.

L) The content designates the content of a message or an event,

independent of its structure. This structure is represented by an XML
schema linked to the content. A content may be used by several
messages, since it is not associated with a sender and a destination.
There can be only one content per message or event, but the same
content can be used by several messages or events.

When creating an application flow, you must associate it with a communication
system and a content.

To create an application flow:

1. In the objects toolbar of the scenario of application flows, click
Application flow and select the Type of application flow that
interests you.

* Result/Provision associated to a service result,
e Call/Request associated to a service request,
e Signal associated to an information exchange.

m For more details, see Associating a Service Interface Used to a flow.

2. Click the first object representing the sender of the flow and, holding the
mouse button pressed, draw a link to the object receiving the flow.
The Application Flow Creation dialog box opens.

3. Select the communication system that will be associated to the flow.

w For more details on communication systems, see Using
communication systems.

107

108

4. From the Content field, select the content you wish to associate with the

message flow.
5. Click OK.
If it doesn’t exist yet, a flow is created.
The application flow, represented by an arrow between the sender and the
receiver, is displayed in the diagram. By default, the name of the flow is

displayed on the link.

w To display the Content and the Flow on the application flow link,
click the application flow to display its contextual menu and select
Shapes and Details. From the Flow folder, check the Short Name

Content box.

Accessing Application Flow Properties

An application flow represents the use of a flow between two

agents (e.g., applications) in a usage context (represented by a
scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.

To access an Application Flow properties from a scenario of application flows
diagram:
1. Select the link connected to the application flow that interests you:
The application flow properties open to the right of the diagram.
2. In the Characteristics page, the Flow field enables the access to the

associated Flow properties.
3. In the Diagrams page, enables the access or the creation of a
Communication Chain diagram associated to the Flow.
w For more details on communication chain, see, Using Software
Communication Chains.

Accessing a flow properties
You can access a flow properties from the application flow that references it or from

a scenario of flow diagram.

A flow represents the circulation of information between two agents
in the Information System (for example, two applications, an application
and an actor, etc.). This flow is defined by a sender, a receiver, and
exchanged content, symbolizing the data being transported. A flow is
defined in absolute terms.

Modeling application architectures
Describing data flows

To access a flow from a scenario of application flows diagram:

] From the link of the application flow, click the flow name that interests
ou.
}I/'he flow properties open to the right of the diagram.
e The Characteristics page provides access to the following sections:
e Identification, presenting the Name of the flow, its Description,
the Application flow type and the flow Code.
e Implementing software, presenting the Communication system
owned by the flow as well as the application communication chain.
w A flow can be linked to several application communication chains.
* Qualification, presenting the Flow Measures defined for the flow.
w For more details on flow qualification, see Flow qualification.
e The Usage page provides the list of application flows connected to the
flow.
e The Service Interface used page provides access to the interfaces and
operation services used by flows.
w For more details, see Associating a Service Interface Used to a flow.

e The Diagrams page enables the access or the creation of a
Communication Chain diagram associated to the Flow.

w For more details on communication chain, see, Creating a software
communication chain from a scenario of flow.

Creating an application flow channel

An application flow channel is used to graphically group a number
of application flows into a single flow.
To create an application flow channel, you must first create the channel and then
link the application flows that it groups.

To create an application flow channel:

1. In the objects toolbar of the scenario of application flows, click
Application Flow Channel.

2. Click the first object in communication and, holding the mouse button
pressed, draw a link to the other object.
The application flow channel appears in the diagram.

To connect the application flows to the application flow channel:

1. Open the Characteristics page of the application flow channel.
2. In the Grouped Flow section, click Connect.
A selection dialog box opens and presents the list of the application flows
of the scenario of application system flows.
3. Select the flows that you want to group and click OK.
The content of the selected flows is displayed in the Grouped Flow list.
4. Click the Refresh Channels button.
The application flows grouped in the channel disappears and the
corresponding content is displayed around the channel.
w If you remove the channel, only the application flows created from

the Grouped Flows are removed. The connected application flows are
displayed if you click the Refresh Channels button.

109

Creating a System Triggering Event

The creation process for a Creating a System Triggering Event and a Creating a
System Triggered Event is the same.

To create a System Triggering Event:

1. In the diagram insert toolbar, click the System Triggering Event
button.

2. Position the object at the edge of the frame of the described object.
A creation dialog box opens.

3. Click the arrow at the right of the Referenced Content field and select
the content that interests you.

4. Click Add.
The System Triggering Event appears in the diagram.

Any application flow whose origin is the System Triggering Event is connected to the
same content.

To create an application flow from a System Triggering Event:
1. In the diagram insert toolbar, click Event Participation.
2. Click the event and, holding the mouse button pressed, draw a link to the
object receiving the flow.
The application flow is displayed with its content associated to the event.

Reinitializing components in a scenario of flows

If you insert in a scenario of flows diagram a component that is already described
by a scenario of flows, you can note that a new section is created in the
Characteristics page of the component you have added. This section allows you to
specify which scenario of flows of the component corresponds to the context of the
current application system scenario of flow.

In the component scenario of flows diagram, the Reinitialize components button
allows you to insert components coming from the upper level scenario of flow.

Adding an application data store to the scenario of application system flows

An application data store materializes the usage of data in the

context of a software component (for instance an application). An
application data store provides a mechanism to retrieve or update
information stored outside of the current software component.

A data store can be local or external to the application.

To add, for example, a local application data store to an scenario of application flows
1. In the scenario objects toolbar, click Local Application Data Store.
2. Click in the described application frame.
An addition window prompts you to choose the Object Type that
represents the physical structure that will concretely support the
application data store.
w For more information on managing data stores, see Managing Data.
3. Depending on the Object type, select then the object that interests you.
4. Click OK.
The local application data store appears in the diagram with the name of
the physical data domain selected.

110

Modeling application architectures
Describing data flows

Creating an application data channel

The applications, the application systems and the microservices can have read or
write access to a local or external application data store.

To create an application data channel that represents a reading access:

1. In the diagram objects toolbar, click Application Data Channel.

2. Draw a link between the application data store and the object that reads
the data.
An application data channel appears in the Diagram.

w To create a link with write access, you must draw a link between
the object that reads and the application data store.

Using communication systems

A communication system helps to identify and describe the main

integration processes using several Software Communication Chains as
well as communication services.

This communication system has its own internal agents (communication services)
that enable the definition of communication chains that describe all the steps
involved in a flow behavior.

Those chains may be described using the Enterprise Integration Pattern
notation (http://www.enterpriseintegrationpatterns.com).

This representation allows the modeling of application flows integration process
represented in scenario of flows in Hopex.

w For more details on scenario of flows, see Using a Scenario of
Application Flows Diagram.

w For more details on how associating a communication system with
a flow, see Creating an Application Flow.

Accessing the list of communication systems

To access the list of communication systems from the Inventories navigation
menu:

[0 SelectSoftware > Communication systems.
The list of communication systems appears.

Communication System Properties

The complete description of a communication system is accessed in its property
pages.

111

The Characteristics page for a communicate system provides access to:
e jts Name,
e Its Owner, by default the application specified when it was created.
e the text of its description.
e the Software Communication Chain section which provides access to
the list of components of the described communication system.

A software communication chain describes the mechanism by which
a content is transfered from a sender system to a receiver system.This
includes, routing, channeling and message translation.

e the Communication Service section which provides access to the list of
objects of the software communication chain.
Three services types can be proposed:

e Message Channel,

A channel is used to identify the enterprise resources used by a
persona to achieve a step. For example, a channel can be a phone or
internet connexion.

e Message Router,

A message router is a communication step that identifies which
route should be used for next message step.

e Message Translater,

A message translator is a communication step that translates a
message from a format to another. It can be used for trans-codification,
data type conversion.

w For more details on components of a communication chain, see
Describing a Software Communication Chain

The Implementing Software properties provides the liste of Applications et
Application Systems representing the communication system execution.

The Managed Flow properties provides access to the list of Flows connected to the
communication system. For more details, see Creating an Application Flow.

The Reporting page enables access the Flow rationalization report. For more
details, see Flow Process Rationalization.

Using Software Communication Chains

Describing a Software Communication Chain

A Software Communication Chain Diagram describes the
mechanism by which a content is transfered from a sender system to a

112

Modeling application architectures
Describing data flows

receiver system. This description includes the routing, the channeling
and the messages translation.

=

A software communication chain diagram includes:
e A Communication Start Event and a Communication End Event that
designate the starting and the ending points of the described integration

process.

e The Communication Sequences to describe the steps sequence.

e The Communication Services to describe the successive processing of
flows. For more details the specification of softwares that implement the
communication services, see Describing implementation of a
communication service
The Communication Service types are:

e Message Channel that designate the place where an application can
read or write informations.
A channel is used to identify the enterprise resources used by a

persona to achieve a step. For example, a channel can be a phone or
internet connexion.

e Message Router to identify the destination channel to use for the next
transport step.
A message router is a communication step that identifies which
route should be used for next message step.
e Message Translater to translate a message from a format to another
A message translator is a communication step that translates a

message from a format to another. It can be used for trans-codification,
data type conversion.

Creating a software communication chain from a scenario of flow

You can create new communication chains from flows or application flows owned by
a scenario of flows.
w For more details on scenario of flows, see Using a Scenario of
Application Flows Diagram.
To create a software communication chain from a flow:
1. Open the flow scenario diagram that contains the flow that interests you.
2. Select the flow that interests you to open its Diagrams properties.

113

114

3. Click Create a diagram.
The diagram creation dialog box appears.

4. Select Software Communication Chain Diagram.
The software communication chain is created as well as its diagram.

5. You can modify the Name of the software communication chain from its
diagram.

w Several software communication chains can be connected to the
same flow.

Describing implementation of a communication service

A communication service can be processed by an application, a microservice or an
application service.

To specify the software that implements a communication service; a router, for
example:

Open the Characteristic property page the Router you are interested in.
Expand the Implemented Software section.

Click Connect.

In the search window, select the software that represents the execution
of the service associated with the router.

5. Click OK.

The software appears in the list.

Ponb=

Using a flow scenario sequence diagram

w To use Scenario of Application Flows Diagrams, open the Options
window and check that IT Architecture > Activate Flow Scenario
Sequence Diagrams option is activated.
This type of diagram can be built for an application system, an application
environment, an application, an application, an IT service or a microservice.

For each use context, you create flow scenario sequence diagrams. A flow scenario
sequence diagram presents the same exchanges between system elements,
highlighting their chronology. The elements in the sequence scenario are
represented in the diagram by lines.

Modeling application architectures
Describing data flows

A flow scenario sequence diagram contains:
e Lines which define service interaction participants: instances of
applications, services or interfaces.
e Different types of messages exchanged between participants.
e Advanced functions that enable concise description of several execution

sequences.

Lancer la commande Recherche de fournisseurs

: nom de la piéce

Comparer les prix Création commande

Liste de fournisseurs

Informations piéce

This diagram describes the operation of the "Order

Unreferenced Parts" use

When a purchase request
the name of the part is
service, which draws up
requested part.

case

is entered in the user interface,
received by the "Find Suppliers"
the list of suppliers offering the

The "Compare Prices" service looks for the lowest-priced
product and sends information to the "Order Amount

Calculation" service.

When the order amount has been established, a final "Issue

Purchase Order" service

Creating a flow scenario sequence diagram

sends the order via the interface.

To create an application environment scenario sequence:
1. Open the Diagram page of the application environment that interests

you and click New.

2. In the dialog box, select Scenario of Application Environment Flows
- Application Environment Scenario Sequence Diagram.

Instances of applications, IT services or interfaces

Depending on whether the diagram describes a user interface, an application or an
IT service, the service interaction scenario diagram describes messages exchanged
between application instances, IT service instances and user interface instances.

A Human-Machine Interface enables definition of a screen of an
application or an IT service.

An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

115

116

To create an IT Service instance for example:

1. Click the IT Service button in the toolbar.

2. Click in the diagram.
The Add IT Service dialog box appears.

3. Click the arrow to the right of the Name field and select Connect IT
Service in the drop-down list.
The list of IT Services accessible from the current library appears.

4. Select the IT service you require.

5. Click OK.
The IT Service instance appears in the diagram.

Message instance

Message instances define the data exchanged between application instances, IT
Services and the interfaces. The sequence described in the flow scenario sequence
diagram indicates the message sending order.

Message instances displayed in sequence scenario diagram correspond to messages
owned by the application that have been previously defined in another diagram.

To create a message instance:

1. Click the reel in the toolbar.

2. Click the dotted line under the first object and, holding the mouse button
down, draw a line to the second object.

3. Release the mouse button.

The message instance exchanged between the two objects is drawn.

Modeling application architectures
Describing the structure and services of an application

DESCRIBING THE STRUCTURE AND SERVICES OF AN
APPLICATION

Application structure diagram

An application structure diagram graphically shows first level
components of an application, the access points (service point and
request point) and the connections between components.

al Purchasing Management

Display Purchase
Request List

o

“RaPurchEse
Reguests

Internal Purchasing Service

Servicg achat
intgme

Purchase Request

Assign & Handle
Purchase Request

o+

Ordering

Version Number = 6.3

The “Purchase Request Management” application uses two IT
Services: “Display purchase request list” and “Assign and
handle purchase request”. The IT Service “Assign and handle

DA” uses the Excel microservice.

Creating an Application Structure Diagram

To create an Application Structure Diagram, for example:
1. Select the Application that interests you and click Create Diagram.
2. In the Create a diagram window, select Structured diagram >

Internal Architecture.
The internal architecture diagram appears. The frame of the Application

described appears in the diagram.

117

118

The components of an Application Structure Diagram

An Application Structure Diagram includes:

IT services which represent the IT services used and deployed with the
application.
In the example, it relates to “Display purchase request
list” and “Assign and handle purchase request” services.

An IT service is a software component of an application, that can't
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

Microservices which represent the services used independent from the
application.
In the example, it relates to the Excel application.

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing

service.
request and service points

w For more details, see Describing Service and Request Points.
Service interactions between components.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

physical data stores used by the application.
w For more details, see Managing Data.

Adding an IT Service to an application structure diagram

To describe that an application uses an IT Service, go to:

1.

In the object toolbar of the application structure diagram, select IT
Service and click in the frame of the application described.
An addition dialog box asks you to select the existing IT Service Name.

Select an existing IT service.

Click OK.
The IT Service appears in the diagram.

Describing an IT Service with Hopex IT Architecture

An IT service is a software component of an application, that can’t
be deployed alone and that realizes a sub-set of the functionalities of
this application either for end users of this application or inside the
application (or another application). This includes batch programs.

Modeling application architectures
Describing the structure and services of an application

IT Service diagrams

An IT Service is described by several types of diagrams:

e an IT Service structure diagram is used to represent the service
interactions between the IT Service components under the form of
service interfaces.

w For more details, see Using IT Service Structure Diagram.

e a scenario of IT Service Flows presents the application flows exchanged
between the described IT services or microservices used by this IT
Service. A scenario can represent a particular use case of the IT service
or more globally all the flows exchanged within this IT service.

w For more details, see Using a Scenario of Application Flows
Diagram.

Accessing the list of IT services

To access the list of IT Services from the Inventories navigation menu:

[J Select Software > IT Services.
The list of IT services appears in the edit area.

IT Service properties
The complete description of an IT Service is accessed from its properties pages.

The Characteristics properties page for an IT Service provides access to:
e its Owner, by default during creation of the IT service, the current
library.
its Name,
the Type,
the Visibility,
the Review Status,
the text of its Description
The Functional scope section is used to describe:
e The business capabilities covered by the IT Service,
A business capability represents a specific ability that an

organization possesses or needs to develop to deliver a particular
business outcome.

w For more details on business capabilities, see Describing Business
Capabilities with Hopex IT Architecture.

e The Implemented Functionalities that are fulfilled by the IT service.

A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute

119

120

a specific operation. If it is a software functionality, it can be provided
by an application.

w For more details on functionalities, see Describing a Functionality
Map with Hopex IT Architecture.

w For more details on fulfillments, see Using fulfillment mechanisms.

the Use Cases section, see Creating an application Use Case Diagram.
The Responsibility section relates the person(s) responsible for the IT
service

e Software Designer

e Local Application Owner

w For more details on these roles, see Business Roles of Hopex IT
Architecture..

the Technologies section provides access to the list of Software
Technologies used by the IT Service.
A technology is a definition or format that has been approved by a
standards organization, or is accepted as a standard by the industry.

w For more details on software technologies, see Describing a
Software Technology.

the Risks section presents the risks associated with the application, see
Describing an Application Environment with Hopex IT Architecture.

With Hopex IT Architecture an IT service is described by other property pages,
see Hopex IT Architecture properties pages content

Using IT Service Structure Diagram

w For more details on use of a structure diagram, see Application
structure diagram

With Hopex IT Architecture, the components of an IT Service can be described
by an IT Service structure diagram.

An IT Service Structure Diagram includes:

IT services,

Microservices

Physical data stores; see Managing Data.

access, request and service points; Creating a Service Point or a Request

Point.

Service interactions between components
A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or

processes, as well as external org-units. The content of this interaction
is described in a service interface.

Describing a microservice with Hopex IT Architecture

A microservice is a software component that can be deployed

autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application

Modeling application architectures
Describing the structure and services of an application

systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

Microservice diagrams

A microservice is described by several types of diagram:

e A microservice structure diagram is used to represent the interactions
between microservice components based on service interfaces
formalism.

w For more details, see Using a Microservice Structure Diagram.

e A microservice flow scenario presents the flows exchanged between the

microservice elements in a given context.

w For more details, see Using a Scenario of Application Flows
Diagram.

e A microservice deployment architecture used to represent technical
elements that support the microservice.

w For more details, see Describing an Application Deployment
Architecture.

Accessing the list of microservices

To access the list of microservices from the Inventories navigation menu:

[1 Select Software > MicroServices.
The list of microservices appears in the edit area.

Microservice properties with Hopex IT Architecture
A Microservice can be described from its properties pages.

The Characteristics property page of a microservice provides access to:
e Its Owner which is the current library by default,

its Name,

the Review Status,

the text of its Description

The Functional scope section is used to describe:

e The Business capabilities covered by the microservice,

A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.

w For more details on business capabilities, see Describing Business
Capabilities with Hopex IT Architecture.

e The Implemented Functionalities that are fulfilled by the microservice.

A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute

121

122

a specific operation. If it is a software functionality, it can be provided
by an application.

w For more details on functionalities, see Describing a Functionality
Map with Hopex IT Architecture.

w For more details on fulfillments, see Using fulfillment mechanisms.

the Use Cases section, see Creating an application Use Case Diagram.
The Responsibility section relates the person(s) responsible for the IT
service
e Software Designer
e Local Application Owner
w For more details on these roles, see Business Roles of Hopex IT
Architecture..
The Technologies section provides access to the list of Software
Technologies used by the microservices.

A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.
w For more details on software technologies, see Describing a
Software Technology.

the Risks section presents the risks associated with the application, see

Describing an Application Environment with Hopex IT Architecture.

With Hopex IT Architecture a microservice is described by other property pages,
see Hopex IT Architecture properties pages content

Using a Microservice Structure Diagram

w For more details on use of a structure diagram, see Application
structure diagram

With Hopex IT Architecture, the components of a microservice can be described
by a microservice structure diagram.

A Microservice Structure Diagram includes:

IT services,

Physical data stores; see Managing Data.
access, request and service points; Creating a Service Point or a Request

Point.
Service interactions between components

L A service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.

These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction

is described in a service interface.

Creating an application Use Case Diagram

w To access UML functions, you must be connected with the Solution
Architect profile or the Solution Architecture Functional
Administrator profile.

Modeling application architectures
Describing the structure and services of an application

A use case diagram enables description of service interactions between a system
and actors of the organization.

Tt =

Local \ Parts el
Furchasing ==include== Complete
Assistant B Order Form

Boat Repairer

A use case is a series of actions leading to an observable result for
a given actor. Scenarios illustrate use cases for example.

[1

Spare Parts Purchase

Consult Pars
Stock

Avvailability
Feguest

==Extend==

Order

Feferenced

==Include==

Order Unreferenced
Fars

Fallow Up
Order

=]

The system is used to consult parts in stock and to order
new spare parts.

Consultation of parts in stock is carried out by the local
on-site purchasing assistant. Following consultation, the
assistant can make an availability request.

Two order types are possible, one for parts already

referenced, the other for parts as yet unreferenced. In both
cases, an order form should be completed.

Order follow-up is assured by the local purchasing
assistant and the boat repairer.

w For more details on use case diagrams, see Use Case Diagram.

To create a use case diagram from an application, for example:

1.

2,
3.

Open the Characteristics page of the appropriate object and expand
the Use Case section.

Open the Diagrams property page of the use case you are interested in.

Click Create a diagram and select Use Case Diagram.
The diagram appears in the edit area.

123

124

DESCRIBING SYSTEM PROCESSES

In detailed specification phase, the progress of tasks implemented in an IT service
can also be modeled by a system process. More generally, operation of an
architecture element can be described by a system process modeling, for example,

sequence flow of screens presented to the user.

System process diagram example

The diagram below represents purchase request processing.

e A product search is carried out from the referenced products repository.

e If the product is new, search for a supplier and comparative study of

prices is

carried out. An order is then sent and the process ends.

If the product is referenced, stock is analyzed.
If stock is sufficient, a "Make available" request is activated and the

process ends.

e If stock is less than minimum stock, an order is sent to the supplier and

the process ends.

Start

Referenced Pro:

[Availzble]

End

Find requested
product
,,,,,,,,, -
ducts

[Requested] Referenced product

Spare Parts

Product in stock

Request to make!
available

New product

Fin Suppliers
Compare Price
and Service

Stock analysis

Supplier Contracts |

Purchase Order
Preparation

Stock = Stock mini

Managing System Processes with Hopex IT Architecture

A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which

Modeling application architectures
Describing System Processes

the tasks follow each other, the information flows exchanged with the
participants.

w For more details on creating system process diagrams, see the
Hopex Business Process Analysis guide, paragraph "Managing
System Processes".

L

Accessing system processes

To access the list of system processes from the Inventories navigation menu:

[0 Select Software > System processes.
The list of system processes appears.

Creating a system process diagram

The system process diagram uses notation proposed by BPMN standard. The system
process algorithm can be expressed by sequencing of tasks and decisions.

A system process diagram can be created and updated in tabular input mode.
~

w For more information on using tabular entry, see the “"Diagrams in
Tabular Entry Mode" in the Hopex Common Features guide.
To create a system process diagram:
1. Select the system process that interests you and click Create Diagram.
The Diagram type selection dialog box opens.
2. Click System process diagram.
The diagram opens in the edit area. The frame of the system process
described appears in the diagram.

Creating a Task

Tasks correspond to process steps.

A task is an elementary step that is included within a system
process. A task is used when the work in the system process is not
broken down to a finer level of the process. Generally, an end-user and/
or an IT service are used to perform the task when it is executed.
To create a task:
1. In the diagram insert toolbar, click the Task button then click in the
diagram.
2. Enter the task name and click OK.
The task appears in the diagram.

Message flows

Message flows represent exchanges between the system process and the exterior.

An application flow represents the use of a flow between two
agents (e.g., applications) in a usage context (represented by a

125

126

scenario of flows). An application flow is based on a flow, which
represents the reference flow in context.

- [Praduct or Service Delivered C:‘

@q

w A message flow can be linked to an event of message type.

Sequence flows
Organization of tasks in the system process is represented by sequence flows

between tasks.
A sequence flow is used to show the order in which steps of an
service contract will be performed. A sequence flow has only one source

and only one target.

Fin Suppliers

v

Compare Price
and Service

~

w For more information on managing sequence flows, see “"Describing
Operations Sequence” chapter in the Hopex Business Process Analysis

guide.

Events
Events represent facts occurring during process execution.

An event represents a fact or an action occurring in the system,
such as updating client information. It is managed by a broker. An
application indicates that it can produce the event by declaring that it
publishes it. If an application is interested in an event, it declares that it

subscribes to the event.
An example is the start or end of the system process.

O

Start

O

Final

The event can also be sending or receiving a message flow.

Modeling application architectures
Describing System Processes

Gateways
Gateways are modeling elements that are used to control how
sequence flows interact as they converge and diverge within a process.
~

m For more information on managing gateways, see "Using gateways”
chapter in guide Hopex Business Process Analysis.

Creating a participant in a System Process Diagram

In a system process diagram, a participant enables grouping of tasks assigned to
an application or service.

To create a participant:
1. In the diagram insert toolbar, click the arrow at the right of the
Participant (Application) button.
2. In the list proposed, select for example Application Participant and
click in the diagram.
The participant creation dialog box appears.
3. Click the down arrow of the Application field and select the applications
that interest you.
4. Click OK.
The participant created appears in the diagram with a header containing
the name of an assigned application.
m To place a participant with assignment as yet unknown, select the
Participant icon.
To assign a task to a participant:

(] place the task within the frame of the participant.

Specifying the behavior of a task in a System Process

Conformément a la norme BPMN, un processus peut avoir des comportements
différents.

Avec Hopex Business Process Analysis, ces comportements sont disponibles
pour les processus, les opérations, les processus applicatifs et les taches.

127

128

Les comportements

Les comportements proposés sont :

Transaction : une transaction est un ensemble d'activités coordonnées

entre elles en vue d'obtenir un résultat cohérent et vérifiable.

Boucle : une boucle est une étape d'un processus qui est répétée tant

gu'une condition est vérifiée.

e “Faire tant que” : la condition est évaluée avant la premiére exécution.

e “Faire jusqu'a ce que” : la condition est évaluée aprés la premiére
exécution. Dans ce cas, le processus est toujours réalisé au moins une
fois.

Le prédicat permet de spécifier la condition d’exécution de la boucle.

Ad hoc : les étapes d'un processus de ce type ne sont pas controélées, ni

ordonnées. L'ordre de réalisation est déterminé par les participants qui

exécutent le processus.

Multiple : le processus est répété un nombre prédéfini de fois qui est

évalué avant sa premiere exécution. Il est possible de spécifier le type

d’exécution :

e “Paralléle” : toutes les exécutions sont réalisées en méme temps

e “Séquentielle” : les exécutions sont réalisées les unes apreés les
autres.

Compensation : une compensation définit I'ensemble des activités qui

sont réalisées aprés I'annulation d'une transaction pour compenser les

activités réalisées durant le déroulement normal du processus.

Pour décrire, par exemple, qu’un processus est exécuté en boucle :

1.
2,

Type de tache

Ouvrez la page de propriétés Caractéristiques du processus.

Dans la section Détails, a droite du champ Boucle, sélectionnez le type
de boucle correspondant au comportement du processus et ajoutez le
texte de la condition.

La forme du processus est modifiée pour faire apparaitre le symbole de la
boucle.

Fin Suppliers

(9]

Pour préciser le type d'une tache :

1.

Ouvrez la page de propriétés Caractéristiques du processus.

Modeling application architectures
Describing System Processes

2. Dans la section Détails, cliquez sur la fleche a droite du champ Type de
tache.

La liste des types de tache s’affiche.

e Réception : tache élémentaire qui attend I'arrivée d'un message en
provenance d'un participant externe au processus. Quand le message
a été recu, la tadche est terminée.

e Emission : tache qui envoie un message a un participant externe au
processus. Quand le message a été envoyé, la tache est terminée.

* Manuelle : tache réalisée sans l'aide d'un moteur d'exécution
automatique d’un processus ou d'une application informatique.

e Reégle métier : tache d'exécution d'une régle métier qui dispose d’un
moteur de regles qui traite les données en entrée et retourne en sortie
les résultats du calcul effectué.

e Script : tache réalisée par un moteur d'exécution de processus. Le
concepteur définit un script dans un langage que le moteur est
capable d'interpréter. Quand la tache est préte a démarrer, le moteur
exécute le script. La tache est terminée quand I'exécution du script est
terminée.

w [a forme du processus est modifiée pour faire apparaitre le
symbole associé au type de téche.

Modeling Tasks of a System Process

The functional analysis phase describes the system processes implemented in the
different use cases of an application or service.

A system process diagram specifies the sequence flow of tasks to be executed so
that the user can check that the application satisfies its requirement.

Functional Modeling Example
The system processes used for a project functional analysis are stored in a package.
In the example of the purchase request processing automation project, system
processes are stored in the "Urgent Purchase Requests" package .

A system process is the executable representation of a process. the
events of the workflow, the tasks to be carried out during the
processing, the algorithmic elements used to specify the way in which
the tasks follow each other, the information flows exchanged with the
participants.

Display the diagram describing a step in the system process in detail:

To open the diagram describing in detail a step in the system process:
1. Right-click the system process, for example "Consult Stock Levels" to
open its pop-up menu.

129

2. Select System Process Diagram.
The diagram associated with the process opens.

Consult Stock Levels
Parts Catalog
B Part
Selection Parts ih Stock
|
'
-o-ssiiiiiiiiiiiiae =
=
"
D Availability
Reguest
n Order
Referenced Part
=
e (w/Order Parts

Consulting stock levels begins by display of a screen
enabling identification of the required part. The list of
parts found in the catalog is presented in the next screen.

When the user has selected the required part, information on
details is displayed. From this screen, it is possible to
obtain information on another part, make an availability
request for the part, or indeed order the part.

130

Modeling application architectures
Describing System Processes

Modeling Tasks of an IT Service

The phase of detailed analysis of system components impacted by the project

consists of detailed modeling of the operation of IT services.

Find Suppliers

Order Amount Calculation

In the context of the urgent order request processing
automation example, the service for comparing prices is
represented by a system process.

H
Reference Part =
Current Part

First Supplier
Parts Data
Download

EESupplier List

Supplier list
end Current part price < reference

part price

Next Supplier
Parts Data
Download

Send Reference
Part

End of supplier
list

i1 Part Information

This diagram describes the algorithm of the "Compare
Prices" service, which should return the reference of the
lowest-priced part.

The list of suppliers of the required part is given at
input. The part proposed by the first supplier in this list
becomes the reference part. Assuming the supplier list is
not empty, data concerning the required part is then
analyzed. If the price of the current part is lower than the
price of the reference part, the reference part becomes the
current part.

When the complete list of suppliers has been analyzed,
information concerning the reference part is sent to the
"Order Amount Calculation" service.

131

132

MANAGING DATA

Data stores are used in architecture diagrams to represent data that must be stored

to be share between components.
A data store provides a mechanism to update or consult data that

will persist beyond the scope of the current process. It enables storage
of input message flows, and their retransmission via one or several

output message flows.
A Data store can be supported by different object types:

e A data domain
A data area represents a restricted data structure dedicated to the
description of a software Data Store. It is made of classes and/or data

views and can be described in a Data Area Diagram.

e a file structure
A file structure represents a file folder or a single file used in the

technical architecture of an application.

A NOSQL data domain

NoSQL data domain represents a set of data stored in a NOSQL

[]
database management system and used in the technical architecture of

an application.

e A Relational Schema
Relational schema represents a set schema stored in a database
management system and used in the technical architecture of an

application.

Using Data Stores

A data store references, in a process or an application system, persistent data

defined in a data area.
A data store provides a mechanism to update or consult data that

will persist beyond the scope of the current process. It enables storage
of input message flows, and their retransmission via one or several

output message flows.

Introduction to the data store concept
If you describe a logical application system, only /ogical data stores can be used

A logical data store represents the use of data via application
systems without considering how their access will be concretely

implemented.
If you describe an application system, only physical data stores can be used.

A physical data store represents the implementation of a logical

data store.

Modeling application architectures
Managing Data

If you describe scenario of sequences or a scenario of flows, only application data
stores can be used.

An application data store materializes the usage of data in the
context of a software component (for instance an application). An

application data store provides a mechanism to retrieve or update
information stored outside of the current software component.

The Scenario of flows diagrams that describe the flows exchanged
in different use scenarios of the object described.

Sequences scenario that describe the chronology of the flows
exchanged in different usage scenarios of the described object.

Last but not least, you can also distinguish data stores local to a system from
external data stores that are positioned on the border of diagrams.

A local data store represents a data store used only inside the
system described.

An external data store represents a data store used inside and
outside of the system described.

Usage contexts
The table below presents the list of diagrams that use the different types of data

stores.
Data store type Diagrams
Logical data store Logical application system structure diagrams
Physical data store Structure diagrams
- of application,
- of application system,
- IT service,
- microservices.
Application data stores Scenario sequence diagrams

- of application,

- of application system,

- IT service,

- microservices,

Scenario of flows diagrams
- of application,

- of application system,

- IT service,

- microservices.

Creating a local data store

A local data store represents a data store used only inside the
system described.
To create, for example, a local physical data store from an application system
structure diagram:
1. Open the diagram that interests you.

133

134

2. In the diagram objects toolbar, click Local physical Data Store and
select the Object Type that supports the data store you describe.

w For more information on proposed object types see Access Data
Stores supports.

Click in the frame of the described application system.

Depending on the Object type, select then the object that interests you.
5. Click OK.

The local physical data store appears in the diagram with the name of the
associated object.

o

Creating a external data store

An external data store represents a data store used inside and
outside of the system described.

To create, for example, an external physical data store from an application system
structure diagram:
1. Open the diagram that interests you.
2. In the diagram objects toolbar, click external physical Data Store and
select the Object Type that supports the data store you describe.
w For more information on proposed object types see Access Data
Stores supports.
3. Click at the edge of the frame of the described application system.
4. Depending on the Object type, select then the object that interests you.
5. Click OK.
The local physical data store appears in the diagram with the name of the
associated object.

Describing access to a data store

To create a read access to the data store:

1. In the diagram insert toolbar, click Link.
2. Draw a link between the data store and the entity that reads the data
(component or application system use).
A Read-only access to data storage is automatically created with the
link from the data store to the entity.
w To create a link with write access, you must draw a link between

this entity and the data store to which it has write access. A Write
access to data storage is then automatically created.

Modeling applicatio

n architectures
Managing Data

Access Data Stores supports

A Data store can be supported by different object types:
e A data domain
A data area represents a restricted data structure dedicated to the

description of a software Data Store. It is made of classes and/or data
views and can be described in a Data Area Diagram.

e A file structure

A file structure represents a file folder or a single file used in the
technical architecture of an application.

e A NOSQL data domain

NoSQL data domain represents a set of data stored in a NOSQL
database management system and used in the technical architecture of
an application.

e A Relational Schema

Relational schema represents a set schema stored in a database
management system and used in the technical architecture of an
application.

Accessing to data areas with Hopex IT Architecture

A data area represents a restricted data structure dedicated to the
description of a software Data Store. It is made of classes and/or data
views and can be described in a Data Area Diagram.

w For more information on data areas, see Hopex Data
Architecture guide.

To access the list of data domains from the Inventories navigation menu:

1. Select Data > Data Dictionaries.
The tree of data dictionaries appears.

Expand the Package folder.

Expand the folder of the package that interests you.
4. Expand the Data Dictionaries folder.

The list of package data domains appears.

won

Accessing the list of file structures with Hopex IT Architecture

A file structure represents a file folder or a single file used in the
technical architecture of an application.
To access the list of file structures from the Inventories navigation menu:
1. Select Data > Data Dictionaries.
The tree of data dictionaries appears.
2. Expand the NoSQL Building Block Catalog folder.
The list of File Structures appears.

135

136

Accessing to NoSQL data domains with Hopex IT Architecture

NoSQL data domain represents a set of data stored in a NOSQL

database management system and used in the technical architecture of
an application.

To access the list of NoSQL data domains from the Inventories navigation menu:
1. Select Data > Data Dictionaries.
The tree of data dictionaries appears.

2. Expand the NoSQL Building Block Catalog folder.
The list NoSQL data domains appears.

Accessing the list of relational schemes with Hopex IT Architecture

L) Relational schema represents a set schema stored in a database
management system and used in the technical architecture of an

application.

To access the list of relational schemes from the Inventories navigation menu:

1. Select Data > Data Dictionaries.

The tree of data dictionaries appears.

2. Expand the Database folder.
Expand the folder of the database that interests you.
4. Expand the RDB Physical Structure folder.

The list of relational schemes of the database appears.

d

MODELING TECHNICAL ARCHITECTURES

A deployment architecture allows you to describe the overview elements that must be deployed to
implement architecture an application: Application Deployment Architecture, Deployable Data
Package as well as Package connections used for data exchange.

Several viewpoints are proposed in Hopex IT Architecture:

v The Application Deployment Environment used to represent of the deployments of
partner applications as well as microservices identified around the subject
application

v The Application System Deployment Architecture used to represent the set of

Application Deployment Architectures that must be coordinated to cover required
dependencies between them.

v’ The Application Deployment Architecture used to represent the deployment
packages list and the communication lines.

The following points are covered here:

Describing an Application Deployment Environment.
Describing an Application System Deployment Architecture.
Describing an Application Deployment Architecture.
Deployment Architecture Templates

Describing Software Technologies.

Using Cloud Services.

ANENENENENEN

137

138

DESCRIBING AN APPLICATION DEPLOYMENT
ARCHITECTURE

An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and
identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An
application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)

Accessing the application deployment architectures

To access the list of application deployment architectures from the Applications

navigation menu:
) Open the Application Deployment page of the concerned application.

The list of application deployment architectures appears.

Describing an Application Deployment Architecture and its

diagram
An application deployment architecture allows you to describe the overview
elements that must be deployed to implement an application architecture:
Deployable Application modules, Deployable Data Modules as well as Package

connections used for data exchange.

Travallar Friand - Mobils Deployment Architecture

e
TepRTCP
#Fight Baokeg Backend
FTravel Mansgemsnt Backong

Modeling technical architectures
Describing an Application Deployment Architecture

An deployment architecture diagram includes the following elements:
e Deployable Application Packages,

A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/... or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

e Deployable Data Packages,

A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/PaaS cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).

w For more details on deployable data packages, see Adding a
deployable application package in an application deployment
architecture diagram.

® microservices,

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

e Technical Server Port and Technical Client Port,
A server port is a point used to open communications with a

technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).

w For more details on technical ports, see Adding technical ports.
e Package Connections.

1 A package connection represents a connection requirement

between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

w You can create a Application Deployment Architecture by creating
an Application Deployment Architecture diagram directly from the
application that interests you.

w For more details on technical communications, see Describing
package connections.

Creating an Application Deployment Architecture

To create an application deployment architecture from the Applications navigation
menu:
1. Open the Application Deployment page of the concerned application.
The list of application deployment architectures appears.

139

140

2. Click New.
A dialog box opens to select an application deployment architectures
template.

w For more details on application deployment templates, see
Deployment Architecture Templates.

3. Select Empty application deployment architectures template and
click OK.
w For more details on application deployment templates, see
Deployment Architecture Templates.
A new application deployment architectures is created with its diagram.
m You can also create a Application Deployment Architecture by

creating an Application Deployment Architecture diagram directly from
the application that interests you.

Using an application deployment architecture diagram

To create an application deployment architecture diagram from an existing
application deployment architecture diagram:
1. Open the Application Deployment page of the concerned application.
2. Right-click the application deployment architecture that interests you
and select Create diagram.
3. In the dialog box, select Deployment Architecture.
The diagram opens in the edit area. The described deployment
architecture components appears in the diagram.

w When an application deployment architecture is created, an
application deployment architecture diagram automatically created.

Adding a deployable application package in an application deployment
architecture diagram

Adding a deployable application package

A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/... or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud

service or IT server model).
To add a deployable application package:
1. In the objects toolbar of the application deployment architecture, click
Deployable Application Package button.

2. Click in the described application frame.
A dialog box prompts you to choose the Deployable Application

Package that you wish to use.
3. Then, create the deployable application package and click OK.
The deployable application package appears in the diagram.

w For more details on the description of a deployable application
package, see Describing a Deployable Application Package.

Modeling technical architectures
Describing an Application Deployment Architecture

Adding a deployable data package
You add a deployable data package like a deployable application package.

A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/Paa$s cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).

Adding technical ports

Technical ports assure physical transfer of information exchanged between the
deployment architecture components.

A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).

Communication ports comply with network application protocols.

w Network application protocols supported by a communication port
must be compatible with the protocols supported by communication
ports to which they are connected.

To create a technical client port:

1.
2,
3.

4,

In the diagram objects toolbar, click the Technical Client Port button
Click on the frame of the described deployment architecture.

In the technical port creation dialog box, select Network application
protocols and the Network application connection.

Click Add.

The technical port appears in the diagram. The protocol name appears
above the technical port.

Describing package connections

The communications between the deployable application packages and the
deployable data packages can be described by package connections. A package
connection supports the network application protocol defined to create the
communication.

A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

To create a package connection, you must first create the line and then specify
network application protocols that are used.

To create a package connection:

1.
2.
3.

In the diagram objects toolbar, click package connection.
Draw a line between the two communicating objects.

In the package connection creation dialog box, select Network
application protocol and the Connection Type.

141

142

4,

Click the New button.
The package connection appears in the architecture. The protocol name

appears along the line.

w [n a package connection Characteristics page, the Used
Communication Format field specifies the Communication Format.
The selected format appears in the diagram in addition to the protocol
name.

Describing a Deployable Application Package

A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/... or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

Defining the software technologies used by a deployable
application package

A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

To specify the software technologies required for a Deployable Application
Package:

1.

2,

Open the Characteristics property page of the Deployable
Application Package that interests you.

In the Required Software Technologies section, click Connect.

In the selection dialog box, select the Software Technology that you
want to use.

The software technologies selected appear in the icon of the deployable
application package.

Defining a deployable data package components

To specify, for example, that a Cloud Service is used by a deployable application
package:

1.

2
3.

Open the Characteristics property page of the Deployable
Application Package that interests you.

Unfold the Deployable Application Component section.

In the Prescribed Computing Device field, click Connect.

In the dialog box, select the Cloud Service that you want to use.

m For more details on Cloud Services, see Using Cloud Services.

Modeling technical architectures
Describing an Application Deployment Environment

DESCRIBING AN APPLICATION DEPLOYMENT ENVIRONMENT

The Application Deployment Environment is considered as the center of the
integration and all required deployments of partner applications or microservices.

An application deployment environment diagram represents the
subject deployment application architectures, the partner deployment
application architectures and the partners microservices, as well as the
techniques used for their communications.

Accessing the list of application deployment environments

To access the list of application deployment environments from the Application
navigation menu:
1. Open the Deployment Architecture page of the concerned application.
The list of application deployment architectures appears.
2. Open the Environment page of the concerned architecture deployment

application.
The list of application deployment environments appears.

Describing an Application Deployment Environment

An application deployment environment is described by an application deployment
environment diagram.

Traveller Frierd Depleyment Environment

| # Payments Application -
| Depoyment Architecture

3 243 [1CP]

‘snrrCPl }# Customer Repository = |

HTTE] # Traveller Friend - Mobile
L Duployment Archibectue

Deplyment Architecture =
HTTP

00 [Ter]

1 # Flight Locator i
1 Application - Deployment |
[Architecture i

An application deployment environment diagram includes the following elements:
e Subject application deployment architectures and Partner application
deployment architectures,

An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and
identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An

143

application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)

e des microservices partenaires,

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

e Package Connections.

L A package connection represents a connection requirement

between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

Creating an Application Deployment Environment

To create an Application Deployment Environment from Application navigation
menu:
1. Open the Deployment Architecture page of the concerned application.
The list of application deployment architectures appears.
2. Open the Environment page of the concerned architecture deployment
application.
3. Click New button.
The new application deployment environment appears in the list.

Using an Application Deployment Environment Diagram

To create an Application Deployment Environment Diagram from Application
navigation menu:
1. Open the Deployment Architecture page of the concerned application.
The list of application deployment architectures appears.
2. Open the Environment page of the concerned architecture deployment
application.
3. Select the application deployment environment that interests you and
click Create Diagram button.
4. In the dialog box, select Application Deployment Architecture
Diagram.
The application deployment environment diagram opens in the edit area.
The Subject application deployment architecture is placed in the center of
the frame.

144

Modeling technical architectures
Describing an Application System Deployment Architecture

DESCRIBING AN APPLICATION SYSTEM DEPLOYMENT
ARCHITECTURE

The Application System Deployment Architecture consists of the set of Application
Deployment Architectures that must be coordinated to cover required dependencies

between them.
An application system deployment architecture describes one of the
configurations possible for deploying an application system. It contains
the deployment architectures of application components and specifies
the communication protocols (and port numbers) they use to
communicate with each other.

Accessing the list of application system deployment architectures

To access the list of application system deployment architectures from the

Application Systems navigation menu:
) Open the Deployment Architecture page of the concerned application

system.
The list of application system deployment architectures appears.

Describing an Application System Deployment Architecture

An application system deployment architecture is described by an application
system deployment architecture diagram composed of the following elements:

Public Management - Deployment Architecture

Public Portal - Application
Deployment Architecture

HTTF

80 [TCP]
¥ Finance Plus - Application HTTPS
Deployment Architecture

80 hcp][
443 [TCP]
HTTP # HR Management - Application
Deployment Architecture

An application system deployment architecture diagram includes the following

elements:
e Application Deployment Architecture,

An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and

145

identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An
application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)

w For more details on application deployment architectures, see
Describing an Application Deployment Architecture.

e Application System Deployment Architectures,

An application system deployment architecture describes one of the
configurations possible for deploying an application system. It contains
the deployment architectures of application components and specifies
the communication protocols (and port numbers) they use to
communicate with each other.

w For more details on application system deployment architectures,
see Describing an Application System Deployment Architecture.

® microservices,

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

e Deployable Data Packages,

A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/Paas cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT

server model).

w For more details on deployable data packages, see Describing an
Application System Deployment Architecture.

e Package Connections.

A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

e Technical Server Port and Technical Client Port,

A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).

w You can create an application system deployment architecture
diagram is the same way than an application deployment architecture
diagram. For further details, see .For further details, see Using an
application deployment architecture diagram.

Properties of an application system deployment architecture

The complete description of an application system deployment architecture can be
accessed from its property pages.

146

Modeling technical architectures
Describing an Application System Deployment Architecture

The Components property page of an application system deployment architecture
provides access to:

e its Name,
e Its Owner, by default the application specified when it was created.
e the text of its description.

With Hopex IT Architecture an application system deployment architecture is
described by other property pages.

The Components page that enables access to the described architecture
components.

w For more information on the components of an application system
deployment architecture diagram, see Describing an Application System
Deployment Architecture.

e The Deployment Architecture enables access to the following tabs:
e Application System Deployment Architecture,

An application system deployment architecture describes one of the
configurations possible for deploying an application system. It contains
the deployment architectures of application components and specifies
the communication protocols (and port numbers) they use to
communicate with each other.

e Deployment Architecture, to access to the list of application
deployment architectures,

An application deployment architecture describes one possible
deployment configuration of an application. It contains the deployment
architectures to be hosted, recommends hosting architectures and
identifies required communication techniques (communication protocols
and port numbers) they use to communicate with each other. . An
application may have several deployment architectures (E.g.:
autonomous installation, horizontal or vertical deployment, etc.)

w For more details on application deployment architectures, see
Describing an Application Deployment Architecture.

e Owned Microservice Deployment, to access the list of microservices,

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

e The Data Packages section provides access to the list of Deployable
data packages,

A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/Paa$S cloud service or IT server model). Architect can also
prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).

w For more details on deployable data packages, see Adding a
deployable application package in an application deployment
architecture diagram.

e The Deployment Connections section provides access to the list of
connection packages.

A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection

147

148

to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

w For more details on connection packages, see Describing package

connections.
The Technical Ports section enables access to the following tabs:

e Server Port
A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

e Client Port

A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,

HTTP, etc.).
w For more details on technical ports, see Adding technical ports.

The Reports page, used to access the different reports available on the described
application system deployment architecture.

Modeling technical architectures
Deployment Architecture Templates

DEPLOYMENT ARCHITECTURE TEMPLATES

Deployment architecture templates are used to simplify the creation of your
deployment architecture. The new application deployment architecture components
are automatically created using the deployment architecture template components.

Then, the new deployment architecture can be updated or modified.

Some deployment architecture templates are provided with the solution.

Accessing the list of deployment architecture templates

To access the list Deployment architecture templates of a repository:

) From the Administration navigation menu, select Templates >
Deployment Architectures.
The list of deployment architecture templates appears.

Describing an Application Deployment Template

Components of an Application Deployment Template

An application deployment template is described by an application deployment
template diagram composed of the following elements:

e Application Deployment Templates, used to create the deployable
application packages of a new application deployment architecture.

A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/... or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

w For more details on deployable Application packages, see Adding a
deployable application package in an application deployment
architecture diagram.

e Data Deployment Templates, used to create the deployable data
packages of a new application deployment architecture.

A deployable data package represents a data part of an application
deployment that must be hosted and accessed by application services
(code) to run. Each deployable data package is associated to required
technologies (for data hosting and access) and can host several data
structures. Architect can also prescribes a kind of hosting artefact
(IaaS/Paa$ cloud service or IT server model). Architect can also

149

prescribes a kind of hosting artefact (IaaS/PaaS cloud service or IT
server model).

w For more details on deployable data packages, see Adding a
deployable application package in an application deployment
architecture diagram.

microservices,

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

m For more details on deployable microservices, see Describing a
microservice with Hopex IT Architecture,

Technical Server Port and Technical Client Port,

A server port is a point used to open communications with a
technical architecture or an application technical area in compliance with
a particular communication protocol (SMTP, HTTP, etc.).

A client port is a point used to request the opening of
communications from a technical architecture or an application technical
area in compliance with a particular communication protocol (SMTP,
HTTP, etc.).

w For more details on technical ports, see Adding technical ports.

Package Connections.

A package connection represents a connection requirement
between deployable packages. A client (package) requires a connection
to a server (package). The connection is defined by a Connection Type
and can be characterized with technical flow measures.

w You can create a Application Deployment Architecture by creating
an Application Deployment Architecture diagram directly from the
application that interests you.

m For more details on Package Connections, see Describing package
connections.

Creating an Application Deployment Template

To access the list of the application deployment templates of a repository:

1.

From the Administration navigation menu,, select Templates >
Deployment Architectures.

The list of application deployment Models is displayed.

Click New.

The application deployment template appears in the list.

w For more details on the creation of application deployment
diagrams, see Using an application deployment architecture diagram.

Presentation of standard Deployment Architecture Templates

Deployment architecture templates are provided to simplify the creation of your
application deployment architectures.

150

Modeling technical architectures
Deployment Architecture Templates

“3 Tiers Architecture (RDBMS)” Application deployment template

3 Tiers Architecture (RDBMS)

& Electronic Mail ol W Server
& Office Application L
& Reporting

8471

&ROBMS

Diagram of the “3 Tiers Architecture (RDBMS)” Application deployment template

“Mobile Application Architecture” Application deployment template

Mobile Application Architecture

>\b Mobile Package

&Electronic Mail
4nnternet Browser

HTTP
80 [TCP]

>t Web Server

HTTP

80 [TCP]

x Mobile Backend
& Application Server

Diagram of the “Mobile Application deployment” deployment architecture template

8471 8471
— WRDBEMS — &yBackup
PIM PIM Sroams

151

152

“Standard Web Application Architecture” Application deployment template

Standard Web Application Architecture

PIM » &ysStorage

Diagram of the “Standard Web Application Architecture™ Application deployment template

Using an Application Deployment Template

To create an application deployment architecture from a deployment architecture
template:
1. Open the Deployment Architecture page of the concerned
application.
2. Select the Application Deployment Template.

w For more details on application deployment templates, see
Deployment Architecture Templates.

Modeling technical architectures
Deployment Architecture Templates

3. Click the Next button.
A dialog box displays the list of components of the new architecture.

Creation of Application Deployment Architecture - Deployable Packages x

If new packages are created, it is possible to specify which software technologies are required: Hopex proposes the technologies identified directly in the template or those that cover X

The new deployment architecture based on the template can reuse existing deployable packages of the application or create new ones.
the technical functionalities required by the template.

@ Display template diagram

-]
_ e ——— FE i gt T el _

B &= Application Packages
B} Client New Package Client
& Electronic Mail
& Office Application
& Reporting
B). server New Package Server
& Application Server
B & Data Packages

B J){ Database New Package Database

4. (Option) In the Create/Reuse Template column, select the
components you want to reuse.

w Only components connected to another Application Deployment
Architecture of the same application can be reused.

5. Click OK.
The diagram opens and Then, you can modify the content of your new
application deployment architecture.

w For more details about the update of an Application deployment
templates, see Using an application deployment architecture diagram.

153

DESCRIBING SOFTWARE TECHNOLOGIES

This description is based on Software Technologies and Software technology Stacks.

Describing a Software Technology

A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

Accessing the list of software technologies

To access the list of software technologies from the Inventories navigation menu:

) Select Deployment > Software Technologies.
The list of software technologies appears in the edit area.

The properties of a software technology

The complete description of a software technology is accessed from its properties
pages.
The Characteristics property page of a software technology provides access to:
e its Name,
e its Owner, by default during creation of the technology, the current
library.
its Code,
its Vendor,
e the Comment text.

The Characteristics property page provides access to the following sections:
e Technologies Types that defines the concerned software technology,
e Responsibility,
e Owned Realizations which represent the list of technology capabilities
covered by this software technology.

w For more details on functionalities, see Describing functionalities
with Hopex IT Architecture.

w For more details on realizations, see Describing the fulfillment of a
Functionality.

154

Modeling technical architectures
Describing Software Technologies

Describing a Technology Stack

A software technology stack is a set of software technologies.

A software technology is a basic component necessary for operation
of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

Accessing the list of technology stacks

To access the list of software technology stacks from the Inventories navigation
menu::
) Select Deployment > Software Technologies.
The list of software technology stacks appears in the edit area.

Properties of a software technology stack

The complete description of a software technology stack can be accessed from its
property pages.
The Characteristics property page of a software technology stack provides access
to:
its Name,
its Owner, by default, on creation of the software technology stack, the
current library.
e its Code,
e the Comment text.

The property page provides access to the following sections:
e Components which provides access to the list of concerned software
technologies,
e Responsibility,
¢ Owned Realizations which represent the list of technology capabilities
covered by this software technology stack.

m For more details on technology capabilities, see Describing
functionalities with Hopex IT Architecture.

w For more details on realizations, see Describing the fulfillment of a
Functionality.

155

156

USING CLOUD SERVICES

The Cloud Service (considered as an IoT device) can be used in a
deployment architecture. The Cloud service picture appears in the frame

of the corresponding deployable package.
You can import in your Hopex repository Cloud Services Catalogs such as: Amazon
(AWS), Microsoft (Azure) and Google (GCS). The imported files contain the name
and the pictures of the Cloud Services proposed by the editor.

w The Cloud Services are provided by your administrator using the
module import features. For more details, see Modules > Importing a

Module documentation.

Accessing the list of Cloud Services
To access the list of elements concerning the Cloud services from the Inventories

navigation menu::
1. Select Cloud Service Catalogs.
2. Unfold the Vendor Catalog folder.
The list of Cloud Service Catalogs appears in the edit area.
3. Expand the folder of a vendor catalog.
The following folders provide access to different elements:
Service Cloud : provides access to the Cloud services of the catalog.
Technology capability map: consolidates the set of technology
capability maps covered by the Cloud services of the catalog.
w For more details on functionalities, see Describing functionalities
with Hopex IT Architecture.
Publishing Vendor: with Hopex, a vendor is represented by an org-

[]
unit.
To view the functional coverage of the Cloud services connected to the technology

capability map:
1. Select the technical functionality map of the catalog that interests you.

2. Open the Reporting > Building Block Breakdown Report property
page.

Modeling technical architectures
Using Cloud Services

3. Select Cloud Service in the Show field.

Amazon WS Technical Functionality Map
Characteristics Structure Assignment Reporting Activity Feed

Building Block Breakdown Report w
Parameters

v Root Object

v Architecture Building Blocks

v Fulfilling Solution Building Blocks

Refresh the report

Levels Al v Show Cloud Service = Show legend

Amazon WS Technical Functionality Map

b At e |

Amazon-Managed-Workflows-for- Amazon-Sumerian AWS-Custom-Billing-Manager Amazon-Connect AWS-Professional-Services
Apache-Airflow

AWS-Cost-Explorer Amazon-WorkDocs AWS-Support
Amazon-AppFlow

Savings-Plans Amazon-Chime AWS-Activate
Amazon Simple-Quene Service

Reserved-Instance-Reporting Alexa-For-Business AWS-Managed-Services
AWS-Console-Mobile-Application

Amazon-Corretio Amazon-WorkDocs-SDK AWS-IQ
Amazon MQ

AWS-Budgets Amazon-Pinpoint AWS-Training-Certification

Cloud Service properties

The Characteristics property page of a Cloud service provides access to:
e jts Name,
e the Service Type,
e the Description text,
e The Fulfillments section that provides access to the technology
capabilities covered by the Cloud Service

w For more details on a component fulfillment, see Describing the
fulfillment of a Functionality.

e the Using Application Deployment Architecture section that
provides a tree of all the application architectures using the Cloud service
through a deployable application package component.

w For more details on the use of Cloud services by a deployable
application package, see Describing a Deployable Application Package.

157

Aligning IT and Business .

ALIGNING IT AND BUSINESS

The goal of this step, on a strategic level, is to check the suitability between the business capabilities
of the enterprise and the logical architecture elements that deliver them.

This consists of the following tasks:

SNENENEN

Describing Logical Application Architecture

Describing Business Capabilities with Hopex IT Architecture,
Using Functionalities with Hopex IT Architecture,

Using fulfillment mechanisms.

159

160

DESCRIBING LOGICAL APPLICATION ARCHITECTURE

Hopex IT Architecture provides ways to define logical application architectures
that represent ideal architectures. These representations make it possible to design
logical structures for application architectures, to rationalize exchanges between
these structures and to identify the data used. Logical application architectures can
then be compared with the implemented architectures to detect gaps between the
real and the ideal.

Describing a Logical Application System with Hopex IT
Architecture

A project for describing the logical architecture of an information system inventories

the existing logical application systems and their interactions.
A logical application system is an assembly of other application
architectures, logical applications and end users, interacting with
application components to implement one or several functions.

A Logical Application System can be described by two types of diagram.

e an application system structure diagram that represents the different
components of the application system and their interactions.

m For more details on application system structure diagrams, see
Describing a logical application system structure.

e A scenario of logical application system flow diagram is used to describe
the exchanges inside the described logical application system in a
specific context.

w For more details on scenarios of flows diagrams, see Using a flow
scenario sequence diagram.

Accessing the list of logical application systems with Hopex IT Architecture

To access the list of logical application systems form Inventories navigation menu:
) Select Software > Logical Software Architecture in the navigation

menu.
The tree of logical application systems appears.

Creating a Logical Application System

To create a logical application system:

1. From the Inventories navigation menu, select Software > Logical
Software Architecture.

2. Click the New button.
The Creation of a Logical Application System dialog box appears.

3. Enter the Name of your logical application system as well as its Owner
and click OK.
The new logical application system appears in the list.

Aligning IT and Business
Describing Logical Application Architecture

Logical Application System Properties

The Characteristics properties page for a logical application system provides
access to:
its Name,
its Owner, by default, during creation of the logical application system,
the current library.
e the text of its Description.

With Hopex IT Architecture, a logical application system is described by the
following pages:

e the Properties page, used to specify the properties that appear in the
diagrams at the bottom of the described object frame.

e the Component page provides access to the list of application system
components described in its different diagrams as well as the
communications that exist between them.

w For more information on the components of a logical application
system, see Describing a logical application system structure.

e the Implementation page is used to specify the logical or physical
elements that implement the described logical application system.

w For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Describing a logical application system structure

With Hopex IT Architecture, the components of a logical application system and
their exchanges are described in a logical application system structure
diagram.

The logical application system structure diagram, for
managing "Internet Purchase Requests", presents different
logical applications, access to a logical database as well
as service and request points for "Book" or "Order".

uPurchasing Management

Internal Purchasing Service Supply & Equipment

Orderin,
Purchase a

Intgnal [Orddring
Purclasing

Serfice (‘H Frder mumber

Product Information -

Get Product
Information

“ Purchasing request Management” Logical application system structure diagram

161

A logical application system structure diagram includes the following elements:
e end users

The end user represents an organizational unit interacting at the
boundaries of an application system or a logical application system.

w For more details on adding end users, see Adding an end user to
the logical application system structure diagram.
e [ogical Application System Components and Logical Application
Components
A logical application is a set of application functionalities that is
independent of a particular implementation. For example, the

classification of all purchase request processing applications
implemented in an enterprise.

w For more details on adding applications, see Adding a logical
application to a logical application system structure diagram.

e Service interactions between the components representing requests for
services
A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or

processes, as well as external org-units. The content of this interaction
is described in a service interface.

w For more details on interaction services between logical application
system components, see Managing Service Interactions.
e service points

A service point is a point of exchange by which an agent offers a
service to potential customers.

e request points

A request point is a point of exchange by which an agent requests a
service from potential suppliers.

w For more information on access points, see Describing Service and
Request Points.

Adding an end user to the logical application system structure
diagram

To create an end user:
1. In the objects toolbar of the logical application system structure
diagram, click End User.
2. Click in the frame of the described logical application system.
An addition window prompts you to choose the Object Type that you

wish to use:
3. For example, select the Org-unit object type.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

162

Aligning IT and Business
Describing Logical Application Architecture

4. Select the org-unit that interests you and click OK.
The actor appears in the diagram.

Adding a logical application to a logical application system
structure diagram

To describe that a logical application system implements a logical application:

1. In the objects toolbar of the logical application system structure
diagram, click Logical Application component and click in the frame
of the logical application system described.

An addition dialog box prompts you to select the Logical Application

used.
2. Select an existing logical application.
3. Click OK.

The logical application appears in the diagram.

Describing Logical Applications with Hopex IT Architecture

A logical application is a set of application functionalities that is

independent of a particular implementation. For example, the
classification of all purchase request processing applications
implemented in an enterprise.

Accessing the list of logical applications with Hopex IT Architecture

To access the list of logical application form Inventories navigation menu:
1. Select Software > Logical Software Architectures and unfold tje
dossier Logical Application System folder.
2. Unfold the logical application system tree that interests you and unfold
the Logical Application Component folder

Creating a logical application

To create a logical application from the Inventories navigation menu:

1. Select Software > Logical Software Architectures.
The list of logical application systems appears.

2. Open the Components property page of the application system of your
choice.

3. In the list of component types, select Logical Application Component
and click New.
The Create a Logical Application window appears.

4. Enter the Name of your logical application and click OK.
The new logical application appears in the list.

163

164

Logical Application Properties

The Characteristics properties page of the logical application provides access to:

e jts Name,

e its Owner, by default during creation of a logical application, the current
library.

e the text of its Description.

With Hopex IT Architecture, a logical application is described by the following
pages:
e the Properties page, used to specify the properties that appear in the
diagrams at the bottom of the described object frame.
e the Implementation page is used to specify the logical or physical
elements that implement the logical application.
e The following pages are available: Components, Executed Processes
as well as Reports.

w For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Logical Application System Environment Description

A logical application system environment presents a logical
application system use context. It describes the service interactions
between the logical application system and its external partners, which
allows it to fulfill its mission and ensure the expected functionalities.
A Logical Application System Environment can be described by two types of
diagram.

e A scenario of logical application system environment flow diagram is
used to describe the exchanges inside the described logical application
system environment in a specific context.

w For more details on scenarios of flows diagrams, see Using a flow
scenario sequence diagram.

e Alogical application system environment diagram, used to represent the
service interactions between the internal logical application system, its
users and the partner logical systems.

w For more details on application system environment diagrams, see
Using the Logical Application System Environment Diagram.

Aligning IT and Business

Describing Logical Application Architecture

Example of logical application system environment

A logical application system environment diagram describes the service interactions
between the main internal components of the environment described and the

external components.

& Purchasing Environment

Customer

Sales
"c ‘Customer identification

Boutique Sub- Purchase request Finance
System managing

B

Customer identification

CRM Sub-System

Logical application system environment diagram

Accessing the list of logical application system environments

Purchase requests are formulated by users in conditions
specified by “Sales” and “Marketing” services.

The internal logical application system "Purchase request
processing"”" uses a logical "Delivery" application system
that is external to the described environment.

To access the list of logical application systems environments form Inventories

navigation menu:

Select Software > Logical Software Architectures.
The list of logical application systems appears.

Open the Environment page of the logical application system of your

1.

The list of logical application system environments appears.

Creating a logical application system environment

To create a logical application system environment:

1.

2,

From the Inventories navigation menu, select Software > Logical
Software Architecture.
Open the Environment page of the logical application system that
interests you and click New.
The Creation of Logical Application System Environment window

165

166

3. Enter the Name of your application system environment and click OK.
The new logical application system environment appears in the list.

Logical application system environment properties

The Characteristics properties page for a logical application system environment
provides access to:
e its Name,
e its Owner, by default during creation of a logical application system
environment, the current library.
e the text of its Description.

w For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Using the Logical Application System Environment Diagram

A logical application system environment is used to represent the service
interactions between the internal logical application systems, its users and the
partner logical application systems.

A logical application system environment diagram includes:
e Jogical application systems that represent the logical application systems
internal to the described environment.
In the example, this is the logical application system
"Purchasing Requests Processing".
A logical application system is an assembly of other application

architectures, logical applications and end users, interacting with
application components to implement one or several functions.

e partner logical application systems that represent the logical application
systems external to the described environment.

In the example, this is the logical application system
"Delivery".
A partner logical system is a logical application system external to
the environment of the described logical application system. The partner
logical system can be a service supplier or a service consumer with
respect to components of the logical application system.
e Org-Units and Position types that represent the user category of services
provided by the environment.
e Service interactions between the components representing requests for
services.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction

is described in a service interface.
w For more details, see Creating a Service interaction.

Aligning IT and Business
Describing Business Capabilities with Hopex IT Architecture

DESCRIBING BUSINESS CAPABILITIES WITH HOPEX IT
ARCHITECTURE

The goal of this step, on a strategic level, is to check the suitability between the
business capabilities of the enterprise, the functionalities required and the
applications that deliver them.

Business capabilities examples with Hopex IT Architecture

A business capability defines an expected skill.

A business capability represents a specific ability that an
organization possesses or needs to develop to deliver a particular
business outcome.

For example, to respond to a customer satisfaction
objective, the organization must be able to provide
services conforming to contractual commitments.

A business capability map describes what the enterprise is capable of producing for
its internal needs or for meeting the needs of its clients. It is thus based on the main
business capabilities of its activity at a given moment.
A business capability map is a set of business capabilities with their
dependencies which define a framework for an enterprise stage.
For example, the standard ability to manage "Operational
Activities" is based on the business capabilities to
process "Supply", "Sales" and "Complaints", "Order
Management" and "Customer Management".

Information Technology Human Resources

= Enterprise Architecture Manage Knowledge

« IT Service Support Manage Payroll

« Portfolio Management Manage the Timetable

= Technology Strategy Track Employee's Time Off

- Business Administration
Core Operations

= Investments
« Legal
= Reserves Management

Financial
Management

= Claims

- Customer Management
« Manage Fulfillment

« Procurement

= Sales

= Accounting
« Billing

w For more details on managing a business capability map, see the
"Describing a business capabilities map" chapter in the Hopex IT
Business Management guide.

167

168

The description of business capabilities and functionalities is particularly interesting
if business capabilities are associated with the functionalities that fulfill them.

Furthermore, if applications are connected to the functionalities they implement,
they are indirectly connected to business capabilities. In Hopex IT Business
Management , a report allows to check the functional coverage of your
applications.

w For more details on the business capabilities reports, see Building
Block Breakdown report.

Using the Business Capability Maps with Hopex IT Architecture

A business capability map is a set of business capabilities with their
dependencies which define a framework for an enterprise stage.

Accessing the list of business capability maps

To access the list of business capability maps from Capabilities navigation menu:

) Select Capabilities > Business Capabilities.
The business capability map list appears

Creating a business capability map

To create a Business capability map from the Capabilities navigation menu:
1. Select Capabilities > Business Capabilities.
The business capability map list appears
2. Click the New button.
The Creation of Business Capability Map window appears.

3. Enter the Name of the new business capability map and click OK.
The new business capability map appears in the list.

The properties of a business capability map

The Characteristics property page of Capabilities map provides access to:
e its Owner, by default during creation of the object, the current
enterprise.
its Name,
the text of its Description.

Aligning IT and Business
Describing Business Capabilities with Hopex IT Architecture

With Hopex IT Architecture, a business capability map is described by the
following pages:

e the Structure page that specifies the list of business capability map
components owned and the dependencies between them.

w For more details on business capability map components, see
Creating a business capability map.

e the Fulfillment page, which provides access to the application
environments or logical application system that implement the capability
map.

w For more details on managing a business capability map fulfillment,
see Creating Fulfillment of a Business capability.

w For more details on other property pages proposed by Hopex IT
Architecture, see Hopex IT Architecture properties pages content.

Creating a business capability map diagram

A business capability map can be described by two types of diagram.

e A business capability decomposition tree is a diagram that describes the
tree structure of a business capability. Focusing on a particular business
capability, this type of diagram enables summary representation of
business capability breakdown into sub-business capabilities.

e A business capability map diagram that describes the set of business
capabilities of the structure.

To create a business capability map diagram:

1. Open the Diagrams page of the business capability map that interests
you.

2. Click Create a diagram.

3. Select Capability Structure.
The Business Capability Map Diagram appears. The frame of the
business capability map described appears in the diagram.

w You can construct this diagram in tabular input mode.

L

w For more information on using tabular entry, see the “"Diagrams in
Tabular Entry Mode" in the Hopex Common Features guide.

Using Business Capabilities with Hopex IT Architecture

A business capability represents a specific ability that an

organization possesses or needs to develop to deliver a particular
business outcome.

Accessing the list of business capabilities with Hopex IT Architecture
Business Capabilitues can be accessed from Business Capability Maps list.

To access the list of business capability maps from Capabilities navigation menu:

1. Select Capabilities > Business Capabilities.
The business capability map list appears

169

2. Open the Structure page of the business capability map that interests
you.

3. Unfold the Owned Capability Component section.
The list of business capabilities appears in the edit area.

Creating a business capability

To create a business capability from the Capabilities navigation menu:

1. Select Capabilities > Business Capabilities.
The business capability map list appears

2. Open the Structure page of the business capability map that interests
you.

3. In the Owned Capability Component section, click New.
The Creation of Business Capability window appears.

4. Enter the Name of the business capability and click OK.
The new business capability appears in the list.

Describing a business capability

A business capability is described in more detail by the following elements:

e a more detailed granularity capability breakdown;

e the expected effects of the capability;

e The required functionalities, see Defining the functionalities associated
with Business Capabilities;

e the dependencies between capabilities (expected effect of one dependent
from the result of the other).

w For more details on managing a business capability, see the

"Describing a business capability" chapter in the Hopex IT Business
Management guide.

For example, the business capability grouping operational
activities is broken down into several business
capabilities: "Customer management”, "Supply", "Sales",
"Complaints” and "Order Management".

Customer Management Claims
Determine client situation
Get customer information
Read of a Customer Properties
Read of the Customer Credit History

Update some Customer Properties Manage

Fulfillment

Procurement

Display the Catalog Content Manage Product Acquisition
Manage Vendors

170

Aligning IT and Business
Describing Business Capabilities with Hopex IT Architecture

A business capability can be described by three types of diagram.

e The Business Capability Decomposition Tree is a diagram that describes
the tree structure of a business capability. Focusing on a particular
business capability, this type of diagram enables summary
representation of business capability breakdown into sub-business
capabilities.

e The Business Capability Tree is a diagram that describes the tree
structure business capability.

e A business capability map diagram that describes the set of business
capabilities of the structure.

Defining the functionalities associated with Business Capabilities

A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.

Each business capability is associated with functionalities that it is able to provide
as well as skills that it needs to ensure its functionalities.

For example, the “Customer Management” needs the “get
customer information” functionality.

w For more information on enterprise functionalities, see Describing
functionalities with Hopex IT Architecture.

To associate a functionality with a business capability:

1. Open the Expected Capabilities properties window of the business
capability.

2. In the Expected Functionality section, click New.
An add functionality dialog box appears:

3. You can connect an existing functionality or create a new one by entering
the name of the new functionality

4. Click OK.
The expected functionality appears in the list of functionalities associated
with the business capability.

The functionalities and the expected effects appear in the diagrams, at the bottom
of the frame of the capability described.

w For more information on enterprise functionalities, see Describing
functionalities with Hopex IT Architecture.

171

172

USING FUNCTIONALITIES WITH HOPEX IT ARCHITECTURE

A functionality is an aptitude expected from an equipment.

A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute
a specific operation. If it is a software functionality, it can be provided
by an application.

A functionality map describes all the functionalities the enterprise is able to cover
for its internal needs or for meeting the needs of its clients.

A functionality map is a set of functionalities with their
dependencies that, jointly, define the scope of a hardware or software
architecture.

Sales IT Functionalities

Determine client situation Add Information into a Repository

Dispatch Commercial Offering Allow Service Accesses Through the Web

Display the Catalog Content Contrel Application Accesses Depending on Licenses
Get customer information Control Network Input-Output

Get stock information Ensure the Email Transmission

Manage the Contacts Ensure the Information Confidenniality

Provide Key Performance Indicators Install an Application

Read of a Customer Properties Maintain the Applications
Read of the Customer Credit History Prevent Malicious Software Intrusion

Human Resources

Financial i
Gérer les factures en attente |dentify Employees
M P I Manage Knowledge
lanage Payro Manage Payroll
Print the Invoices Manage the Timetable
Provide Agency Revenue Statictics Track Employee's Time OFf

Example of a functionality map

w For more details on Functionality Maps management, see
“"Describing the Functionality Map” of Hopex IT Business
Management guide.

Describing a Functionality Map with Hopex IT Architecture

A functionality map is a set of functionalities with their
dependencies that, jointly, define the scope of a hardware or software
architecture.

Accessing the list of functionality maps with Hopex IT Architecture

To access the list of business capabilities from Capabilities navigation menu:

) Select Capabilities > Functionalities.
The list of functionality maps appears in the edit area.

Aligning IT and Business
Using Functionalities with Hopex IT Architecture

Creating a functionality map

To create a functionality map from the Capabilities navigation menu:
1. Select Capabilities > Functionalities.
The list of functionality maps appears in the edit area.
2. Click New.
3. Modify the Name of the functionality map and click OK.
4. Select Functionality Map.
The functionality map appears in the list.

Creating a functionality map diagram

A functionality map can be described by two diagram types:

e a functionality decomposition tree is a diagram that describes the tree
structure of a functionality. Focusing on a particular functionality, this
type of diagram enables summary representation of functionality
breakdown into sub-functionalities.

e A functionality map used to represent the set of functionalities of the
described map.

To create a functional map diagram:
1. Right-click the functionality map that interests you and select Create
Diagram.
2. Select the diagram type.
The diagram opens in the edit area. The frame of the functionality map
described appears in the diagram.

To create a functionality in a functionality map diagram and describing the
dependencies between the functionalities, see “Describing the Functionality Map”
chapter in the Hopex IT Business Management guide.

The properties of a functionality map

The Characteristics properties page of a functionality map provides access to:
e its Owner, by default, when creating the enterprise or business
capability map, this is the current library.
e jts Name,
e the text of its Description.
With Hopex IT Architecture, a functionality map is described by the following
pages:
e the Structure page is used to specify a list of components owned and
the dependencies between them.

w For more information on the components of a functionality map,
see and Creating a Functionality Diagram with Hopex IT Architecture.

¢ the Implementation property page is used to specify the environments
that make it possible to create the described functionality map.

w For more details on implementation of functionalities, see Creating
Fulfillment of a Functionality.

173

174

Describing functionalities with Hopex IT Architecture

A functionality is a service required to perform a work. This
functionality is generally necessary within an activity in order to execute
a specific operation. If it is a software functionality, it can be provided
by an application.
The Characteristics properties page of a functionality provides access to:
e its Owner, by default during creation of the functionality, the current
enterprise.

e its Name,

e the text of its Description.

e its Desired capability effect.

w For more information on the desired capbility effects, see Creating
a Functionality Diagram with Hopex IT Architecture.

Creating a Functionality Diagram with Hopex IT Architecture

The Functionality Decomposition Tree is a diagram that describes the tree
structure of a functionality. Focusing on a particular functionality, this type of
diagram enables summary representation of functionality breakdown into sub-
functionalities.

To create a functionality diagram:
1. Right-click the functionality that interests you and select Create
Diagram.
2. Select Functionality Diagram.
The diagram opens in the edit area. The frame of the functionality
described appears in the diagram.

To create a functionality in a functionality diagram, see "Creating a functionality
component in a functionality map diagram" chapter in Hopex IT Business
Management guide.

To define the dependencies of sub-functionalities, see "Defining Functionality
dependencies" chapter in Hopex IT Business Management guide.

Describing a Technology Capability Map with Hopex IT Architecture

A technology capability map is a set of technology capabilities and
their dependencies that, together, defines the scope of a hardware or
software architecture.

Accessing the list of technology capability maps with Hopex IT Architecture

To access the list of technology capability maps from Inventories navigation
menu:
) Select Deployment > Technology Capabilities.
The list of technology capability maps appears in the edit area.

Aligning IT and Business
Using Functionalities with Hopex IT Architecture

Describing a technology capability

A technology capability is the ability to deliver a technology service
which is required by a technology artifact or an application.
With Hopex IT Architecture, the use of technology capabilities and technology
capabilit maps is identical to that of the functionalities and functionality maps.
w For more details on the operation of functionality maps and

functionalities, see Describing a Functionality Map with Hopex IT
Architecture et Describing functionalities with Hopex IT Architecture.

Describing a hardware capability

A hardware capability is the ability to deliver a physical outcome
which is required by an organizational resource in order to perform its
work. This hardware capability is generally necessary within a
computing process in order to execute a specific operation.

With Hopex IT Architecture, the use of hardware functionalities and hardware

functional maps is identical to that of the functionalities and functionality maps.
w For more details on the operation of functionality maps and
functionalities, see Describing a Functionality Map with Hopex IT
Architecture et Describing functionalities with Hopex IT Architecture.

To access the list of hardware capability maps from the Inventories navigation

menu:

} Select Hardware > Hardware Capabilities.
The list of hardware capabilities appears in the edit area.

175

176

USING FULFILLMENT MECHANISMS

The fulfillment mechanism is used to connect an element which corresponds to what
we know how to do or what we want to do, to a way of realizations that are
represented by:
e Concrete elements, such as applications or application systems.
e Elements at a conceptual level, that is upstream of organizational and
technical choices.

Describing Fulfillment of a Business Capability

This involves connecting the business capability, which corresponds to what we
know how to do or what we want to do, to a way of achieving that which is
represented by:

e Jogical applications or logical application systems, for example, at a
conceptual level, that is upstream of organizational and technical
choices.

A logical application system is an assembly of other application

architectures, logical applications and end users, interacting with
application components to implement one or several functions.

e applications or application systems, for example, at a technical level.

For example, constructing the business capability map on the one hand and the
logical application system environment on the other hand, you can check that the
business capabilities are implemented by the logical applications.

w Conceptual representations are made before organizational and
technical choices.

Creating Fulfillment of a Business capability

A business capability can be implemented either by an application or application
system, or at a conceptual level, by a logical application or logical application
system.

To associate an application with a business capability, you must create a business
capability fulfillment.
A business capability implementation is the physical agent (e.g. an
Application System) or the logical agent (e.g. a Business Function) that
implements the capability.
To specify that a business capability is fulfilled by an existing application:
1. Open the Fulfillments property page of the business capability that
interests you.
2. Click New.
The creation window for a business capability implementation opens.
3. Check the Add a component and connect a type box and select the
type Application.

Aligning IT and Business
Using fulfillment mechanisms .

In the applications list that appears, select the application you wish to
connect and click OK.

The capability realization appears in the list with the name of the selected
application.

Analyzing enterprise capability implementation

Hopex IT Architecture provides reports to display realization coverage of business
capability elements by operational elements such as applications, and according to
different perspectives: Organizational, Business/Data, Logical/Physical Application,

etc.

w For more details on fulfillment reports for enterprise capabilities,
see Building Block Breakdown report.

Describing the fulfillment of a Functionality

The aim here is to connect the functionalities, which correspond to what is expected
to achieve the objectives, to the means of implementation represented by
applications (or application systems) or, at a conceptual level, to /ogcical
applications (or logical application systems) .

w Conceptual representations are made before organizational and
technical choices.

Creating Fulfillment of a Functionality

A function can be implemented either by an application or application system, or at
a conceptual level, by a logical application or logical application system.

To associate an application with a functionality, you must create a functionality
fulfillment.

An implementation describes the relationship between a logical

entity and a physical entity that implements it. The physical entity gives
the list of logical entities that it implements.

To specify that a functionality is implemented by a new application:

1.

2,

Open the Fulfillments property page of the functionality that interests
you.

Click New.

The creation window for a functionality implementation opens.

Check Ajouter un composant avec un nouveau type and select the
Application type.

Click OK.

An application creation dialog box opens.

Enter the Name and the Owner of your application and click OK.

The functionality fulfillment appears in the list with the name of the
selected application.

m The components implemented by technology or hardware
capabilities appear in the diagrams representing the functionality.

177

178

Identifying the applications associated with functionalities

Applications cover functionalities associated with business capabilities. Hopex IT
Architecture provides reports to display realization coverage of functionalities by
operational elements such as logical or physical application components:

w For more details on this breakdown report, see Building Block
Breakdown report.

w An example of technology capabilities fulfillment by cloud services
is provided, see Accessing the list of Cloud Services

Access to

implementations from a service point

Services provides by software building blocks (applications or application services)
can be accessed by service points.

A service point is a point of exchange by which an agent offers a
service to potential customers.

w For more information on service points, see Describing Service and
Request Points.

w The services requested are defined by a service interface assigned
to the service point. For further detail on service interfaces, see
Describing a service interface.
The services provided by software building blocks can address the fulfillments of
functionalities or business capabilities.

As a consequence, a service point can be connected to one of the fulfillments of the
business capability that owns it.

To specify the business capability fulfillments adressed by a service point:
1. Open the Published Fulfillments property page of the service point
that interests you.
2. Select the tab corresponding to the fulfillment that interests you.

w Only the fulfillments of the object that owns the service point can
not be connected to & service point

MODELING IT INFRASTRUCTURES

Functionalities proposed by Hopex IT Architecture for modeling complex infrastructures enable
representation of equipment, IT and organizational resources required for system deployment and
operation: service interactions between components, communication means supporting these
service interactions, and services offered and used by the modeled architecture.

All the modeled infrastructure elements can be accessed from the navigation menu Infrastructure
> Infrastructure.

The following points are covered here:

Describing Resource Architectures.

Describing IT Infrastructures.

Describing the Computing Devices.

Describing communications in an IT Infrastructure.

ANENENEN

179

180

DESCRIBING RESOURCE ARCHITECTURES

A resource architecture comprises equipment, IT and organizational resources
required for operation of a complex infrastructure (system).

Communications between these components are represented by service
interactions and the equipment means supporting these service interactions are the
communication channels.

A resource architecture is the combination of physical and
organizational assets configured to supply a capability.
Services offered by the system to its users are represented by service points.
Service points are physically supported by communication ports that enable access
to communication means of the system.

Describing Resource Architectures

A resource architecture is the combination of physical and
organizational assets configured to supply a capability.
To create a resource architecture from the Infrastructure navigation menu:
1. Select Infrastructure > Resource Architecture.
The tree of resource architectures appears.
2. Select Resource Architecture and click New > Resource
Architecture.
The Creation of a Resource Architecture window opens.
3. Enter the Name of your architecture as well as its Owner and click OK.
The new resource architecture appears in the tree.

Creating a Resource Architecture Assembly Diagram:

To create a Resource Architecture Assembly Diagram:

1. Select Infrastructure > Resource Architecture.
The tree of resource architectures appears.

2. Select the resources architecture that interests you and click Create
Diagram.

3. Select Structured diagram.
The resource assembly diagram appears. The frame of the described
resource architecture map appears in the diagram.

Using a Resource Architecture Assembly Diagram

Adding a Resource Architecture

To describe that a resource architecture, such as a “call center”, implements another
resource architecture, such as a “customer management service”, for example, you
will add the resource architecture used in the user resource architecture diagram.

Modeling IT Infrastructures
Describing Resource Architectures

To add a resource architecture to a Resource Architecture Assembly Diagram:

1.

2,

In the objects toolbar of the Resource Architecture Assembly Diagram,
click Resource Architecture.

Click in the frame of the Resource Architecture Assembly Diagram.

An addition dialog box prompts you to select a resource architecture.
Select an existing resource architecture and click OK.

m To create a resource architecture, simply enter its name and click
Create button.

Adding an IT Infrastructure or a Resource Configuration

An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.

w For more details on IT infrastructures, see Describing IT
Infrastructures.

A resource configuration is a set of physical and human resources
configured to provide a business capability.

w For more details on resource configurations, see Describing a
resource configuration.

To describe that a resource architecture is based on IT resources such as a
communication network, workstations housing applications, you will add IT
Infrastructure type components to the Resource Architecture Assembly Diagram.

An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.

w For more details on IT infrastructures, see Describing IT
Infrastructures.

To create an IT Infrastructure:

1.
2.

In the diagram objects toolbar, click IT Infrastructure.

Click in the diagram frame.

An addition dialog box prompts you to select the IT infrastructure to be

deployed.

Select the IT infrastructure that interests you and click OK.

The IT infrastructure appears in the diagram.
w To create an IT infrastructure, simply enter its name and click
Create button.

w In the same way, you can add a resource configuration in the
Resource Architecture Assembly Diagram. For more details on resource
configurations, see Describing a resource configuration.

Adding an Org-Unit or a Position Type

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external

181

182

org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

To describe that a Resource Architecture such as a call center uses operators to take
calls and handle requests, you will create a Position Type component.

To add a Position Type to a Resource Architecture Assembly Diagram:
1. In the objects toolbar of the Resource Architecture Assembly Diagram,

click Position Type.
2. Click in the frame of the resource architecture described.
An addition window prompts you to choose the Position Type that you
wish to use:
3. Select the Position Type concerned and click OK.
The Position Type appears in the diagram.

m To create a position type, simply enter its name and click Create
button.

w In the same way, you can add an org-unit in the Resource
Architecture Assembly Diagram.

Describing the Services in a Resource Architecture Assembly
Diagram
A resource architecture is created to assure one or several services.

Expected and realized services are represented by:
e service points

A service point is a point of exchange by which an agent offers a
service to potential customers.

® request points
A request point is a point of exchange by which an agent requests a
service from potential suppliers.
w For more details, see Service points and Request points.

Describing Service interactions in a Resource Architecture
Assembly Diagram

In a resource architecture assembly diagram, Service Interactions enable
representation of exchanges between organizational entities.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction

is described in a service interface.
Exchange terms are defined by a service interface assigned to the service
interaction.

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

Modeling IT Infrastructures
Describing Resource Architectures

You can define service interactions between:

e Two components of resource architecture type to represent exchanges
between these entities,

e A component of resource architecture type and an IT infrastructure to
represent the terms of use of the equipment resource by the
organizational resource. For example, you can represent that operator
hardware use is arranged by booking.

e two components of IT infrastructure type to represent the terms of use
of one IT resource by another in the context of the modeled resource
architecture.

e a service point and one or more resource architecture type components
to represent implementation of the service within the resource
architecture,

e a component of resource architecture type and a request point to
represent that the entity calls a resource of an external organization.

w for further details, see .For further details, see Service interactions.

Channels and communication ports
In a resource architecture, network channels support the transfer of information
from one hardware asset to another.

w For more details on creation of these channels and the associated
communication protocols, see Network channels.

Communication ports enable connection of resource architecture physical assets
with external equipment elements.

Describing a Resource Architecture Environment

A business architecture environment represents the relationships of
a business functional area with its partners.

Creating a resource architecture environment

To create a resource architecture environment using the Infrastructure navigation
menu:
1. Select Infrastructure > Resource Architecture.
The tree of resource architectures appears.
Select the resource architecture that interests you.
3. Open the Environment property page.
The list of resource architecture environments appears.
4. Click New.
The new resource architecture environment appears in the list.
5. Open the properties of the resource architecture environment to modify
its Name and its Owner.

N

183

184

The properties of a resource architecture environment

The Characteristics properties page of resource architecture environment
provides access to:
e its Owner, by default during creation of the object, the current
enterprise.
e jts Name,
e the text of its Description.

With Hopex IT Architecture, a resource architecture environment is described by
the following property pages:

e The Component page which provides access to the list of internal and
partner components of resource architecture environment.

e The page Component wich provides access the diagrams.

e The Reports page provides access to the reports available for object.

To create a resource architecture environment diagram

To create a resource architecture environment diagram:
1. Open the Environments page of the resource architecture that interests
you.
2. Select the resource architecture environment that interests you and
click Create Diagram.
3. Select Structured diagram.
The resource architecture environment diagram appears.

Describing a resource architecture environment diagram

Adding a Resource Architecture

A resource architecture is the combination of physical and
organizational assets configured to supply a capability.

To add a resource architecture to a resource architecture diagram environment:
1. In the objects toolbar of the resource architecture environment, click
Resource Architecture.
2. Click in the frame of the resource architecture environment described.
A dialog box prompts you to select the implemented resource
architecture. You can select an existing resource architecture or create a
new one.
w In the case where the resource architecture you want to use does
not yet exist in the repository, simply enter its name.
3. Click OK.

Creating a Partner Resource Architecture

To describe that an external resource architecture is implemented in the described
environment, you will add a resource architecture partner component in the
environment diagram.

A partner resource architecture is the installation of an external

resource architecture in another resource architecture or an
environment.

Modeling IT Infrastructures
Describing Resource Architectures

To create a Partner Resource Architecture:

1. In the resource architecture environment diagram toolbar, click Partner
Resource and select Resource Architecture.

2. Click in the frame of the resource architecture environment described.
An addition dialog box prompts you to select a resource architecture to
add. You can enter the name of a new resource architecture.

3. Click OK.

Creating a human asset

To describe that the resource architecture environment services are used by
customers, for example, you will create a position type or an org-unit.

A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

w For more details on creating a human asset, see Adding an Org-
Unit or a Position Type.

Describing communications

The elements below allow you to describe the technical and organizational
communications:

e Ports and network channels,

w For further details, see .For further details, see Describing technical
communications.

e Service interactions, service and request points,

w For further details, see .For further details, see Describing the
services communications.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

Describing a resource configuration

A resource configuration is a set of physical and human resources
configured to provide a business capability.

185

186

Creating a resource configuration

To create a resource configuration from the Infrastructure navigation menu:
1. Select Infrastructure > Resource Configuration.
The list of resource configurations appears.
2. Click New.
The Creation of a resource configuration window opens.
3. Enter the Name of your resource configuration as well as its Owner and

click OK.
The new resource configuration appears in the list.

Creating a resource configuration diagram

To create a resource configuration diagram:
1. Select the resource configuration and click Create a diagram.

2. Select Structured diagram.
The resource configuration diagram opens.

Using a Resource Configuration Diagram

In a resource configuration diagram, you can insert:
e IT Infrastructures; see Describing an IT infrastructure

An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.

e JoT Devices,

An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight

history management
e T networks; see Describing an IT network

An IT network is set of IT equipment components (e.g.: routers,

switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down

into sub-networks.
e Hardware elements, see Describing an Hardware,

Non-IT Hardware can embed computers. Together with their
embedded computers, they provide information and IS services.
Examples: Connected Truck with Delivery Calendar Application and
connected Drone with Online Payment Application. Hardware device can
also provide hardware functionalities. Example: Connected fridge

Modeling IT Infrastructures
Describing Resource Architectures

providing ordering functionalities and of course a freezing hardware
functionality and connected drones fly and provide Online Payment.

e Position types or Org-Units.

A position type represents a status assigned to an individual or a
group of individuals with the aim of defining an organization or a
hierarchy.

An org-unit represents a person or a group of persons that
intervenes in the enterprise business processes or information system.
An org-unit can be internal or external to the enterprise. An internal
org-unit is an organizational element of enterprise structure such as a
management, department, or job function. It is defined at a level
depending on the degree of detail to be provided on the organization
(see org-unit type). Example: financial management, sales
management, marketing department, account manager. An external
org-unit is an external entity that exchanges flows with the enterprise.
Example: customer, supplier, government office.

w For more details on creating a human asset, see Adding an Org-
Unit or a Position Type.

e Ports and network channels, see Describing technical communications.
e service and request points, see Describing the services communications.
e Service Interaction, see Describing technical communications.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction

is described in a service interface.

Describing an Hardware

Creating an Hardware

Non-IT Hardware can embed computers. Together with their
embedded computers, they provide information and IS services.
Examples: Connected Truck with Delivery Calendar Application and
connected Drone with Online Payment Application. Hardware device can
also provide hardware functionalities. Example: Connected fridge
providing ordering functionalities and of course a freezing hardware
functionality and connected drones fly and provide Online Payment.

To create an Hardware element from the Inventories navigation menu:

1. Select Hardware > Hardware.
The list of Hardware elements appears.

2. Click New.
The created hardware element appears in the list.

Creating a Hardware Assembly Structure Diagram

To create a hardware assembly structure diagram:
1. Select the hardware you are interested in and click Create a diagram.

2. Select Structured diagram.
The Hardware Assembly Structure Diagram opens.

187

188

Using a hardware assembly structure diagram

In a Hardware Assembly Structure Diagram, you can insert:
e [T servers and Computing devices, see Describing a Computing Device,

An IT Server is an IT component providing a service to users
connected via an IT network. This IT component can house databases
and run applications.

A computer device is a device which provides a computing service
to the end-users directly. This computer can house databases and run
applications. This is, for example, a workstation, a laptop or a
smartphone.

e JoT Devices, see Describing a Computing Device,

An IoT device is both a hardware device and a computing device

which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight
history management

e Hardware Component, see Describing an Hardware,

e Communication ports and network channels, see Describing technical
communications.

e service and request points, see Describing the services communications.

e service interactions.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

w For more information about service interactions, see Describing the
services communications.

Modeling IT Infrastructures
Describing IT Infrastructures

DESCRIBING IT INFRASTRUCTURES

Describing an IT infrastructure

An IT Infrastructure is composed of several connected computer
devices (IT network nodes or computing systems) and computer
networks.

You can describe the components of an Infrastructure in an infrastructure assembly
diagram.

Creating an IT infrastructure

To create an IT infrastructure from the Infrastructure navigation menu:
1. Select Infrastructure > IT Infrastructures.
The IT Infrastructures tree deplays.
2. Select the IT Infrastructures file and click New > IT Infrastructure.
The Creation of IT technical device window appears.
3. Enter the Name of your infrastructure as well as its Owner and click

OK.
The new IT Infrastructure pops up in the tree.

Creating an Infrastructure Assembly Structure Diagram

To create an infrastructure assembly structure diagram:
1. Select the IT infrastructure and click Create a diagram.

2. Select Structured diagram.
The infrastructure assembly structure diagram opens in the edit zone.

Using an infrastructure assembly structure diagram
In an infrastructure assembly structure diagram, you can insert:

You can insert in this diagram:
e [T servers and Computing devices, see Describing a Computing Device,

An IT Server is an IT component providing a service to users
connected via an IT network. This IT component can house databases
and run applications.

A computer device is a device which provides a computing service
to the end-users directly. This computer can house databases and run
applications. This is, for example, a workstation, a laptop or a
smartphone.

e JoT Devices, see Describing a Computing Device,

An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video

189

190

camera with live IP video feed, connected weighting scale with weight
history management

e Network devices, see Describing a Computer Network Device,

An IT device can host and run Software Technology. Conjointly with
its hosted software, it provides services. This consists of, for example:
Wifi Access Point, Firewall, router, switch, printer, Hard Drive.

e IT Network Components, see Describing an IT network,

An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.
e Ports and network channels, see Describing technical communications.
e service and request points, see Service points see Request points.

e service interactions.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.

w For more information about service interactions, see Describing the
services communications.

The Infrastructure description report allows you to analyze the infrastructure
components and the expected relationships between them to verify that each
element described in the diagram hosts a software or hardware component.

w fFor further details, see .For further details, see Infrastructure
Description Report.

Describing an IT network

An IT network is set of IT equipment components (e.g.: routers,
switches, firewalls) that allow remote communications between
computing devices (e.g.: IT server). An IT network can be broken down
into sub-networks.

Creating an IT network

To create an IT network:
1. From the Inventories navigation menu, select Infrastructure > IT

Networks.
The list of IT networks appears.

2. Click New.
The IT Network Creation window appears.

3. Enter the Name of your network as well as its Owner and click OK.

Creating an IT network
An IT network is described by an infrastructure assembly structure diagram.

To create an infrastructure assembly structure diagram from an IT network:
1. Right-click the IT network and select Create a diagram.

Modeling IT Infrastructures
Describing IT Infrastructures

2. Select Structured diagram.

The infrastructure assembly structure diagram opens in the edit zone.

w For more details on this type of diagram, see Using an
infrastructure assembly structure diagram.

Describing a Facility

Creating a facility

A facility is a model of site of interest for the enterprise. Examples:

Data Center, Factory or Outlet

To create a facility:

1.

From the Inventories navigation menu, select Infrastructure >
Facilities.
The list of facilities appears.

Click New.
The Creation of facility dialog box appears.

Enter the Name of your facility as well as its Owner and click OK.

To create a resource configuration diagram from a facility

A resource configuration is described by a resource configuration diagram.

To create a resource configuration diagram from a facility:

1.

2.
3.

From the Inventories navigation menu, select Infrastructure >
Facilities.

Right-click the facility and click Create a diagram.

Select Structured diagram.

The resource configuration diagram opens in the edit zone.

w fFor more details on this type of diagram, see Using a Resource
Configuration Diagram.

191

192

DESCRIBING THE COMPUTING DEVICES

Describing a Computing Device

Accessing the list of computing devices

To access all the different types of computing devices:
) From the Inventories navigation menu, select Infrastructure >

Computing Devices.
The list of all computing devices appears:

e JoT Devices,

An IoT device is both a hardware device and a computing device
which provides cvombined hardware and information services to the
users using it directly. As a hardware device, it embeds sensors - e.g.
accelerometer - which provide data to the embedded computing device.
As a computing device, it can host data stores or run applications.
Examples: smartwatch with GPS tracker, on-line surveillance video
camera with live IP video feed, connected weighting scale with weight

history management
e IT Servers,

An IT Server is an IT component providing a service to users
connected via an IT network. This IT component can house databases
and run applications.

e C(Cloud services

The Cloud Service (considered as an IoT device) can be used in a
deployment architecture. The Cloud service picture appears in the frame
of the corresponding deployable package.

w For more information on Cloud services, see Using Cloud Services.

e Computer devices

A computer device is a device which provides a computing service
to the end-users directly. This computer can house databases and run
applications. This is, for example, a workstation, a laptop or a
smartphone.

Creating an Computer Device

To create Computer device:
1. From the Inventories navigation menu, select Infrastructure >
Computig Devices
The different computing device types are sorted out in folders.
2. Select the folder corresponding to the type of computing device you want

to create and click New.
3. Enter the Name of your computing device as well as its Owner and click

OK.
The new computing device appears in the list.

Modeling IT Infrastructures
Describing the Computing Devices

Creating a Computing Device Assembly Diagram

To create a computing device assembly diagram:

1.
2,

Right-click the computing device and click Create Diagram.
Select Structured diagram.
The computing device assembly diagram opens in the edit zone.

You can insert the following in a computer assembly diagram:

deployable Package Hosts, see Adding a deployable application package
in an application deployment architecture diagram,

A deployable application package is a split of application code
according to technical criteria for hosting purpose. For example, it may
be N tiers, Front End/Back End/... or GUI/Business Logic/Database etc...
Each deployable application package is associated to required
technologies (for running) and can host code for several IT services.
Architect can also prescribes a kind of hosting artefact (IaaS/PaaS cloud
service or IT server model).

software technology hosts,

L A software technology is a basic component necessary for operation

of business applications. Software technologies include all basic
software such as: application server, electronic mail server, software
components for presentation, data entry, storage, business information
sharing, operating systems, middleware, navigators, etc.

microservice hosts

A microservice is a software component that can be deployed
autonomously, but which does not directly provide an end user service.
It can interact with other application services, applications or application
systems. This is a deployable software component that uses software
technologies. For example: an authentication service, a PDF file printing
service.

data store hosts,

A data store provides a mechanism to update or consult data that

will persist beyond the scope of the current process. It enables storage
of input message flows, and their retransmission via one or several
output message flows.

ports and network channels,
service and request points,
service interactions.

w For more details on the creation of service interactions, service and
request points, channels and associated communication protocols, see
Describing communications in an IT Infrastructure.

193

Describing a Computer Network Device

Accessing the list of computer network devices

The types of computer network devices commonly available in Hopex IT
Architecture are:

Hub,

Printer,
Modem,
Firewall,

Wifi Hotspot,
Bridge,
Network Device,
Router,
Satellite,
Switch.

To access the list of a specific type of computer network device:
1. From the Inventories navigation menu, select Infrastructure >
Computer Network Devices
2. Unfold the file corresponding to the type of device you are interested in.
The list of computer network devices searched for displays.

Creating a Computer Network Device

To create a Printer-type computer network device, for example:

1. From the Inventories navigation menu, select Infrastructure >
Computer Network Devices

2. Select the file corresponding to the type of network device you are
interested in.

3. Click New.

4. Enter the Name of your network device and its Owner, and click OK.
The new computer network device pops up in the list.

194

Modeling IT Infrastructures
Describing communications in an IT Infrastructure

DESCRIBING COMMUNICATIONS IN AN IT INFRASTRUCTURE

In an IT Infrastructure, communications are based on:
e service points, request points, and service interactions for
communications related to the service,
e ports and network channels, for technical communications.

Describing the services communications

Service interactions

Service interactions show the exchanges planned between the organization entities.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction
is described in a service interface.
Exchange terms are defined by a service interface assigned to the service
interaction.
A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

You can define service interactions between:

e Two components of resource architecture type to represent exchanges
between these entities,

e A component of resource architecture type and an IT infrastructure to
represent the terms of use of the equipment resource by the
organizational resource. For example, you can represent that operator
hardware use is arranged by booking.

e two components of IT infrastructure type to represent the terms of use
of one IT resource by another in the context of the modeled resource
architecture.

e a service point and one or more resource architecture type components
to represent implementation of the service within the resource
architecture,

e A component of architecture use type and a request point to represent
that the entity calls a resource of an external organization.

For more information on service interaction management terms, see Managing
Service Interactions.

195

196

Service points

Services provided by infrastructure elements are represented by service points.

A service point is a point of exchange by which an agent offers a
service to potential customers.

The service id requested according to specific terms that are defined by a service
interface assigned to the service point.

A Service Interface is a template of a contract between entities

(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,

buyer..).
The resources activated to carry out a service are connected to the service point by
service interactions. If the activation of several resources is necessary, several

service interactions must be created between the service point and the architecture
resources.

To create a service point, see Describing Service and Request Points.

Request points

A request point is used to represent the use of an external service.

A request point is a point of exchange by which an agent requests a
service from potential suppliers.

The service is requested according to specific terms that are defined by a service
interface assigned to the request point.

A Service Interface is a template of a contract between entities

(organizational, IT ...). The contract is described by available operations

Z)vhich c)an be triggered trough messages exchanged by roles (vendor,
uyer..).

The resources emitting a request are connected to the request point via a service
interaction.

Troublexhooting
Reqest

Support Request

Operatar

In the example, request points represent service requests
made between call center operators and other organizations.

The request point creation procedure is identical to that for service points. For
further details, see .For further details, see Describing Service and Request Points.

Modeling IT Infrastructures
Describing communications in an IT Infrastructure

Describing technical communications

Communication ports

Communication Ports are physical points of communication that can be defined in
technical infrastructures and resource architectures.

A communication port is a physical point of communication with a
resource. It adheres to the specific communication protocol. A
communication port implements service and requests points.

Communication Ports assure physical transfer of information exchanged on service
points and request points.

Communication ports comply with specific "Communication Protocols". See Network
communication protocols.

Network channels

The network channels connect hardware resources between each other, to
organizational resources or to communication ports.
A network channel is a physical connector between resource
elements. It supports service interactions defining communication

protocols between physical resources It connects external resource
elements through their Communication Ports.

Creating a network channel

To create network channel:
1. In the object inserting bar of the resource assembly diagram, click

Network channel -
2. Draw a link between the two communication entities.
The channel appears directly in the diagram.

To define the communication protocol associated with the channel:
1. Open the Supported Protocols property page and click Connect.
2. In the query window that appears, select the communication protocol
that interests you and click Connect.
The protocol name appears alongside the channel.

Network communication protocols

A Communication Protocol is supported by network channel.

A communication protocol is a set of standardized rules for

transmission of information (voice, data, images) on a communication
channel. The different layers of protocols can handle the detection and
processing of errors, authentication of correspondents, management of

routing.
For example, an HTTPS protocol is based on an HTTP protocol for transport, those
protocols are based on TCP, which is itself based on Ethernet.

197

198

A user may wish to build a customized layer of communication protocols and assign
these to communication ports and communication channels.

w Communication protocols supported by a communication port must
be compatible with the communication ports to which they are
connected.

Connecting a Service Interaction to a Network Channel

To indicate that a service interaction is supported by network channel:
1. In the resource assembly diagram objects toolbar, click the link button.
2. Draw a link between the service interaction and network channel
supporting it.
A dotted line appears in the diagram.
To access the list of service interactions supported by a network channel:
) Open the Managed service interactions property page of the network
channel you are interested in.
The name of the service interaction appears in the list.
w You can use the Connect button to connect other interactions to
network channel.

ACCESSING THE SOFTWARE DESIGN

Hopex IT Architecture offers the tools to assist architects in specifying updates to their IT system.

m To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.

The following points are covered here:

v UML modeling of data.
v Describing Batch Processing.
v Defining User Interfaces.

199

200

UML MODELING OF DATA

Hopex IT Architecture provides the tools required to model logical data via class

diagrams and data models.
m To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.

Using data area and data views concepts, you can detail a logical data structure in

a particular use context.

A data view represents the scope covered by an element of a data
model or a data area. A data view is based on the selection of several
classes connected in the specific context of the view.

w For more details on creating and updating a data model, see the
"Data Model" chapter in the Hopex Data Architecture guide.

The different logical view concepts are described in the paragraph.

UML package

A package is used to represent the static structure of a system, particularly the
types of objects handled in the system, their internal structure, and the

relationships between them.
The package is an owner element. It provides a namespace for the elements that it
consolidates.

Accessing the Software Design
UML modeling of data

The package allows you to classify elements referenced in a project. You can create
sub-packages in a package to classify objects in finer detail, for example actors of

a project.
Urgent Purchase Requests
SRS Purchase Actors
Spare Parts Purchase
.-
_| =]
Boat Rental Request
--------- =

=]

Urgent purchase requests are provided to process purchase
of spare parts and boat rental requests. In both of these
cases, users are actors of the purchasing domain.

Class diagrams are used to graphically represent the elements of a package.

w For more details on building a class diagram, see The Class
Diagram.

Data models

Like a package, a data model is used to represent the static structure of a system,
particularly the types of objects handled in the system, their internal structure, and
the relationships between them.

Data diagrams are used to graphically represent the elements from a data model.

For more details on creating and updating a data model, see The data model.

201

202

Example

The data model of the "Purchase Request Automation" project is presented below.

Representation 1 & Stock Catalog
Offices)
Catalog code Contracts
Completion date
] Mame
1 Start date
1
Purchase
Requests
1
1 Suppliers
0.1) 1.7
Purchase Orders I Products

The application manages purchase requests, orders and
product stock levels in each of the representation offices.

A centralized catalog of products and suppliers is
installed.

Contracts with referenced suppliers are also accessible
from the application.

Data areas

A Data Area represents a restricted data structure dedicated to the description of a
software Data Store (see Managing Data). It is made of classes and/or data views
and can be described in a Data Area Diagram.

A logical data area is used to define a logical data structure made up of classes and
data views.

A logical data domain is owned by a package and can reference objects held in other
packages.

You can define the access mode (creation, deletion, etc.) to the objects referenced
by a data area by integrating them as components of the data area.

During integration with HOPEX Database Builder, a corresponding physical structure
can be defined via a physical data area. It is made up of tables and table views.

Accessing the Software Design
UML modeling of data

Example

The following data domain diagram represents a data structure relating to Orders;
it describes classes and their relationships in a Whole/Part formalism.

Order Client Address
—Client— Address——
I
Order line
Order line Job

Prod uct&der line

Product Vehicle

Vehicle
L

Cate"gcry
W

Catégory

To address these specific use cases, you can create Data Views in which you can see
and modify the scope covered by the classes.
A data view represents the scope covered by an element of a data

model or a data area. A data view is based on the selection of several
classes connected in the specific context of the view.

203

204

DESCRIBING BATCH PROCESSING

With Hopex IT Architecture, you can describe the sequencing of automated
processing in batch planning structure diagrams.

m To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.

m To see the Batch Processing, open the Options window and
check that IT Architecture > User Interface and Batch Features
(ADES) option is activated.
This type of diagram is used to represent the execution schedule for batches, batch
programs and their organization.

Defining a Batch Process

A batch processing is a set of IT processing operations executed by a computer
without human intervention, generally overnight or at the weekend.

A batch process is described by a batch planning or a Program.

A batch planning defines all the IT processing operations to be
executed on one or several machines over a given time period.

A program is an elementary stage in execution of a batch planning
that consists of running execution of a program using the appropriate
parameters.
A batch planning is a set of batch processes. Each is associated either with a
program or with another batch planning. A batch planning is described by a
batch planning structure diagram.
w For further details, see Building a Batch Planning Structure
Diagram.
A program is a set of batch processes. Each of these can be associated with a
single program. A program is described by a batch program structure
diagram.

w For further details, see Creating a Batch Program Structure
Diagram.

Building a Batch Planning Structure Diagram

A batch planning defines all the IT processing operations to be
executed on one or several machines over a given time period.

Accessing the Software Design
Describing Batch Processing

Creating a batch planning structure diagram

The sequencing of automated processes can be described in a batch planning
structure diagram.

= Dizplay Invoice Forms #% invice Form

| = Inveiee
preparation

. /" Ea Job Call 4l

“Tnvoice printing|

To create a batch planning structure diagram:

1.
2,

Click Design (UML) navigation menu.
Select Batch and Program Implementation > Batch and Program.
The list of batch plannings appears.

Open the Diagrams property page of the batch planning in question and
select Create a diagram..

Creating Batch Planning Structure Diagram.

The diagram opens.

Adding a call for batch processing in the diagram

The components of a batch planning are defined with batch processing calls
that are positioned in the diagram. This can be applied to batch plans or programs.

To add an operating type component to the string structure diagram for batch

process:
1.

Select the Batch Processing Call button and click in the diagram.

The Add a Batch Processing Call dialog box opens.

Click the arrow at the right of the Object Type field and select Batch
Planning in the drop-down list.

Click the arrow at the right of the Short Name field and select the batch
planning that interests you.

Click OK.

The call for batch processing appears in the diagram with the batch
planning icon.

205

206

Defining batch sequencing

To specify the execution order of processes:

1. Click Batch Sequence.

2. Click the initial batch processing call and, holding the left mouse button
down, draw a link to the batch processing call.

3. Release the mouse button.
The link representing the sequencing of the processes appears in the
diagram.

Creating a Batch Program Structure Diagram

A program is an elementary stage in execution of a batch planning

that consists of running execution of a program using the appropriate
parameters.

Creating a batch program structure diagram

The sequencing of the processes of a program can be described in a batch program
structure diagram.

Group Operations
Check Movements
\L E.

Write Report

To create the batch program structure diagram:
1. Open the Diagrams property page of the program of your choice and
click Create a diagram.
2. In the dialog box, select Batch Program Structure Diagram.
The diagram opens.

Adding a programming call to the diagram

The components of an program are defined with programming calls that are
positioned in the diagram.

Accessing the Software Design
Describing Batch Processing

To add a component to a diagram:
1. Select Programming Call and click in the diagram.
The Add a Programming Call dialog box opens.
2. Click the arrow at the right of the Name field and select the Program
that interests you.
3. Click OK.
The program call appears in the diagram.

The execution scheduling of programs is defined by batch sequences, see Defining
batch sequencing.

Using system process batch realizations

A realization mechanism is provided to specify that a system process describes the
execution of a Batch Planning or a Program.

To describe that an batch plan is associated with an application process:

1. Open the Characteristics > Realization property page of the batch
planning that interests you.

2. Click the New button.
The realization creation window opens.

3. In the Object type field, select System process batch realizations
and click Next.

4. Select the application process that interests you and click New.
The system process batch realization appears in the properties page of
the batch plan.

207

208

DEFINING USER INTERFACES

It is possible to describe interfaces connecting services or operations with the
exterior. This description is carried out in a user interface diagram.

m To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.

w To see the User Interfaces, open the Options window and check
that IT Architecture > User Interface and Batch Features (ADES)
option is activated.

Creating a user interface

To create a user interaction using Design (UML) navigation menu:

1. Select User Interfaces.
The list of user interfaces appears.

2. Click New.
3. Enter the name of the interface.
4. Click OK.

Building a User Interface Diagram

To create an interface diagram:
1. Select the User interface that interests you and click Create Diagram
button.
2. In the dialog box, select User Interface Diagram.
The UI diagram opens in the Edit window.

Accessing the Software Design
Defining User Interfaces

Take, for example, the "Flight Reservation" UI diagram.

Departure from Paris h
Destination Rome e

Flight date 09/31/2002

A
| o

Cancel Propose flights...

lights proposal

The interface is presented in the form of a dialog box, in which various fields must
be completed.

e Departure city

e Destination

e Flight date

A button cancels the request, another button opens a second interface.

Drawing the Interface Diagram

The user interface diagram allows you to draw the interface of the operation or
service.

User interface element

Buttons allow you to modify the appearance of the interface:
Text Field

List

Radio Group

Check Box

etc.

To create an element:
1. In the diagram objects bar, select the button corresponding to the
element required, then click in the diagram.
2. In the dialog box that appears, enter the name of the element.
3. Click OK.

209

210

You can also click the User Interface Element button and indicate the element
type in its properties dialog box.

~ Properties of User Interface Element

- Characteristics v

Local name: | peparture place

Owner: v

User Interface Element Type:

£

(Empty)
A Constant
[] Layout R}
Table (Layout)
= Field
| Table

ab Caption
™ Dialog Box
ae Edit Field

User interface event

You can connect an event to a user interface element. In our example, the "Propose
flights" button is connected to an event, which when actuated opens another
interface.

To create an event:

1. Click the Interface event button, then click in the diagram.
2. Enter the name of the event and click OK.

Event type

There are various types of event. An event can be:

e (Click on a button
e Entry in a text field
e etc.

To specify the type of event:
1. Open the Characteristics property page of the sketch.

Accessing the Software Design
Defining User Interfaces

2. In the User Interface Event Type text box, click the arrow and select
Query User Interface Event Type.
The Query dialog box appears:

3. Click Find.
The list of event types appears.

4. Select the type required and click OK.

Connecting the event to an element

To connect the event MMI to an element MMI, there are two possibilities:
e Select the event in the diagram and drag it onto the element.
e Or open the Characteristics properties dialog box of the event and
complete the User Interface Element text box.

211

DESCRIBING INFORMATION EXCHANGES

This chapter explains how to describe service interfaces between the components of a business or
IT architecture.

To simplify the service interface creation, service operation templates and service interface
templates can be used.

Managing Service Interactions;
Describing a service interface.
Describing a Service Operation.
Using a Service Interface Template.

ANENENEN

213

214

MANAGING SERVICE INTERACTIONS

A Service Interaction represents the exchange of information between architecture
components.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction

is described in a service interface.

The content of a service interaction is described by a service interface.

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,
buyer..).

w For more details on service interfaces, see Describing a service

interface.

In a “Purchasing Requests Processing” application system structure diagram, two
service Interfaces are used by the different service interactions.

End User Call Center

o ~

Information requirement

Information requirement

Customer identification

Call

MyCompany.
management

com L O
d Customer identification d

- - - - J-
Adding a service interaction to an application system structure diagram
The clients must be identified before entering an order.

They can enter orders directly from “MyCompagny.com”

application or by using a Call Center.
the “Call Management” application which uses the client

identification service offered by the “MyCompagny.com”

application.

The Call Center uses

Describing information exchanges
Managing Service Interactions

Creating a Service interaction

To create a service interaction:

1. In the objects toolbar for a diagram, click Service interaction ©
Click the entity requesting the service and draw a link to the entity

providing the service.
3. In the add service interaction dialog box, specify the service interface

you wish to use.

w You can also use a new service interface. For more details, see
Creating a service interface.

4. Click Add.

Describing Service and Request Points

In a service-oriented architecture, communication is based on access points:
service points and request points.
A request point is a point of exchange by which an agent requests a
service from potential suppliers.

A service point is a point of exchange by which an agent offers a
service to potential customers.

Service points

An application system, for example, is created to ensure one or more services.
These services are represented by service points.
A service point is a point of exchange by which an agent offers a
service to potential customers.
The service is requested according to precise terms defined by a service interface
assigned to the service point.

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,

buyer..).
w For further detail on service interfaces, see Describing a service
interface.

215

216

Components activated to assure a service are linked to the service point by service
interactions. If it is necessary to activate several components, you have to create
several service interactions between the service point and the system components.

Customer Information
Error Me

Information about customer jw

zZe

Customer
Managment

Information Information requirement a

requirgment
In the example presented here, the IT Service ”“Customer
Management” is activated by the interaction service
“Information request”.
m To create a service point, see Creating a Service Point or a Request
Point.

w The Published Fulfillments property page of the service point
enables the access to the capabilities implemented by the service point
that interests you. To create a service point, see Access to
implementations from a service point.

Request points

A request pointE enables representation of use of a service external to the
described entity.

A request point is a point of exchange by which an agent requests a
service from potential suppliers.

The service is requested according to precise terms defined by a service interface
assigned to the request point.

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,

buyer..).
w For further detail on service interfaces, see Describing a service
interface.

Components that issue a request are linked to the request point by a service

interaction.

Order number

- Payment
Internet Ordering ..(
Crdering
Crdering
ﬂ { Customer identification
B - Customer Information Custbme

Error Meszage . i
) identifjcati
Information about customer =

In the example, request points represent requests for
service executed by the “Email Order Management" IT service
to identifier a customer and issue an order.
w To create a request point, see Creating a Service Point or a Request
Point.

Describing information exchanges
Managing Service Interactions

Creating a Service Point or a Request Point

The process for creating a service point or request point is identical.

A request point is a point of exchange by which an agent requests a
service from potential suppliers.

A service point is a point of exchange by which an agent offers a
service to potential customers.

To create a service point:

1.

In the diagram insert toolbar, click Service Point H

Position the object at the edge of the frame of the described object.

A creation dialog box opens.

Click the arrow to the right of the Service Interface field to define the
service interface enabling activation of this service point, and select, for
example, Connect Service interface.

A query window opens.

Select the service interface associated with this service point and click
Connect.

Click Next.

A dialog box opens proposing a list of the service interface roles that can
be associated with the service point.

w This dialog box is not proposed if there is only one candidate role
that can be associated with the service point.

Select the role that interests you and click OK.
The service point appears in the diagram.

217

218

DESCRIBING A SERVICE INTERFACE

A Service interface represents the exchange of information between architecture

components.

A Service Interaction represents an interaction for service purpose
between entities in a specific context inside or outside a company.
These entities can be enterprise org-units, applications, activities or
processes, as well as external org-units. The content of this interaction

is described in a service interface.
The content of a service interaction is described by a service interface.

A Service Interface is a template of a contract between entities
(organizational, IT ...). The contract is described by available operations
which can be triggered trough messages exchanged by roles (vendor,

buyer..).
A service contract is described by a sequence of operations which are represented:
e By service interfaces used,

LI A service interface use is associated to a service interface. It
enables representation of complex exchanges.

e Or by service operations used.
A service operation use represents the usage of a service operation
in an service interface.

w For further detail on service operations, see Describing a Service
Operation.

Examples of Service Interface Diagrams (BPMN)

A service interface is described by a sequence of steps which are represented:
e By service operations used,
e By service interfaces used.

L1 A service interface use is associated to a service interface. It
enables representation of complex exchanges.

The service interface roles, presented at the border of the frame, represent
participants:

e customer/supplier, or

e sender/recipient

A service interface can be described by involving more than two participants. In this
case, a role is consumer of the service interface and the others are providers.

Describing information exchanges
Describing a service interface

Example of Service Interface Diagram (BPMN)

The service interface diagram associated with the “customer identification protocol
" describes in BPMN formalism the operations executed.

(& Client Stakeholder

& customer identification

«<Client Stakeholder= New client
Information about customer

Customer Identification Service

<Client Data Access Service> Yes
5 customer Information

B Ermror Message

(<Client Stakeholders

Customer creation service

<Client Data Access Services

Service interface Diagram (BPMN) "Customer Identification”

Customer identification protocol starts with a customer
identification step. If the customer is found the service
interface returns customer information, if not, a “customer
creation” service interface is activated.

219

Example of an advanced service interface communication

[Client Stakeolder

& Information requirement

Start Informaton requirement Client Stakeolder
<Opérateur de traitement (FR) »
Customer Process Purchase Request
<Client Stakeholder=

Customer identification Client Data Access Service

<Service de traitement des achats (FR) »

Client Stakeolder

<Client Data Access Service»

Client Stakeolder
<Processing Operator=

| <Customer=

Process General Requests

Purchase Request Analysis

<Client Stakeolder= Requirement Type

Client Data Access Service
<Request Processing Service>

“Information Requirement” Service Interface diagram (BPMN)

The "Information Request" service interface is used by
Center call center to take account of a customer request
online. There are therefore three participants in this
service interface: the customer, the IT applications and
the customer representative who is the effective requester
of the service (in this case the call center).

This service interface consists of identifying the
customer, then analyzing the request. The request is then
processed as a purchase request or as another request if it
is an information request for example.

m The Roles property page provides access to the list of contributor
roles and to the initiator role of a service interface.

Accessing the list of service interfaces

To access the list of service interfaces of a library:

1. From the Environment navigation menu, open the exploration area
Container > Libraries.

2. Unfold the desired library, and then the Service interfaces folder.
The list of service interfaces accessible from the library appears.

220

Describing information exchanges
Describing a service interface .

Creating a service interface

You can create a service interface:

e from a library,
e from a diagram using service interactions, for example.

Whatever the point of origin, you can create service interface in standard mode or
using a service interface template.

w For more details on service interfaces, see Using a Service Interface
Template.

Creating a service interface in standard mode from a diagram

To create a service interface in standard mode, in a diagram, from a service
interaction:

1. In the objects toolbar for a diagram, click Service interaction ©
2. Draw a link between the two communication entities.
3. In add service interaction window, click the arrow at the right of the field
Service interface and select Create a service interface.
The creation window appears.
4. Select the Creation Mode: Standard Creation.
w For more details on service interface template use, see Creating a
service interface from a service interface template.
5. Enter the service interface name in the Name field.
Click OK.
7. In the service interaction creation dialog box, enter the name of the
service interaction using the name of the service interface and click Add.
The service interaction and the service interface are created.

o

Building a Service Interface Diagram (BPMN)

Creating a Service Interface Diagram (BPMN)
A service interface is represented by a Service Interface Diagram (BPMN).

To create a Service Interface Diagram (BPMN) from an interaction service:
1. From the Environment navigation menu, open the exploration area
Container > Libraries.
2. Unfold the desired library, and then the Service interfaces folder.
The list of service interfaces accessible from the library appears.

3. Select the associated service interface and, in its pop-up menu, click
Create Diagram

4. In the dialog box, select Service Interface Diagram (BPMN)
The diagram opens with service interface frame and the two roles
representing consumer and the supplier.

L Aroleis a participant in an interaction service, workflow or process.

It can be the initiator, that is the requester of a service, or it can
represent a sub-contractor carrying out processing outside the service.

221

222

A role is an integral part of the object that it describes, and is not
reusable. It can subsequently be assigned to an org-unit internal or
external to the organization or to an IT component. Examples: client,
traveler.

The events, gateways and sequence flows of your diagram follow the BPMN
standard.

w For more details on events, gateways and sequence flows, see
Managing events, gateways and sequence flows

Defining a Service operation or a Service interface

In a service interface diagram (BPMN), operations are described by:
e Service interfaces used
e Service operations used

L1 A service interface use is associated to a service interface. It
enables representation of complex exchanges.

L A service operation use represents the usage of a service operation
in an service interface.

To create a used service interface used:

1. Select the Service Interface Used =: button and click in the diagram
within the service interface frame.
The service interface appears in the diagram.

2. Open the Characteristics property page of the service interface.

3. Click the arrow to the right of the Specification of a service interface
used box.

4. Select Connect service interface from the drop-down list and choose
the service interface that you want to use.

m The Service operations page provides access to the list of
components of the exchange contract.

Describing information exchanges
Describing a Service Operation

DESCRIBING A SERVICE OPERATION

The content of a service interaction is described by a service interface.

A Service Interface is a template of a contract between entities

(organizational, IT ...). The contract is described by available operations

tv)vhich c)an be triggered trough messages exchanged by roles (vendor,
uyer..).

w For further detail on service interfaces, see Describing a service
interface.

A service interface is described by a sequence of service operations or service
interfaces.

A service operation specifies exchanges between participants.

A service operation diagram describes the sequence flows of a service operation.

¢ Customer Identification

Service art Customer Identification
Service

Information al customer

—

Customer found

Client Stakeholder

"Customer Identification Service" Service Operation Diagram

The customer identification service protocol begins by
sending information enabling identification of the
customer. An error message appears if the customer is not
found, otherwise customer information is sent (customer
identification, status of orders, etc.).

223

Accessing the list of service operations

To access the list of service operations of a library:
1. From the Environment navigation menu, open the exploration area
Container > Libraries.
2. Unfold the desired library, and then the Service operations folder.
The list of service operations accessible from the library appears.

Creating a service operation

You can create a service operation a service interface diagram (BPMN).

w For more details on service operation templates, see Using a
Service Interface Template.

To create a service operation from a service interface diagram (BPMN):

1. Select the Service Operation Used = button and click in the diagram
within the service interface frame.
A service operation use represents the usage of a service operation
in an service interface.
The service operation appears in the diagram.
2. Open the Characteristics property page of the service operation.
3. Click the arrow at the right of the Service operation specification and
select Create a service operation.
The Creation of Operation Joint Action dialog box opens.

4. Enter the Name of your service operation click OK.
The service operation is automatically created.

Describing a Service Operation

Creating a Service Operation Diagram (BPMN)

A service operation is described by a service operation diagram presenting the
sequence flow of messages exchanged.

To create a service operation diagram:

1. From the Environment navigation menu, open the exploration area
Container > Libraries.

2. Unfold the desired library, and then the Service operations folder.

3. Select service operation that interests you and click Create Diagram.

4. In the dialog box, select Service operation Diagram (BPMN)
The diagram opens. The frame of the service operation is positioned and
the two roles (Consumer and Provider) are created.

224

Describing information exchanges
Describing a Service Operation

Creating a message flow with content
You must specify the message flows and their content exchanged between the two

service operation roles.

A message translator is a communication step that translates a
message from a format to another. It can be used for trans-codification,
data type conversion.

LY The content designates the content of a message or an event,
independent of its structure. This structure is represented by an XML
schema linked to the content. A content may be used by several
messages, since it is not associated with a sender and a destination.
There can be only one content per message or event, but the same
content can be used by several messages or events.

To create a message flow and its content:
1. In the service operation diagram, click the Flow With Content button.
2. Click the role that represents the message flow sender and, holding the
mouse button down, draw a link to the message flow recipient.
The Creation of Flow dialog box opens.
3. In the Content drop-down list, select the content you wish to associate

with the flow.
The message flow is displayed with its content in the diagram.

Managing events, gateways and sequence flows
“Start” and “End” events are required in description of the service assured by the

service interface.

An event represents a fact or an action occurring in the system,
such as updating client information. It is managed by a broker. An
application indicates that it can produce the event by declaring that it
publishes it. If an application is interested in an event, it declares that it

subscribes to the event.
In compliance with the BPMN standard, in the object toolbar, several gateway types

are available to you.

[Gateways are modeling elements that are used to control how
sequence flows interact as they converge and diverge within a process.

A sequence flow is a directional link that represents the chronological organization

of the different processing steps.
A sequence flow is used to show the order in which steps of an
service contract will be performed. A sequence flow has only one source
and only one target.
w For more details on events, gateways and sequence flows, see
Managing events, gateways and sequence flows

225

226

USING A SERVICE INTERFACE TEMPLATE

Service interface templates as well as Service operation templates and content
templates simplify the service Interfaces creation by duplicating the components of

the model used.
Then, the service interface be updated or modified.

Presentation of standard service interface Templates

Service interface templates are provided to simplify the creation of your service
interfaces. These service interfaces are supported by service operation templates.

Some service interface templates are provided with the solution.

The service interface template “One way communication”

& Consumer

B One Way Communication

< Consumer:

One Way Communication

e ta
l B{Template) Data

Start

“One way communication” service interface template diagram (BPMN)

This service interface is based on an service operation used noted

communication” between the consumer and the provider.

L A service operation use represents the usage of a service operation

in an service interface.

Describing information exchanges
Using a Service Interface Template

The service operation used represents the content “(Template) Data” exchanged
between the consumer and the provider.

(Template) Data

Invoker Participant

“One way communication” service operation diagram (BPMN)

The service interface template “Request-Response”

@& Consumer

B Request-Response

<Consumer:
Start [Template] Request

B{Template) Response

“Request-Response” service interface template diagram (BPMN)

This service interface is based on an service operation used noted “Request-
Response ” between the consumer and the provider.
A service operation use represents the usage of a service operation
in an service interface.
The service operation used represents the service operations of the contents
“(Template) Request” and “(Template) Response” exchanged between the
consumer and the provider.

-
E
)
2
<

H

a

3
>

1=

Wedpjed paroa

(Template) Response

@ (Template) Response

“Request-Response” service operation diagram (BPMN)

This service operation represents the sending of a request
content and the sending of the response content.

227

228

The service interface template “Publish-Subscribe”

" £ Consumer 1

& Publish-Subscribe

Subscription
Decision

<Consumers
[Template] Subscription Data

Subscription

New
Publication

“Publish-Subscribe” Service interface Diagram (BPMN)

This service interface is based on a service operation used noted “Publish-
Subscribe” between the consumer and the provider. The request for subscription is
sent. An event represents the waiting time before the acceptance for publication.

Accessing the list of service interface templates

To access the list service interface templates of a repository:

} From the Administration navigation menu, select Templates >
Service Interfaces.
The list of service interface templates appears.

In the same way, to access to the list of service operation templates:

) From the Administration navigation menu, select Templates >
Service Operations.
The list of service operation templates appears.

Furthermore, to access the list of content templates:

) From the Administration navigation menu, select Templates >
Contents.
The list of content templates appears.

Creating a service interface from a service interface template

To create a service interface from a list using a service interface template:
1. From the Environment navigation menu, open the exploration area
Container > Libraries.
2. From the library that interests you, create a Service Interface.
3. In the following dialog box, select the Creation Mode: Template
Based Creation

Describing information exchanges
Using a Service Interface Template

4. Select the template that interests you and click Next.
A dialog box displays the list of components of the Service Interface.

Creation of Exchange Contract - Template Creation x

New Contents have been created (from Template definition). They can be renammed directly in the Exchange Contract tree (left part of the wizard) or replaced by existing ones x
(selection is made in right column of the wizard)

_ Existing content selection Content Direction

L] Publish-Subscribe[To be renamed] @
a [To be renamed] - Publication &
[To be renamed] - (Template) Published Data [To be renamed] - (Template) Published Data Invoker Participant <--o Invoked Participant
a [To be renamed] - Subscription®

[To be renamed] - (Template) Subscription Data [To be renamed] - (Template) Subscription Data Invoker Participant o--> Invoked Participant

Refresh

& Consumer. W

B Publish-Subscribe[To be renamed]

Consumsn>
- (Template) Subsciipion Data

‘‘‘‘‘‘‘ 7o be enamed]-

B (Template) Published Data

The name of duplicated components is prefixed with “*[To be renamed]”.
The content templates used are duplicated.
5. Double-click the name you wish to modify.
6. (Option) In the Existing content selection column, select the content
you want to reuse.
As a consequence, the created content
7. Click OK.
The service interface is created.

ww

[To be renamed]” is destroyed.

w Then you can change the service interface components, for
example from its diagram, see Building a Service Interface Diagram
(BPMN).

Creating a Service Interface Template

You can use an existing service interface to create service interface template.

To specify that a service interface is a template:

1. Select the service interface that interests you.

2. Open the Characteristicsproperties page.

3. Check the Interaction Behavior Template box.
The service interface is added to the list of existing service interface
templates.

The service interface template components declared as templates are duplicated
when the service interface template is used.

229

230

To access the list of a service interface template components declared as template:
1. From the Administration navigation menu, select Templates >
Service Interfaces.
2. Open the Template Definition property page of the Service Interface
that interests you.
3. Check the Template box of the components to be duplicated.

Creating a Service Operation Template

To specify that a service operation is a template service operation:

1. Select the service operation that interests you.
2. Open the Characteristicsproperties page.
3. Check the Interaction Behavior Template box.
The service operation is added to the list of existing service operation
templates.
w To access to the list of service operation templates: from the

Administration navigation menu, select Templates > Service
Interfaces.

Hopex IT Architecture Reports .

HOPEX IT ARCHITECTURE REPORTS

Hopex IT Architecture provides facilities for analyzing and tracking the changes implemented in
the IT Infrastructure of your architecture. Hopex Suite uses reports to group sets of repository
objects and study their interactions.

w For more details on reports, see the Hopex Common Features
guide, "Generating Reports”.

Report templates proposed as standard by Hopex IT Architecture offer various analysis
presentation possibilities. Some reports are shared with other solutions, for example Hopex IT
Business Management.

Furthermore, the Exploded Diagram Reports are available on several types of object. This type
of report enables the building of a summary view of a complex object architecture into one single
diagram ; it consists in the generation of an exploded diagram view of a complex object by inclusion
in a diagram describing the root object. The diagrams describing the objects mentioned in the
source diagram, recursively, so that several diagramming levels can appear in one picture.

w For more details, see "Launching the exploded diagram report"”
chapter in the Hopex Common Features guide.

231

232

APPLICATION ARCHITECTURE REPORTS

Technical Architecture Matrix

This report displays the distribution of IT Service of an Application on its Technical

Areas (Application or Data).

Report example

Architecture / Matrice d'architecture technique v

rport Mobile App Client Layer

ort Mobile App Front-End Layer

b MEGA Airport Mobile App Site Service Layer

a MEGA Airport Mobile App Back-End Layer

Report parameters

This consists of defining report input data.

MEGA Alrport Moblle App Client
MEGA Airport Mobile App Site Service

°
2
-
£
=z
o
a
a
=4
a
%
-]
3
<
a
W
=

MEGA Airpert Mobile App Back-End
Service de proposition de voyage

Parameters Parameter type

Constraints

Root object Application.

One object mandatory.

HOPEX IT Architecture

Hopex IT Architecture Reports .
Application Architecture Reports .

Application Exchange Density

This report displays the density of exchanges around an application in order to help
defining application systems.

The lines display the fact that there is at least one content exchanged between two
applications.

The color of the line indicates the number of exchanged contents.
e Gray: 1 or 2 contents,
e Green: between 3 and 5 contents,
e QOrange: between 6 and 10 contents,
e Brown: between 11 and 15 contents,
e Red: more than 15 contents.

Report example

.,w*f el
%
9 uonhty Computations
..... —_ g —
ot Monthiy Dnty
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application system, One object mandatory.

Application or IT service

Depth Integer

Exchange Consistency Structure Scenario

This report allows to check exchange consistency between scenario and structure
descriptions (via Application flows or Service Interactions).

233

It analyzes every content sent/received by an agent via an application flow and
checks presence of equivalent service interactions and vice versa.

Exchange Consistency Structure Scenario report example

Payroll - Exchange Consistency Structure Scenario
: [
@ B s s [Jre—— (Do ap
0 yycaton Rights. - o T
@ B ooy meanes [T — | (Do ape
@ My oy Owa [e— ﬂm 'fnfff“-n = ;fr-_,::_“. "
R T I S e e 2 T T TS—— —
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application system, One object mandatory.
Application or IT service

Content Consistency (Structure)

This report allows to check exchange consistency between “external” views and
“internal” views, limited to structure descriptions (Service Interactions).

A Service Interface between the analyzed object and another one (via a Service
Interaction) in an “external view” must be established also with a component of the
analyzed object (via another Service Interaction) in an “internal view”. And vice
versa.
w All Service Interactions/Service Interfaces with another agent must
be handled by an internal component and all Service Interactions/

Service Interfaces handled by an internal component must be used by
another agent.

234 HOPEX IT Architecture

Hopex IT Architecture Reports

Content Consistency (Structure) report example

Payroll - IT Architecture - Structured Diagrams Exchange Consistency

Application Architecture Reports

External | Boundary Exchange Contract Consistency

™ P

External Object Exchange Contract

@ il rine Monagement B Timesheets
™
@ #l scoounting & Pay Dot
-
@ el rime Management | Vacation Rights

@ al vine uanagemens B vacation Rights

Internal Object

o Poy uanagement
o oy Wanagement
o Pay Uanagement

o pay uanagement

Boundary Exchange Contract
& Timeshests

-

=" Pay Data

' vacation Rights

-
= vacaton Rights

@ il Heatneare (Extermai) B Aggregated Monthly Taxss ¥ Taxes snd Socis! Securty Contrioutions W) Aggregated Moathly Taxes

&]
© #ll heatrcors (External) B Aggregated Monthy Taxes ¥ Taxes and Socisl Securty Contrbutons B Aggregated Monihly Taxes

@ o -
#& Manager = Monthly Input
@ #ll vine Management B vacation Rights
@ ol e Management &
=
@ ﬂ Time Management & Tmesheets
=
@ e accounting & Pay Data
=
&

@ & mansger

‘acation Rights

Monthly Input

o Poy unnagement
o Py Uanagement
o Pay tanagement
o Pay uanagement
o Poy usnagement
o oy tanagement

-
‘W Monthly Input
& Vacation Rights

& vacation Rights

o
& Timesheets
]

= Pay Dota

]
& wonthly Input

Report parameters

This consists of defining report input data.

Parameters

Parameter type

Constraints

Root object

Application system,
Application or IT service

One object mandatory.

Content Consistency

(Scenario)

This report allows to check exchange consistency between “external views” and
“internal views”, limited scenario descriptions (application flow).

A content send/received in an “external view” with another agent must appear also

in an “internal view” and vice versa.

w All flows exchanged with another agent must be handled by an
internal component and all flows handled by an internal component
must be used by another agent.

235

Content Consistency (Scenario) report example

Pay -IT i - Content C (Scenario)

Sent Content Internal/External Balance

[Content External Target (Scenario) Internal Source (Scenario)

@ Wagregmeavomy e W s Cata Securty Contrbutions |) payron ! 3 ey Payron storage () pay tonagement |
@ pagy T Upde @‘Dagml ,I’!:’!l‘h_icn ! @Dug Monsgemert |
@ W agruem . port @ payeon ! 3 ity Payrot Storage () Pay tonagement |
@ 8 vacuon rgees usamy upame “Clvncaton Righs wovey Update | B payroa ey Conputstons (& pay ansgemet
© B gy pay Owa peme Tlisorstiy Pay Dot pdate | B payro ! o tcotnly Payron Storage (D) Pay Uanagement |

e

A 1 has o External Target
) 1 el Starce
Received Content Internal/External Balance

] Content Extamal Saurce (Scanario)
@ B asstonaiticers

© W yacu

® B ey Accountes oata

k2l
@ W mess bsences Elmress aeaences | & payren 3 bicoiniy Payron Storage ¢ Pay Uanagement !
) wiereal Content nas ng Extemal Sourcs

A, s pteenal Target

© B sy Bonus Updste

iy Bonus Updatn |40 payres

Data hput | @ Pay Wanagemen !

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application system, One object mandatory.
Application or IT service

External Contents Matrix (Structure)

This report displays a matrix of contents sent or received by analyzed agent with
other agents, limited to structure descriptions (Service Interactions).

236 HOPEX IT Architecture

Hopex IT Architecture Reports
Application Architecture Reports

External Contents Matrix (Structure) example

Payroll - IT Architecture - External Contents Matrix (Structure)

Wl enyre

Healthcare (Extemal) i Time Management i Accounting 4k Manager
Aggrega oni axes =
aregarec Montly T 0 5 goregated Moathly Taxes
4 Payrot Management System
Monthly Time Counters Update -
Vacation Rights Monthly Update =
“Z Monthly Pay Data Update &
&
Monthly Accounting Data <
&«
Manthly Bonus Update =
&=
Monthly Timesheet Data Request =
0 Tynesheets
"d Payrcl Managemant System
-
= Additional Hours L
=
Vacation Dates &
&=
liness Absences &«
=
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application system, One object mandatory.
Application or IT service

External Contents Matrix (Scenario)

This report displays a matrix of contents sent or received by analyzed agent with
other agents, limited to scenario descriptions (Application Flows).

237

External Contents Matrix (Scenario) example

Payroll - IT Architecture - External Contents Matrix (Scenario)
‘ Payrol
& Healthcare (External) ¥ Time Management # Accounting 4k Manager
™ aggregated Monthly Taxes =%
— Aggregated Monthly Taxes
B henthcare Externan
& Payroll Management System
>
™ Aggregated Monthiy Taxes
E Heatnearne (External)
Becnusin Pay Sips lLanagement
Monthly Time Counters Update =
“Z Monthly Timesheet Data Request =2
Monthly Pay Data Update =
Vacation Rights Monthly Update =2
Additional Hours €
* Addtonal Hours
B rme Management
@ Payrol Managemeat System
Vacation Dates <
X Monthly Accounting Data “«
Monthly Bonus Update L]
ps
“ lliness Absences =
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application system, One object mandatory.
Application or IT service

External Service Interface Matrix

This report displays a matrix of Exchanged Contracts used by the analyzed object
to service with other agents.

238 HOPEX IT Architecture

Hopex IT Architecture Reports
Application Architecture Reports

External Service Interface Matrix Example

Payroll-External Exchange Contract Matrix

d Time Management & Healthcare (External) a Accounting i Manager
& Vacation Rights =

=P

#0 vacation Rights

& vacation Rights

= Aggregated Monthly Taxes

& Timesheets =
L=
= Pay Data =
&=
%0 pay Data
& Pay Data
=" Monthly Input =
&=
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application system, One object mandatory.
Application or IT service

Graph of Flows between Agents

This graph report displays a synthesis of all interactions between some agents
(Application System, Application, IT Service, Microservice etc.) selected by the user.

Filters can be applied on display by selecting some service interfaces and/or service
interaction contexts.

Report can be visualized in 2D or 3D.

239

Graph of Flows of between Agents Example

Retail Bank - Flows between Agents

Comen w Content w

Scenario Flows betwesn digents

o) Bacitien

o i Everyunere

4
o Customer Repository
»
i

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application System, One object mandatory.
Application, IT Service or
Microservice.

Graph Flows of an Agent
This graph report displays a synthesis of all application flows exchanged by an agent
(Application System, Application, IT Service, Microservice etc.).

Filters can be applied on display by selecting some exchanged contents and/or flow
contexts.

Report can be visualized in 2D or 3D.

240 HOPEX IT Architecture

Hopex IT Architecture Reports
Application Architecture Reports

Example of a 2D graph of Flows of an Agent

Retail Bank - Flows between Agents

Comen w Content w
Scenario Flows betwesn digents

L BankNe
.

g
V!Ad‘.ﬂustnm!\ Repository "l oy
o i
*d. Services (Excel)
pra—
Example of a 3D graph of Flows of an Agent
-
Mahager a
WY oo e i
“oﬂ:n'l-\rﬁuln.s Update Tindss Absences
Vadation Da.lf Vrorion gt Monthly Lo - Ma
] L
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application System, One object mandatory.
Application, IT Service or
Microservice.

241

Flow Process Rationalization

This graph shows the distribution of multi-software communication chains. It allows
to quickly identify the contents with the most associated communication chains and
therefore potentially the least urbanized in terms of flows.

Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Communication System One object mandatory.

Graph of Service Interactions between Agents

This graph report displays a synthesis of all service interactions between some

agents (Application System, Application, IT Service, Microservice etc.) selected by
the user.

Filters can be applied on display by selecting some service interfaces and/or service
interaction contexts.

Report can be visualized in 2D or 3D.

242 HOPEX IT Architecture

Hopex IT Architecture Reports
Application Architecture Reports

Graph of Service Interactions between Agents Example

Retail Bank - Interactions between Agents

Context Exchange Contract

Interactions between Agents

‘a\ Services (Excel)
-
,‘a‘; OfferCatalogSupra
=
’J, NewSimul =3 " -
4
:\"}'Q@JGFGPEveranE [%
=" :’a: BankMet
A5 i
) L“dﬁCustomer Repository
_"g;\jankEvelywhere
O \’g:\.Mﬂbllannk
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application System, One object mandatory.
Application, IT Service or
Microservice.

Graph of Service Interactions of an Agent

This graph report displays a synthesis of all service interactions between some

agents (Application System, Application, IT Service, Microservice etc.) selected by
the user.

Filters can be applied on display by selecting some service interfaces and/or service
interaction contexts.

Report can be visualized in 2D or 3D.

243

244

Example of a graph of interactions of an Agent

Customer Repository - Interactions

Context w

Exchange Contract w

Interactions of an Agent

(@) comen
o) enithliet

o) Sevices (Excel)

4

o) Motisenank

) 4
PN
s [WLustomer Repasitor
:) grery

@)y ticmrns:

>
ol Peopieinventon2000 .,
5 @

o) BenEverywhere

£
o) ColdProspects

o) Hewsiml
v

§) o

Report parameters
This consists of defining report input data.
Parameter type Constraints

Parameters

Root object

Application System,
Application, IT Service or
Microservice.

One object mandatory.

HOPEX IT Architecture

Hopex IT Architecture Reports .
Reports on the Architecture Functional Coverage .

REPORTS ON THE ARCHITECTURE FUNCTIONAL COVERAGE

Building Block Breakdown report

This report aims at detailing the breakdown of a root Class of Building Block object
into its Class of Block Component object and emphasizing the realizing EA artifacts
of each component.

e The depth of analysis can be defined,

e The types of analyzed components can be displayed or filtered out (EA
dimension),

e The types of realizing items can be displayed and filter out by types
(EA layers),

e The look and feel can be fine-tuned (color palette, number of
displayed columns).

L

w For more details on use of breakdown report, see "Handling a
Breakdown report” in the Hopex Common Features guide.

245

Report examples

The example below enables viewing of the functional
breakdown of the functionality map specified as parameters.

Building Block Breakdown Report

Display ||| Levels Show

<

As-Is Functionality Map

Determine diient situation

Fonctionnalités financiéres (FR) Fonctionnalités IT (FR) Fonctionnalités RH (FR) Fonctionnalités Ventes (FR)

Add Information into a
Repository

Gérer les factures en attente Identify Employees Determine client situation

Manage Payroll Allow Service Accesses Through| Manage Knowledge Dispatch Commercial Offering

the Web

Print the Invoices Control Application Accesses Manage Payroll Display the Catalog Content

Depending on Licenses

Provide Agency Revenue
Statictics

Manage the Timetable Get customer information

Control Network Input-Output

Ensure the Email Transmission Track Employee’s Time Off Get stock information

Ensure the Information Manage the Contacts.

Confidentiality

Provide Key Performance

Install an Application
s Indicators

Maintain the Applications Read of a Customer Properties

w Example of functionality breakdown report.

In the example below, the applications that implement the
functionalities are presented.

" Purchasing functionalities

Determine client situation 4.? Dispatch Commercial Offering & D s G Crnioat
- - Display the Catalog Conten

1 itemys)

‘ Access

O

: Get customer information Get stock information ﬂ, Manage the Contacts

Provide Key Performance Indicators i:,r Read of a Customer Properties i Read of the Customer Credit History

246 HOPEX IT Architecture

Hopex IT Architecture Reports
Reports on the Architecture Functional Coverage

Another representation helps to see the capability maps fulfilled by applications.

Core Operations

Claims

Customer Management

2 item(s)

& call Management @)

‘ Query customers Q
Determine client situation

Get customer information . Read of a Customer Properties

Procurement
Manage Fulfillment Sales
2 items)

& Purchase Request O

Management

@ intemet Purchasing ®

‘ Display the Catalog Content

Read of the Customer Credit History . Update some Cus!

247

248

Report parameters

This consists of defining report input data.

Parameters

Parameter type

Constraints

umns

Root object Building block One object mandatory.

Depth level Short Defines the breakdown level of the
business capability map or the capa-
bility entered as a parameter.

Number of col- Short Defines the number of columns dis-

played by breakdown level (for eg. 2
or 3)

Color palette

HOPEX palette

Mandatory.
The palette delivered by default is
"BoxInBox Report Monochrome Grey"

EA Level

Multiple choice:

- business function level,
- organizational level,

- application level,

- technical level.

Define which objects of which type of
architecture level are displayed for
capability realizations;

For example, activation of the "appli-
cations level” displays the business
capability realizations for the Applica-
tion System Environment, the Appli-
cation Systems or the Applications

EA dimension

Multiple choice:

- capability models,

- agent models,

- process model,

- information models,
- performance models,
- results models

Define which types of objects are
examined within the framework of
the breakdown analysis

For example, activation of "capability
models" will display the business
skills or functionalities required by
the capabilities that are broken down

w For more details on how to associate a business capability with a
functionality, see Describing Fulfillment of a Business Capability.

Overlapping Applications

This report presents a matrix of application systems, applications, IT Services and
Microservices that have the same functional perimeter as the described element.

w for more details on how to associate a concret element with a
functionality, see Describing the fulfillment of a Functionality.

HOPEX IT Architecture

Hopex IT Architecture Reports
Reports on the Architecture Functional Coverage
Overlapping Applications report example

Overlapping Applications

Overlapping Applications Business Capabilities Fonctionnalités

ﬂ BankNet Electronic Banking
ﬂ CardsForEveryone Electronic Banking Bank
Bank Account Management
Bank
Electronic Banking
BankEverywhere Insurance
Loan Management ;
Finance
Agency Management
Report parameters

This consists of defining report input data.

Parameters Parameter type Constraints

Root object Application System, One object mandatory.
Application, IT Service or
Microservice.

Business Capability Breakdown Report

You can use this report to display the realization coverage of business capability
elements by operational elements such as logical and physical applications,
application systems, etc.
w For more details on how to associate a business capability with an
application, see Creating Fulfillment of a Business capability.

w For more details on use of a breakdown report, see Building Block
Breakdown report

249

Report examples

The example below enables viewing of the coverage rate of
the capability map specified as parameters.

Q

Capabili Report @

Dispay = Levels [Allv] (Junfold all items

2 item(s)

e —— ——
m——

The example below shows how the functionalities associated
with capabilities are implemented by application
components.

w For more details on how to associate a business capability with a
functionality, see Describing Fulfillment of a Business Capability.

B 2 item(s)
‘ Call Management .

& Query customers Q

= 2 item(s)
d i Bt . _
Management
@l Intemet Purchasing @

HOPEX IT Architecture

Report parameters

This consists of defining report input data.

Hopex IT Architecture Reports
Reports on the Architecture Functional Coverage

Parameters

Parameter type

Constraints

Root object

Business Capability
Business Capability Maps

One object mandatory.

w For more details on how to associate a business capability with a
functionality, see Describing Fulfillment of a Business Capability.

251

252

INFRASTRUCTURES REPORTS

Infrastructure Description Report

The report displays a description of the

infrastructure and lists the defined

communication channels between components.

m For more details, see Modeling IT Infrastructures.

Report example

IT Adehitecture / INFASITUETLAE deseription

B NET Framework 4.5

Accountans Workstation -
3
3

~|
Subsieiiry Web Server
Accourting Cort ol
Accourting Storage
Payrell Comrol
Payroll Storage

internet information Services (I15) 8

HR Workstation

M Storage
#lTime Management
1M Repasitory
FESQL Server 2012 51

.
ccounting Reposiary #liccounting 2
Payroll Database ePayroll 3
Boracte | 2cR1 Bava SE7 Subsidiary SOL Server Server
- ~] TM Cormrol
3
3 3 B #¥lime Management
= =) .
Subsiciary Oracle Server Subsidiary Computing Server Subsidiary Time Managemen: Server
List of IT Networks
IT Network
List of Computing Devices
Computing Device Type Hosted Application Hosted Software Technology
P subsidory Oracke Server T Serve B Gracie 12001
B sucacary Computing Server T Server 3 Acesunting Contret ll accounting X Boaser
payretConral Wl Payron [
Aczzunting Storsge Wl Accountng X Accouning Web
Payreastoenge Wl payron Payrol Wen

T Serve

W suvary et servr nczauntng et W accauntog X soptcaton echcn Archtecurn BB NET ramewon 45
payrenvier Wl pyren Applcaton Technical Archiecture - Fiomet nformatan Services, (15) B
HTUL Browser Web Clent

1 Sercer

T Control 8 Tme anagement

& sutactary Trme Uanagement Server

W sutactor soL Server Sarver 5o

Report parameters

This consists of defining report input data.

Parameters Parameter type

Constraints

Root object IT Infrastructure or IT
Network

One object mandatory.

HOPEX IT Architecture

Hopex IT Architecture Reports
Infrastructures Reports

Application Technology Requirements x IT Infrastructure Provided
Technologies Matrix

This report compares Technology requirements from Technical Architecture of an
Application and Technology provided by IT Infrastructure of same Application.

e Green color indicates a compliance between requirement and a
hosting device.

e Red color indicates a non-covered requirement by the device.

e Orange color indicates device capability that is not required.

Report example

IT Infrastructure x Application Technical Area Required Software Technologies

‘ Payroll

v Application Technical Architecture
@ Subsidiary [T Infrastructure ? Subsidiary Oracle Server » Web Client

14 Internet Explorer 11

4 Chrome

m Oracle 12cR1
Q Subsidiary Computing Server ‘Web Client

52 Internet Explorer 11

4 Chrome

E JavaSET
? Subsidiary Web Server Web Client

42 Internet Explorer 11

i Chrome

E HET Framework 4.5

M Internet information Services (IS) &
@ Subsidiary Time Management Server =, Web Client

22 Internet Explorer 11

82 Chrome
? Subsidiary SQL Server Server Web Client
£4 Internet Explorer 11
£ Chrome
SQL Server 2012 SP1
B2 4R workstation Web Clent
2 e
B
B9 4 ccountant Workstation Web Client
mo
2 Chrom
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints

Root object

Application

One object mandatory.

253

Network Channel x Service Interactions
This report displays a matrix of the Network Channels x the Applicative Interactions.

Report example

Subsidiary IT Infrastructure - IT Architecture - Communication Channel x Interaction matrix

&0 &0 €O
223
HEE
34d
yC ing Server — iary Web Server
*. Subsidiary Oracle Server - Subsidiary Computing Server
* Subsidiary Web Server - Subsidiary Time Management Server
iary Time Server — idiary SQL Server Server
* Subsidiary Web Server - Accountant Workstation
. Subsidiary Web Server — HR Workstation
* Subsidiary C: ing Server - Subsidiary Time M Server ¥ ¥ ¥
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object IT Infrastructure or IT One object mandatory.
Network

Network Channel x Package Connection Matrix

This report displays a matrix of the Network Channels x Package Connections.

254 HOPEX IT Architecture

Report example

Subsidiary IT -IT, i -G

*. Subsidiary Computineg Server - Subsidiary Web Server

™ Subsidiary Oracle Server - Subsidiory Computing Server
Subsidiary Web Server = Subsidiary Time Management Server

™ Subsidiary Time Manogement Sesver - Subsidiary SQL Server Server

Subsidiary Compating Server — Subsidinry Time Management Server

Payroll Wob

Payrell Web = Payrel

Hopex IT Architecture Reports

ion Channel x Technical Communication Line matrix

™ Sterage

Payroll Sterage
Accounting Sterage > RDBMS Nat

Report parameters

This consists of defining report input data.

Infrastructures Reports

Parameters

Parameter type

Constraints

Root object

IT Infrastructure or IT
Network

One object mandatory.

255

256

DEPLOYMENT ARCHITECTURE REPORTS

Deployment Architecture Report

This report displays in the form of tables, the characteristics of the following events:
e Deployable Packages
e Package Connections,
e Prescribed Hosting Devices

Report parameters

This consists of defining report input data.

Parameters

Parameter type

Constraints

Root object

Application deployment
architecture

Application system
deployment architecture

One object mandatory.

Deployment architecture matrix

This report displays the distribution of IT Service of an Application on its Technical
Areas (Application or Data).

HOPEX IT Architecture

Hopex IT Architecture Reports .
Deployment Architecture Reports .

Report example

Payroll-Technical Architecture Matrix

o o o o o ot o oot
SEEZ2Es5g322
$SE2eEceR
Erficzaiz
S E2Ef5483 g8
222852253
HEGE R
= %% 2:%
4 €53
= 3=
T &
w
=
« Web Client
« Payroll GUI
» Payroll Web
» Payroll 115 Config
» Payroll Control
+ Payroll Storage
» HTML Browser
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints
Root object Application One object mandatory.

Package Connection x Service Interactions Matrix

This report allows to analyze support of Service Interactions by Package
Connections.

Checkmark indicates presence (or not) of a link between a Service Interaction and
a Package connection in a Deployment Architecture.

257

258

Report example

Payroll - IT Architecture - Technical Communication Line x Interaction matrix

€0 0 €0 €0 €0 €0 £0 €0 <0 €0 <O
8 = 288888 sa
S5 r55285¢8
E>EEF- BPF§ nE S
HEEEEE -
AR HEEREE
ss2&% 2
253
« F<
* Web Client -> Payroll Web
“ Payroll Web > Payroll & Accounting
* Payroll Web .> SOAP Server Port v
* Payroll Web > SFTP Server Port
“ Payroll Web -> File REST Server Port i
Report parameters
This consists of defining report input data.
Parameters Parameter type Constraints

Root object

Application deployment
architecture

Application system
deployment architecture

One object mandatory.

Package Connection x Resource Flow Matrix

This report allows to analyze support of application flows by package connections.

Checkmark indicates presence (or not) of a link between an application flow and
package connections of the analyzed Deployment Architecture.

HOPEX IT Architecture

Report example

Hopex IT Architecture Reports
Deployment Architecture Reports

Payroll - IT Architecture - Technical Communication Line x Resource Flow matrix

Monthly Pay Data Update
Aggregated Monthly Taxes
Aggregated Annual Figures
Monthly Accounting Data
Monthly Bonus Update

* Web Client -> Payroll Web

* Payroll Web -> Payroll & Accounting
* Payroll Web > SOAP Server Port

. Payroll Web > SFTP Server Port

* Payroll Web -> File REST Server Port

Report parameters

This consists of defining report input data.

Monthly Bonus Update
Aggregated Monthly Taxes

‘Wages after Taxes
Amount Due
Standard Wages

Parameters

Parameter type

Constraints

Root object

Application deployment
architecture

Application system
deployment architecture

One object mandatory.

259

HOPEX IT Architecture

UML modeling

261

262 HOPEX IT Architecture

About UML implementation .

ABOUT UML IMPLEMENTATION

UML (Unified Modeling Language) is established as the standard for the graphic modeling of
information systems. Hopex IT Architecture offers a set of tools allowing you to model your IS in
compliance with version 2.3 of this standard.

m To access UML functions, you must be connected Solution
Architect profile or with Solution Architecture Functional
Administrator profile.
The aim of this part is to introduce you to the main UML functionalities provided by Hopex IT
Architecture.

v "Overview", page 264
v/ "Organization of UML Diagrams", page 266

263

264

OVERVIEW

The facilities provides by Hopex IT Architecture for UML modeling are described
below.

Analyzing use cases

Before designing a system, there must be a careful analysis of the functions
expected of it. The system components will be used by the “actors” in the
organization to perform their tasks. The various “use cases” for the system will be
presented in use case diagrams.

These are used as the starting point for discovering objects.
They then allow validation of the use of these objects in the interaction diagrams.
Then they provide criteria for grouping the discovered objects into "packages".

See "Use Case Diagram", page 269.

Identifying objects

Objects with a similar structure, the same behavior, and the same types of relations
with other objects, are placed in the same class.

The class diagram identifies the objects involved within the system and defines
their structure in terms of attributes and operations, as well as the relationships
between them. The object diagram shows the instances compatible with a
particular class diagram, and can be used as an example to verify it.

See "The Class Diagram", page 281.

Describing behaviors

The state machine diagram enables definition of the behavior of an object in
response to internal or external requests it may receive. It indicates each possible
object state, and the reaction of the object to a given event when in that state.

The activity diagram also describes a behavior, but in terms of actions.

See:
e "State Machine Diagram", page 339
e "Activity Diagram", page 349

Representing interactions between objects

The resulting dialog that is initiated between the different objects concerned by the
event can be represented in interaction diagrams.

Interaction diagrams emphasize the exchanges that take place between objects.

The sequence diagram shows the same exchanges, but indicates the chronology.

About UML implementation
Overview |

The communication diagram highlights structural organization of objects that
send and receive messages.

The interaction overview diagram provides a general view of control flow.

See "Interaction Diagrams", page 357.

Dividing classes between packages

Once the objects are identified, it is easy to divide the classes that implement them
into different packages. These classes are grouped in the package diagram so as
to minimize exchanges between different packages. They meet two criteria: the first
is more technical and concerns the execution environment, while the other is more
structural and is related to the use it will be put to by the users for each use case.

See "The Package Diagram", page 328.

Defining interfaces

To respect the principle of encapsulation, there is strict distribution of elements
between components. This means interfaces must be provided between elements
that have relationships but belong to different components.

The component diagram and the composite structure diagram present the
interdependence between components or component elements.

Defining object interfaces while complying with a standard exchange protocol
(CORBA2, DCOM/OLE) is key to interoperability, enabling objects developed and
used in heterogeneous environments to work together.

See:

e "The Component Diagram", page 331
e "Composite Structure Diagram", page 335

Specifying deployment

Implementation of objects in an concrete working environment can be specified in
the deployment diagram.

See "The deployment diagram", page 375.

265

266

ORGANIZATION OF UML DIAGRAMS

General organization

Use case diagrams show the main interactions between the system being
analyzed and its environment, and indicate its main sub-systems.

Package diagrams provide a more technical breakdown of the system. Dividing a
system into packages imposes some structure, as an object can only be in one
package. You can begin drawing package diagrams as soon as you have identified
the main components of your system (Sales, Production, Invoicing, etc.).

General Organization Detailed Specification
Static View
1
Compeosite Structure
Diagram Dynamic View
1
Package Diagram
Class Diagram Interaction Overview
Diagram
1
Object Diagram Sequence Diagram
Use Case Diagram
—
State Machine Diagram Communication Diagram
1
Activity Diagram
Technical Specification
1 1
Component Diagram Deployment Diagram

Detailed specification

The main diagram is the class diagram. 1t describes the essential semantics of the
objects in the system. This is where designers will generally spend most of their
time. Classes are generally discovered by iteration between class and sequence
diagrams.

The state machine diagram describes the static aspects of an object: the different
states it can be in and the possible state transitions. This fleshes out the class
description.

The interaction diagrams describe the dynamic aspects of the system, by showing
the interactions between objects. They provide a detailed description of the different
scenarios in a use case. The sequence diagram specifies how a scenario progresses

About UML implementation
Organization of UML Diagrams

over time, while the communication diagram stresses the interactions between
objects.

Technical specification and deployment

The component diagram describes the different technical components of an
application and shows their interactions.

The composite structure diagram specifies collaborations between components
or component elements in execution of a common task.

The deployment diagram is used to specify the system architecture, indicating the
workstations or nodes in the information system where the different application
components are to be installed.

UML diagram entry points

Diagram Entry points

Class diagram Package, class, use case

Object diagram Class, component, package, use case

Component diagram Component, package

Composite structure diagram Component, class, collaboration

Deployment diagram Package

Package diagram Package, library

Use case diagram Package, Use case, Application
environment (ADES)

Sequence diagram interaction

Communication Diagram interaction

Interaction interaction

overview diagram

Activity diagram (UML2) Activity
State machine diagram State machine, , protocol state
machine

In Hopex IT Architecture, the entry points above are accessible in Design (UML)
navigation menu.

267

Use Case Diagram .

USE CASE DIAGRAM

The use case diagram constitutes a first step in description of an information system. It enables
identification of the functionalities to be provided by the system to meet the requirements of
organization actors; it therefore describes interactions between the system and the actors.

The following points are covered here:

v Creating a Use Case Diagram
v Use Case Diagram Elements

269

270

CREATING A USE CASE DIAGRAM

A use case diagram is used to describe the interactions between the organization
actors and the system, for each of the planned use cases.

L) A use case is a series of actions leading to an observable result for
a given actor. Scenarios illustrate use cases for example.

These use cases are grouped into packages representing the system boundaries.

A package partitions the domain studied and the associated work.
It enables grouping of various elements, in particular use cases and
classes. A package can also contain other packages. Packages are
interconnected through contractual reports defining their interface.

You can create a use case diagram from a package. However, for complex systems,
you can create this type of diagram from a use case in order to detail the latter.

With Hopex IT Architecture , you can also create a use case diagram for the
application environment of a project. See Creating an application Use Case Diagram.

Creating a Package

To create an interaction with Hopex IT Architecture using Design (UML)
navigation menu:

1.
2,

5.

Click Packages sub-menu.

In the edit area, click New.

The Creation of Package dialog box appears.

Enter its Name.

Indicate the library and owner package if necessary.
w The default library is used to store an object if there is no current
library at the time of its creation.

Click OK.

The package is created and added to the list of packages.

Creating the Use Case Diagram of a Package

To create a use case diagram:

1.
2,

Select the package stream that interests you and click New Diagram.
In the dialog box, select Use Case Diagram.

The diagram opens in the edit window. The frame of the package is
positioned within the drawing.

ANENENENENENEN

Use Case Diagram
Use Case Diagram Elements

USE CASE DIAGRAM ELEMENTS

Actors

Use Cases

Packages

Participations

Use Case Associations: Extensions and Uses
Generalizations

Interfaces

Actors

An org-unit represents the role played by something or someone
within the enterprise environment of the modeled system. It is related
to the business activities of the enterprise, and interacts with the
system in different use cases. It can be an element in the enterprise
structure such as a division, a department, or a workstation.

Examples of actors:

D U I

Client Sales Warehousze Shipping
representative manager departrment

To create an actor in a use case diagram:

1. In the object toolbar, click Actor %
2. Click in the diagram.
The Add Actor dialog box opens.
3. Enter the name of the actor, “"Receptionist” in this example.
4. Click Add.
The actor then appears in the diagram.

© You can create several elements successively without clicking in the
toolbar each time by double-clicking the Actor button.

© 7o return to normal mode, press <Esc>, or click on another button
in the toolbar.

271

272

Use Cases

Examples of use cases: processing an order, delivering to a client, opening an
account, sending an invoice, establishing credit, purchasing an airline ticket, etc.

Purchage :
ticket

Deliver to
client

Open account Process order

To create a use case in a diagram:
In the use case diagram objects toolbar, click the Use Case ' button

1.
The Add Use Case dialog box opens.

2. Enter the use case Name and click Create.

The use case appears in the diagram.

Zooming in on a use case

1. Right-click the use case.
2. Select Use Case Diagram.

To open the diagram that describes a use case directly from the package diagram
<<Extend=x Consult
Frocess order
catalog
- <<Inciude>:=

<zlncludes> >
d ' <<hncludes =

Order
products

© Zooming in on the description of an object is possible for all
elements described by a diagram.

The use case diagram opens.

Choose
payment
mode

Provide
information on
customer

Packages
A package partitions the domain studied and the associated work.
It enables grouping of various elements, in particular use cases and
classes. A package can also contain other packages. Packages are
interconnected through contractual reports defining their interface.

Use Case Diagram
Use Case Diagram Elements

Examples of package: the commercial information system, accounting, production
management, digital control of a machine, an alarm system, etc.

[1

Commercial IS

Open account

Process order

Deliver to

client

Purchase air

ticket

[1

Accounting

[1

Alarm system

Establish
credit

Production managerment

[1

Digital control

You can create a package using the Package 7 button in the toolbar. You can
then increase its size in order to place use cases within it.

You can link a use case to a package simply by placing it within the package. When
you have moved the object within the package, the package shape is highlighted to
indicate that the object will be connected to it

]

Enterprise::Package 1

w [f the linked objects disappear under the package, click the
package and select the Send to Back button in the Edit toolbar.

When you move a use case from one package to another using the mouse, it is
unlinked from the first one and linked to the second. When you move it with the
keyboard arrows, however, the links remain unchanged.

Participations

You can indicate which actor participates in each of the different use cases.
A participation indicates that an actor plays a role in a use case.

273

274

Examples of participation

Order Managem+nt

Check client
status

?%/ e %

. Sales representative
Client arder

Frepare
delivery

Shipping agent

— X

Accounting manager

Establish
credit

The sales representative participates in order processing and in checking
client status;

The shipping agent participates in delivery;

The accounting manager participates in setting up loans, etc.

Creating participations

To create a participation in a use case diagram:

1.
2.

In the insert tool bar, click the Participation button %<

Click the actor concerned, and drag the mouse to the use case before
releasing the button.
A dialog box appears:

Enter the name of the participation and indicate if the actor is the
initiator.

w]t js possible to specify the beginning of the use case by selecting
the IsInitiator check box in the properties dialog box of the
corresponding participation. An arrow appears on the line representing
the participation.

Click OK.

Use Case Diagram
Use Case Diagram Elements

The link representing the participation appears in the diagram.

é A participation is represented by a link, but it is in fact an
object with its own properties.

w The spool [l is not used to create participations. It is used to

create certain types of links, such as those between packages and other
objects.

w]f you make a mistake, you can delete an object by right-clicking it
and selecting the Delete command in its pop-up menu. You can also
delete a link by right clicking on it and selecting Delete or Disconnect
from the link pop-up menu.

Multiplicities of a participation

Multiplicity can be specified on a participation:

To define

1.
2,

From the actor, to indicate that several instances of the actor participate
in the same instance of the use case (example: participants in a
meeting).

From the use case, to indicate that the same instance of the actor
participates in several instances of the use case (example: a sales
representative processes several orders form the same customer).

multiplicities on a participation:

Select the activity concerned and display its Properties.

In the properties page that opens, click the drop-down list and select
Characteristics.

A first section allows you to define multiplicity of the actor, a second frame
that of the use case.

Having been defined, the multiplicities appear in the diagram.

Use Case Associations: Extensions and Uses

When the system to be described is large, it is useful to have modeling mechanisms
that can be adapted to the desired level of detail. Associations between use cases
provide this ability.

When a

use case includes too many alternatives and exceptions, these are

represented separately as relationships that extend the standard use case.

Inclusion relationship

One use case can be called automatically following another, for example validation
of an order necessarily includes selection of a means of payment.

To indicate that one use case includes another:

1.

In the use case diagram, click the Link button [

Click the use case, for example “Process Order" and drag the mouse to
the case used, for example “"Choose Payment Mode" before releasing the
mouse button.

Select the link of type “Uses use case” and click OK.

275

The link appears in the diagram, labeled “Include”.

Choose
payment
rmode

Process order Lo ==lncludes=s - - -

Examples of inclusion

In a training establishment, the following use cases:

e Inter-enterprise course (where the participants come from several
different companies)

e Intra-enterprise course (where the participants all come from the same
company)

can both include the following use case:
e Host and evaluate the course

Intra-enterprise
course

Inter-enterprise
course

==include== ==lncludes=

Host and evaluate course

In a company doing direct sales, the use case:
e Place an order

can reuse the following use cases:
e Provide client information
e Place a manufacturing order
e Propose a payment method

Extend Relation

One use case can result in execution of another. Unlike inclusion, which is
automatic, extension is optional.

To indicate that one use case is an extension of another:

1. In the use case diagram, click the arrow associated with the Link [
button and click Extension.

2. Click the use case, for example "Consult Catalog" and drag the mouse to
the extension case, for example "Process Order" before releasing the
mouse button.

The Creation of Extension dialog box appears. You can define a constraint
or an extension location.

3. Click OK.

276

Use Case Diagram
Use Case Diagram Elements

The link appears in the diagram, labeled “Extend”.

Process order }J---==Extend=» -- Consult

catalog

Extension example

The purchase of an airline ticket can also include booking a hotel room or renting a
car.

Book hotel

==Extend==

Purchase air ™ =<Extends==

ticket

Extension point

The extension can intervene at a precise point in the extension case. This point is
called the extension point.

To create an extension point on the extension case:
1. Open the properties window of the extension.
2. Select the Characteristics page.
3. In the Extension Point section, click Add.
The query dialog box appears.

4. Select the desired extension point and click Connect.
The extension point appears in the extension properties window.

& Propetties of Use Case Make a transfer M= E3

Advanced | Fedefined Element | Objectives and Requirements | Complements | Tests |

General | Characteristics | Patticipations ~ Extension | Instances | Usage | Implerentation |

Extension members

0ol A% xal
Local name I
Balance check

Extension Poinks

277

278

An extension point can be associated with a constraint which indicates the moment
at which the extension intervenes. You can add a constraint at creation of the
extension or later, in the extension properties dialog box.

A constraint is a declaration that establishes a restriction or
business rule generally involving several classes.

Extension point example
The following example presents the use case of a bank transfer; above a sum of 20
euros, customer credit check is triggered.

N

extenzion points
Balance check

Make a transfer [0 AR

¢ Check balance

{ If armount » '2EI el 1

Generalizations

A generalization represents an inheritance relationship between a
general class and a more specific class. The more specific class is fully
consistent with the more general class and inherits its characteristics
and behavior. However, it also contains additional information. Any
instance of the more specific class is also an instance of the general

class.
The concept of generalization was initially used for classes, but has been extended
to other UML concepts such as actor and use case.

Examples of generalizations between actors:

/ Client ‘{\

Client USA,

X

Client Export

The "Client" actor can have the USA or Export specialization.

Use Case Diagram
Use Case Diagram Elements

To create a generalization between actors in a use case diagram:
} Click the = button and drag the link from the specialized actor (eg:
USA client) to the more general actor (eg: Client).

The generalization then appears in the drawing.

X
g

Client USA,

w [n the same way you can create a generalization between two use
cases.

When creating a second generalization, a dialog box allows you to reuse the existing
generalization if it involves the same subject.

Interfaces

It is possible to complement the description of a use case or actor by describing the
interfaces by which it communicates with its environment.

Creating an Interface

To create an interface in a use case diagram:

1. In the diagram objects toolbar, click the Interface button. ©

w [f the Interface button does not appear in the toolbar, select View
Views and Details and select Classes.
2. Click in the diagram.
3. In the dialog box that appears, enter the name of the interface and click
the Add button.

The interface appears in the diagram.

Order interface O

Connecting an interface to a use case

When you connect an interface to a use case, you must specify if it is a supported
interface or an interface required by the use case.

279

To specify the type of link between an interface and a use case:

1. Click Connect [l and drag the link from the use case (eg: Process
Order) to the interface (eg: Order Interface).
A dialog box appears:
2. Indicate the type of link to be created.
e Required interface
e Supported interface
3. Click OK.

The link then appears in the diagram.

Order Interface o

e Process Order

You can detail which operations the use case can carry out via this interface.

Order Interface o

+Create Order() R LD Process Order
+Create OrderLine()

v/ For more details on required and supported interfaces, see Linking interfaces to
other objects.

280

The Class Diagram .

THE CLASS DIAGRAM

A class diagram is used to represent the static structure of a system, particularly the types of objects
manipulated in the system, their internal structure, and the relationships between them. An object
diagram provides examples to illustrate a class diagram.

The class diagram specification is often considered the most important part in the modeling of an
information system. The following points are covered here:

Presentation of the Class Diagram
Creating a Class Diagram
Classes

Attributes

Operations

Signals

Associations

Generalizations

Specifying Interfaces

Specifying Dependencies
Specifying Parameterized Classes
Constraints

Object Diagram

SRS NN N NN NENE NENEN

281

282

PRESENTATION OF THE CLASS DIAGRAM

A class diagram is used to represent the static structure of a system, particularly
the types of objects manipulated in the system, their internal structure, and the
relationships between them.
An object is an entity with a well-defined boundary and identity that
encapsulates state and behavior. Its state is represented by the values
of its attributes and its relationships with other objects. Its behavior is

rt/epresented by its operations and methods. An object is an instance of a
class.

Examples of objects:
e Business objects:
e John Williams, Elizabeth Davis and Paul Smith are instances of the
“person” class.
e Orders 10533 and 7322 are instances of the "order" class.
e SPD-1730 Monitor is an instance of the “item” class.
e Technical objects used for programming:
e Dlg_Order_Create, DIg_Client_Query are instances of the window
class.
e Str_Client_Name, Str_Product_Comment are instances of the "string"
class.

Data modeling consists of identifying the classes representing the activity of the
company, and defining the associations existing between them.

The classes and associations comprising the class diagram associated with a
business area of the company must provide a complete semantic description.

In other words, one should be able to describe the activity of a company by using
only these classes and associations.

This does not mean that each word or verb used in the explanation maps
corresponds directly to an object in the class diagram. It means one must be able
to state what is to be expressed, using these classes and associations.

The class diagram specification is often considered the most important part in the
modeling of an information system.

An object diagram provides examples to illustrate a class diagram.

In particular, it is possible to illustrate a class diagram by showing the corresponding
object diagram in the same drawing.

The Class Diagram
Presentation of the Class Diagram

The Class Diagram: summary

A class diagram includes:

e (Classes, which represent the basic concepts (client, account, product,
etc.).

e Associations, which define the relationships between the different
classes.

e Attributes, which describe the characteristics of classes and, in certain
cases, of associations.

e Operations, which can be executed on objects of the class.

w Operations are not taken into account by Hopex Data
Architecture tools (synchronization, generation etc.).

The class diagram also contains multiplicity definitions.

See the glossary at the end of this guide for definitions of these and other concepts.

Creating a Class Diagram

A class diagram is created from a package.

To create a class diagram:

) Click the icon of the package concerned and select New > Class
Diagram.
The diagram opens in the edit window.

A class diagram can describe a package, a use case, a class, or an instance.

283

284

Definition: Class
Creating a Class
Class Properties
Class Stereotype

SNENENEN

CLASSES

Definition: Class

A class is described by a list of attributes and operations.

A class is linked to other classes via associations. The set of classes and associations
forms the core of a class diagram.

We can illustrate the class concept by comparing classes to index cards filed in

drawers.

Client

Reservation

N

Car

p—
=
—
=

p—"
=

—=

pa—

—

—

—

—

—
T

Invoice

Classes can be technical objects used for programming.

Examples:

dialog box,

recta

ngle,

string, table, etc.

Classes can represent technical objects used in industry.

Examples:

Alarm,

Sensor, Zo

Classes can also represent business objects:

Examples:

customer,

order,

ne

produc

t, person,

company, etc.

Customer

Order

Product

Person

Company

A class can also express a process, such as “"Confirm client request”, or implement
a business rule, such as “"Consistency in cost accounts”.

w See the glossary at the end of this guide for definitions of these and
other concepts.

The Class Diagram

Creating a Class

To create a class:

-

In the class diagram, click Class E in the insert toolbar.
2. Click in the diagram.

The Add Class dialog box opens.
3. Enter the Name of the class and click the Add button.
The class is then placed in the diagram.

w In the examples presented in this guide, object names may include
spaces, upper case characters, and accented characters. It is important
to note that if you have a generation tool using specifications created
with Hopex UML, and this tool is more restricted in authorized
characters and name lengths, it is preferable to adhere to the more
restrictive rules of the Hopex UML specification.

You can create several classes successively without needing to click on the toolbar
each time. To do so, double click the Class button.

To return to normal mode, click the [% arrow.

You can use the complete name of a class throughout by adding the name of the
package to which it belongs to its name, separated by two colons.

Example:

Enterprise::Sales Management::Client.

If one of the packages in the name does not exist, it is automatically created and
linked to the class.

Finding an existing class

To find an existing class:
1. In the Add Class dialog box, select List in the drop-down list box using
the arrow.
The list of classes appears.
2. Select the desired class and click OK.
The name of the selected class appears in the Add UML Class dialog box
3. Click Add.
The class then appears in the drawing.

Class Properties

The properties displayed depend on the class stereotype.

To open the Properties dialog box of a class:

) Select the class concerned and click the associated Properties button in
the edit window.
It contains several pages where you can define the class properties.

Classes

285

286

characteristics page

The Characteristics page is used to enter different characteristics of the class:

e Its Name, which you can modify.
© You can also modify the name of a class by clicking directly on the
name in the drawing.
e The owner of the class (for example, the package).
e The Visibility of the class (as related to its package):
e “Public”: the class is visible to any element outside the package. This
is the default visibility.
e “Protected”: the class is visible to elements that inherit it or have
import dependencies with it, and to friends.
e “Private”: the class is only visible to elements that have import
dependencies with it and to friends.
e "Not specified".
Friends of a class are the classes that are authorized to access its

internals. It is possible to specify the friends of a class in the
complements tab of the properties dialog box of the class.

e Its Stereotype : see Class Stereotype.

e Comment: Comments can be used to add key information to diagrams
when certain details cannot be displayed in the drawing. These
comments are included in the document describing the class diagram.

The other characteristics you can specify are the abstraction, persistence, and
activity:

e If the class Is Abstract, it has no instances. It is only used to group
operations or attributes common to its subclasses.

e Persistence specifies whether the objects in the class need to exist
after the process or thread that created them, or whether they only last
as long as the processing.

e Instances of a class which Is Active are able to trigger control flows
without user intervention.

Example: An instance of the printer class can send an "Out
of paper" message to the network administrator screen.

e An IsRoot class is a class that has no superclasses in the tree of class
generalizations.

e An IslLeaf class is a class that has no subclasses in the tree of class
generalizations.

You can also specify the Parameters of a parameterized class (for C++).
w See To specify a parameterized class: for further information.

Other properties pages

Other pages allow you to define or view:

e Attributes of a class (see Attributes)
Operations of a class (see Operations)
Associated classes (see Associations)
Instances of a class (see Object Diagram)
Redefined elements

The Class Diagram

Class Stereotype

A stereotype is a type of modeling element that extends the semantics of the
metamodel. Stereotypes must be based on existing types or classes whose
structure they use. Other stereotypes can be created by the user.

Stereotypes available for a class are:

Org-Unit: represents the role played by something or someone within
the enterprise environment of the modeled system.

Auxiliary:class that supports another central or fundamental class,
generally by implementing a secondary logic or a control flow.
Implementation class: is used to characterize the classes needed
for physical implementation of the system.

Metaclass: class of which the instances are themselves classes. As a
general rule, metaclasses are used to build metamodels.

Control: is used for classes that perform processing internal to the
system. These generally require contributions from several classes.
Entity: enables description of classes that are passive; that is that do
not initiate interactions on their own. They can participate in in several
use cases and generally outlive any single interaction. They represent
objects shared between the different actors that handle them.
Enumeration: datatype containing a list of tabulated values.
Expression: expressions of complex datatypes based on types.
Focus: class that defines the main logic or control flow for the
auxiliary class(es) that support it.

Boundary: used to describe classes that are in direct contact with the
system environment. Man-machine interfaces are of this type.
Interface: an interface is a named set of operations that describe the
behavior of an element. In particular, an interface represents the
visible part of a class or package in a contractual client-supplier type
relationship.

w These are interfaces between the different components of the
computer system. These are not interfaces with system users, as those

Classes

287

288

are considered boundary stereotypes. See Specifying Interfaces for
further information.

Worker: represents a human actor who interacts with the system. A
worker interacts with other workers and manipulates entities while
participating in use case realizations.

Case worker: a case worker interacts directly with actors outside the
system.

Internal worker: an internal worker interacts with other workers and
other entities within the system.

PowerType: metatype of which instances are sub-types of another
type.

Structure: class that describes a structure used in the programs.
Thread: stereotype used in implementation of an active object as a
light business process.

Primitive Type: used to describe the datatypes.

Utility: a class of this stereotype groups global variables and
procedures useful for programming, and described as attributes and
operations of this class.

Schema group: class describing a type of XML element, the sub-
elements of which form a group.

XML Document Definition Root: class that describes the structure
of a message exchanged between two systems using the XML
language syntax.

Stereotype display option

An option allows you to display stereotypes in the navigation window of objects.

-[1 Htinerary®@
+-[f3] Class Diagram

- Azzociation

m

- LastMame < <Expression=>
[Location <<Expression=>
o

Updating = <Interface»:

To activate this option:

1.
2,
3.

4,

Open the Options window.

In the left pane of the options window, select the Workspace folder.

In the right pane, select the option Display stereotype of UML objects
in navigator.

Click OK.

ATTRIBUTES

v Definition: Attribute
v Specifying Class Attributes
v Attribute Properties

The Class Diagram
Attributes

Definition: Attribute

An attribute is a named property of a class. This is the most basic data saved in the
enterprise information system.

Examples:

"Client Name"

"Client No." (identifier of the client class).

"Account balance"

Reservation +

Category ,_'

Car Category

Category price list

Classes and association classes may be characterized by attributes.

(attribute of the client class).

(attribute of the account class).

oot T wsilabilty date
Car Category
| Mumber of vehicles

Refer

Mumber of vehicles

Reservation

Aovailability date

These attributes can be found by studying the content of messages circulating

within the enterprise.

An attribute characterizes an association when its value depends on all the classes
participating in this association.

In the diagram below, the "Role" that a "Consultant" plays in a "Contract" depends
on the consultant and on the contract, and therefore on the "Intervene" association.

Consultant

Contract

——Intenene—

289

290

Specifying Class Attributes

Creating a standard attribute

To create an attribute on an class:

1. Select the class concerned and display its properties.
2. In the properties window, click the drop-down list then Components.

3. In the Attributes section, click Add Attribute .
The new attribute appears.
4. Click the name to modify it.

For each attribute, you can specify:
e Its Type, which can be expressed as an expression.

Example: Integer.

w The expression must comply with UML syntax. See Operation or
Signal Signatures for further information.

w See also: Attribute type.
e [ts Visibility:
e "Public": this is the default visibility. The attribute is visible to all.
e “Protected”: the attribute is visible to those inheriting its package, or

to its friends.
e "“Private”: the attribute is visible to its class or to its friends.

Friends of a class are the classes that are authorized to access its
internals. It is possible to specify the friends of a class in the
complements tab of the properties dialog box of the class.

e Its Multiplicity, which is the number of times this attribute can be
repeated in the class.

Creating a computed attribute
A computed attribute is connected to a calculation rule.
The calculation rule defines the input and output objects as well as the expression
of the rule.
The input objects can be classes, types or data views. The output objects are classes
only.
To create an attribute on an class:
1. Select the class concerned and display its properties.

2. In the properties window, click the drop-down list then Components.
3. In the Attributes section, click Add Computed Attribute calculated.

The new attribute appears.

4. Open the properties of the attribute to specify:
e the list of input parameters
e the description of the rule

The Class Diagram
Attributes

Inherited attributes

When a generalization exists between a general class and a more specialized class,
the specialized class inherits the attributes of the general class.

)} Click the Inherited Attributes button to view attributes inherited from
other classes.

Attribute Properties

To open the Properties window of an attribute:
1. In the Components property page the holding class, in the Attributes
section, select the attribute in question.
2. Click Properties.

= The button displays the hidden commands.

In the Characteristics page, you can specify:

e The Type of the attribute in the form of an Expression (see Attribute
type).

e Whether it is a Static attribute: specifies if the attribute can take specific
values for each instance of the class or take one value characterizing the
entire class.

e "Yes": the attribute has a value that characterizes the entire class. The
attribute "Telephone number length" for the "USA Client" class is 10
digits.

e "No": the attribute can take a different value for each class instance.
For example, the "Telephone number" attribute has a different value
for each instance of the "Client" class.

e If the attribute has Persistence, specifying whether its value needs to
exist after the process or thread that created it, or whether it only lasts
as long as the processing.

e Its Multiplicity, which is the number of times this attribute can be
repeated in the class.

e Whether it is Read Only, that is if its value can be modified once it has
been specified.

e Whether it is a Calculated Attribute, specifying if its value is
determined from the value of one or more other attributes.

e The Initial Value of the attribute, assigned when an instance of the
class is created.

Attribute type

A datatype defines the type of values that a data can have. This can be simple
(whole, character, text, Boolean, date, for example) or more elaborate and
composite.

Types are implemented as classes.

Any class can be used to type an attribute or parameter.

Example: Client, Order, Window, Table.

291

Classes of the “Primitive type"” stereotype are created only for typing attributes or
parameters. They are fixed.

Examples of primitive types:
String.

Integer.

Export address.

Monetary amount.

You can list the existing types or create new ones.

w The types listed include the classes owned or used by the current
package.

w To specify the structure of a type, place the corresponding class in
the same diagram or in another diagram, and select the Properties
command in its pop-up menu.

292

The Class Diagram

OPERATIONS

Definition of an Operation

Specifying Class Operations

Operation Properties

Operation or Signal Signatures

Operation Parameters

Operation Methods (opaque behavior)
Object Diagram

Operation Exceptions

Displaying Class Attributes and Operations

SNENENENENENENENEN

Definition of an Operation

An operation is a service that can be requested from an object to affect a defined
behavior. An operation has a signature, which may be used to specify the
parameters it requires.

Examples:
"Age Calculation" (operation of the client class).
"Print" (operation of the drawing class).

"Calculate due dates" (operation of the loan class).

w QOperations are not taken into account by Hopex Data
Architecture tools (synchronization, generation etc.).

Specifying Class Operations

To specify class operations:

1. Select the class concerned and display its properties.

2. In the Components property page, expand the Operations section,
click New to create an operation or Connect to connect an existing
operation.

The operation appears in the properties of the class.

You can specify its signature.

Inherited operations
When a generalization exists between a general class and a more specialized class,
the specialized class inherits the operations of the general class.

) Click the Inherited Operations button to view operations inherited
from other classes.

Operations

293

Operation Properties

To open the Properties dialog box of an operation:
1. In the Components property page the holding class, expand the
Operations section, select the operation in question.
2. Click Properties.

w The button displays the hidden commands.

You can indicate for each operation:

e Its Stereotype to specify its use:
e Constructor: creates an instance of the class.
e Destructor: destroys an instance of the class.
e Iterator: iterates through all instances of the class.
e Selector: selects certain instances of the class.

e Whether it is a Static operation: if the operation can take specific values
for each instance of the class or take one value characterizing the entire
class.

e The Concurrency, to specify how the operation behaves when it is called

several times simultaneously.

e Concurrency: the operation responds simultaneously to the different
calls.

* Protected: the operation answers the first call and rejects ensuing
ones.

e Sequential: the operation responds successively to each call.

If it is an Is Query operation, indicating that the object state is not

modified.

If the operation Is Polymorphic, to enable methods for this operation to

be redefined in the subclasses.

The following indications are used to further describe the operation signature.
e The Expression type of the operation.

The expression type of an operation specifies the type of the
variable returned by the operation on completion of its execution.

e [ts Signature.

Operation or Signal Signatures

An operation or signal signature consists of the name of the operation (or signal),
its return type, and its parameters with their types. Standard UML syntax is used
for signatures, in the form: OpeO (Param0: M-Bool): M-Bool.

294

The Class Diagram
Operations

The signature can be defined:

e FEither in the properties dialog box of the operation or signal.
e Orin the Properties window of the class to which the Operationssection.

— Operations

(*) New oo Connect rI- Reorganize

. it

. Compute Compute () Public

B Clear Clear () Public

The saved signature includes a reference to the type. If the type is renamed, the
signatures that use it will reflect this change.

Signature syntax

The standard syntax for signatures is:

operationname (parameterl:typeexpressionl, parameter?:typeexp
ression2,...) :returnexpressiontype

Names containing spaces or special characters must be enclosed in single quotes
('Client name'). When a name contains an apostrophe, the apostrophe must be
typed twice: 'Buyer's Name'

Examples of signatures:
Unstock (ProductO: Integer(3), QuantityO: Integer): Boolean

'Create order' ('Client name' : Client): Byref Variable

In a signature specification, it is possible to specify the package to which a class
belongs, followed by two colons.

Example: Enterprise::'Sales Management'::Client.

The listed class is linked to the parameter or return type. If it does not exist, it is
created. Any packages listed in the path that do not exist are also created, and
linked to the class.

If the package is not specified, a dialog box will enable you to select from similarly
named classes.

Operation Parameters

A parameter is the specification of a variable, which can be modified, sent or
returned. A parameter can specify a name, a type and a direction. Parameters are
used for operations, messages and events.

An argument is a specific value corresponding to a parameter.

295

296

In the Properties dialog box of an operation, the Parameters section allows you to
specify:

e The operation ExpressionType, eg. Integer(5).

e Its Defaultvalue, eg. 0.

e Its Direction: at input and/or output of the operation.

To create a parameter on an operation:
1. Open the operation properties.
2. Select the Characteristics page.
3. In the Parameters section, click New.
The dialog box for creating a parameter opens.

4. Enter the name of the parameter and click OK.

Operation

Methods (opaque behavior)

A method - or opaque behavior - is a textual representation of implementation of
an operation, class or component. It specifies the algorithm or procedure that
produces results of an operation or behavior of an element.

To define the method that implements an operation:

1. Open the Characteristics property page of the operation.
2. In the Method section, click Add.
The dialog box for adding a method appears.

3. Enter the name of the method to be created or search for an existing
operation.
4. Click OK.

To enter the body of the text and the method that implements the operation:

1. Open the Characteristics property page.
2. Define the method in the Body frame.

When a class has several subclasses, each subclass can perform the operation using
a different method.

The Method section presents the method relating to the selected class.

Operation Conditions

You can define operation conditions in the form of constraints.

The condition types are:

e A PreCondition that must be met before the operation is executed.
e The condition on the Body that must be checked at operation execution.
e A PostCondition that must be met after executing the operation.

To define a condition on an operation:
1. Open the Conditions property page of the operation.

The Class Diagram
Operations

2. In the Conditions section, select the condition type:
e precondition
e condition on the body
e postcondition
3. Click New.
The dialog box for adding a restriction appears.

4. Enter the name of the restrictions to be created or search for an existing
operation.
5. Click OK.

To enter the body for the condition:

1. In the properties window of the holding operation, select the condition.
2. Click the Properties button.

w The button displays the hidden commands.

3. Click the Characteristics page.
4. In the Expression Body section, enter the expression.

Operation Exceptions

If a condition is not respected, an exception is generated.

The Exceptions tab allows you to define error messages sent by the operation
when an exception occurs and to specify their signature.

Displaying Class Attributes and Operations

To modify how the attributes and operations for a class are displayed:
1. Right-click the class or classes whose attributes you want to display.
2. Select Shapes and Details.
Use the Display dialog box to select what elements are to be displayed.
3. In the tree on the left, click Attribute.
4. Select the attributes you want to see displayed.

You can display All the attributes, Some of the attributes (select them from the
list), or None of the attributes.
You can request display of the Visibility, Type, ... of each of the attributes.

A datatype is used to group characteristics shared by several
attributes. Datatypes are implemented in the form of classes.

© vYou can hide or show the compartment containing the class

gttributes in the drawing, by selecting or clearing the "Display of" check
0X.

Proceed in the same manner to indicate how operations are to be displayed, but
instead, select Operations in the tree.

297

298

SIGNALS

Defining a Signal

A signal is an event that can be explicitly invoked. A signal can have parameters. A
signal can be sent to an object or set of objects. It can be invoked as part of the
participation of an actor in a use case.

A message can be sent or received by a class. It can also be sent by an operation
after an exception.

Specifying Class Signals

Creating a sent or received signal

To specify what signals can be sent or received by a class:

1. Select the class concerned and display its properties.
2. In the properties window, click the drop-down list and select
Complements.

3. In the menu tree presented, select sentSignal or receivedSignal then
click Add.
4. Indicate the name of the signal and click OK.

Signal Properties

To open the properties dialog box of a signal:

) In the properties window for a class, in the Complements page, select
the signal and click Properties.

w The button displays the hidden commands.

The Properties dialog box of the signal appears.

The Class Diagram

You can indicate for a signal:
e Its Stereotype to specify its use:
e Exception: an error signal is generated when an exception occurs
during the execution of an operation.
e Its Visibility related to the package:
e Public: this is the default visibility. The signal is visible to any element
outside the package.
e Protected: the signal is visible to inherited elements or friends.
e Private: the signal is visible to its class or to its friends.
Friends of a class are the classes that are authorized to access its

internals. It is possible to specify the friends of a class in the
complements tab of the properties dialog box of the class.

e The ExpressionType of the signal (see expression type)..

O 7he ExpressionType of a signal specifies the type of variable
returned by the signal on its receipt by the addressee.

A signal can be a request to Vote sent to each active object, asking if it is possible
to perform a specific action such as closing a Windows session.

A signal can be a general Broadcast to all active objects.

Signal parameters

The Parameters of the signal are specified in the Parameters tab of its Properties
dialog box. You can specify:

e The operation ExpressionType, eg. Example: Integer(5).

e [Its Default Value. Example: 0.

e [ts Direction: at input and/or output of the operation.

A parameter is the specification of a variable, which can be

modified, sent or returned. A parameter can specify a name, a type and
a direction. Parameters are used for operations, messages and events.

An argument is a specific value corresponding to a parameter.

Signals

299

300

ASSOCIATIONS

An association is a relationship existing between two classes.

An association is binary when it links two classes, ternary when it links three classes,
etc.

Associations can be compared to links between index cards.

Client Reservation

axpcite

as5igh Concern

Car Invoice

The following drawing provides a three-dimensional view of the situations a class
diagram can store.

far 33

Feter ETH
Client A‘E@ Reser ation

Peter and Mary are clients. Peter has made reservations numbers 312 and 329.

A class diagram should be able to store all situations in the context of the company.

w The diagram should not allow representing unrealistic or aberrant
situations.

Examples of associations:

e Aclient issues an order.
e An order includes several products.

The Class Diagram
Associations .

Client Order

Produw

— lssue —

—contair—|

e A person works for a company.

Person

Wari

Company

e An alarm is triggered by a sensor.
A sensor covers a zone.

A window displays a string of characters.

Creating an Association

To create an association:

1. In the class diagram, click Association " in the objects toolbar.
2. Click one of the classes concerned and drag the mouse to the other class

before releasing the button.

The Creation of Extension dialog box appears.
3. Enter the name of the association to be created.
w You can also select an existing association.

4. Click Add.

The association is indicated by a line in the diagram.

w]f you make a mistake, you can delete an element or a link by
right-clicking it and selecting the Delete command in the pop-up menu.

Roles (or Association Ends)

It is possible to describe the different roles played by the classes in associations and

to specify their multiplicity and their navigability.

Each end of an association specifies the role played by the class in the association.

301

302

The role name is distinguished from the association name in the drawing by its
position at the link end. In addition, the role name appears in a normal font, while
the association name is italicized.

Company Person
Employer Employes

Ermploy

When two classes are linked by only one association, the name of the classes is
often sufficient to describe the role. Role names are useful when several

associations link the same two classes.

Examples of roles:
e Aclient is the order issuer.
e An order is issued by a client.
e An order is prepared from products.
e A product is ordered.

Client

Order

order izzued

fssue

order izsuer

1.%

order prepared

1

product ordered

Product

*

ontale

1.%

A person is an employee of a company.

A company is the employer of these persons.
An alarm is triggered by one or more sensors.
A zone is covered by a sensor.

One or more strings are displayed in a window.

Multiplicity of a Role

Multiplicity specifies the interval between minimum and maximum
values of cardinalities for a set. This is primarily indicated for each role
that classes play in an association. It can assume the values *, 0..1, 1,
* 2..% 4..10, etc. The default value is *.

L4

Card/na//ty is the number of elements contained in a set.

The Class Diagram

The multiplicity expresses the minimum and maximum number of instances of a
class that can be linked by the association to each instance of the other class.

Client Re:
Execute —
1 * L

How many clients execute How many reservat
a given reservatian, a given client ex
atleast, at most® atleast atmo

The usual multiplicities are "1", "0..1", "*" or "0..*", "1..*", and "M..N" where "M"
and "N" are integers:

The "1" multiplicity indicates that one and only one instance of the class
is linked by this association to each instance of the other class.

The "0..1" multiplicity indicates that at most one instance of the class
can be linked by this association to each instance of the other class.
The "*" or "0..*" multiplicity indicates that any number of instances of
the class can be linked by the association to each instance of the other
class.

The "1..*" multiplicity indicates that at least one instance of the class is
linked by the association to each instance of the other class.

The "M..N" multiplicity indicates that at least M instances and at most N
instances of the class are linked by the association to each instance of
the other class.

1 One and one only

0/1 Zero or one

M..N From M to N (natural integer)
* From zero to several

0..* From zero to several

1.% From one to several

Associations

303

The following example illustrates the significance of the different multiplicities:

Order Invoice

arresnands

0..1: An order corresponds to zero or at most one invoice.

*: No restriction is placed on the number of invoices corresponding to an
order.

1: Each order has one and only one corresponding invoice.

1..* : Each order has one or more corresponding invoices.

Other examples of multiplicity:

55l

cantain

e 1..*:Aclient can issue one or more orders.

e 1: An order is issued by one and only one client.

e 1..*: An order contains one or more products.

e *: A product can be contained in any number of orders, including no
orders.

e 0..1: A person works for a company.

e 1..*: An alarm is triggered by one or more sensors.

e 1: A sensor covers one and only one zone.

e 1..*: A window displays one or more strings.

Specifying role multiplicity

To specify association end multiplicity:

1. Right click on the part of the line of the association that is located closest
to the class.

304

The Class Diagram
Associations

2. Select Multiplicity then the desired value.

w]f the menu you see does not propose multiplicity, check that you
clicked on that part of the line indicating the role and not the

association.
Whole/Part
Multiplicity D.} (None)
Min Participation *
Max Participation 1=
isMavigable 1
Documentation 0.1

The multiplicity now appears on the role.

o Class
Association 7

© Al the information specified with the pop-up menu can also be
viewed and modified in the role properties dialog box.

Association End Navigability

IsNavigable specifies in which direction(s) an association between two classes can
be traversed. To avoid crowding the drawing, this is only indicated when only one
direction is possible.

Example of navigability:

e It is important to be able to find out what products are contained in an
order.

e However, it is rarely useful to be able to find all orders that concern a
product.

Order Product

Includes -

305

306

Specifying navigability for a role

To indicate that an association is navigable in one direction only:

1. Right-click the non-navigable role.
2. Select IsNavigable > No.
An arrow representing the navigability now appears for the other role.

Association End Aggregation

Aggregation is a special form of association, indicating that one of the classes
contains the other.

Example: A car includes a chassis, an engine, and wheels.

Car

Support Fower Motion
Chassis Motor Wheel

Specifying role aggregation

To specify role aggregation:
1. Right-click the role.
2. Select Whole/Part > Aggregate.

w [f the menu you see does not propose aggregation, check that you
clicked on that part of the line indicating the role and not the
association.

A diamond now appears on the role, representing the aggregation.

Association End Composition

A composition is a strong aggregation where the lifetime of the components
coincides with that of the composite. A composition is a fixed aggregation with a
multiplicity of 1.

Example: An order consists of several order lines that will
no longer exist if the order is deleted.

The Class Diagram
Associations .

Composition is indicated by a black diamond.

Order Order line

]

Role Changeability

Read Only specifies whether the role played by a class in an association may be

modified after it has been created. By default, the role of a class in an association
is considered changeable.

Example: An order includes an order line for each of the
ordered products. These order lines can no longer be
modified after the order has been saved.

Order Order line

1

-
frozen

You can indicate whether a role is changeable using the role pop-up menu or the
role properties dialog box.

The Read Only characteristic of the role can have the following values:
e Add only: it is still possible to link new objects with this association, but
already linked objects cannot be unlinked.

Read Only: linked instances can no longer be unlinked. Nor is it is
possible to add a new link.

No Restriction: new instances can be linked or unlinked at any time
with no constraints.

Role Order

It is possible to specify whether or not a role Is Ordered. For example, for a client
order, it can be useful to store the sequence in which its lines appear.

To specify that a role is ordered:

1. Open the Properties dialog box of the role.
2. In the Characteristics page, select the IsOrdered check box.

307

308

Role Static Property

As for an attribute, it is possible to specify if a role can take specific values for each
class instance, or take a value characterizing the entire class:
1. Open the properties dialog box of the role.
2. Click the Characteristics page.
3. In the Static box, select:
e “Yes”: so that the role can take a value characterizing the entire class.
e “No”: so that the role can take a different value for each class
instance.

Role Qualifier

A qualifier is an attribute whose values partition the set of objects related to an
object across an association.

Example: An order includes several order lines. The order
line number can be used as the qualifier that identifies
each line.

Order Order line
[Lipe rumber |

To define a qualifier:

1. Right-click the role and select Properties.
The Properties dialog box of the role opens.
Select the Qualifiers page.

To add a new qualifier to the role, click Add.
Enter the name of the qualifier.

Click Add.

ol ol

Several qualifiers may be needed to uniquely identify each object in a class.

For example, each square on a chessboard is identified by its row number and
column number on the chessboard.

Chess Board [oumn Square
Ry

The Class Diagram

Overloading a Role

A role can inherit a role defined at higher level. Overloading enables definition of
additional properties on an inherited role.

To overload a role:

1.
2,

oo

Open the properties dialog box of the role.

In the properties window, click the drop-down list and select
Characteristics.

In the Roles section, select Overloaded Role.

Click Add.

The Query dialog box appears:

Search and select the role in question.

Click OK.

Association Classes

An association class is an association that also has class properties as attributes.

It is helpful to create an association class in order to specify the characteristics of
an association.

For example, the quantity of the requested product needs to
be specified on each order line.

Order Product

Chrder line

1-Order line

To create an association class:

1.
2,

Create a new class.
Using the Link button, create a link between the class and the
association.
The association class is linked to the association by a dotted line.
w As for standard classes, it is possible to hide the compartments and

resize the association class using the Display command in its pop-up
menu.

Associations

309

Displaying an N-ary Association

Certain associations associate more than two classes. These associations are
generally rare.

Example: When taking inventory, a certain quantity of
product was counted in each warehouse.

Wharehouse Product

Inventory Count
+Cuartity

To create a ternary association:

1. First create the association between the two classes.

2. Click the Association Role button Q‘
3. Draw a link between the association and the third class.

You can then proceed as described above to create an association class if needed.

Reflexive Associations

Location cortaingr

Conita

contents

Certain associations use the same class several times.

A classroom, a building, and a school are all locations.

School =
B bdi
Room

Location cortain

A classroom is contained in a building, which is contained in a school.

A reflexive association concerns the same class at each end.

310

The Class Diagram

Creating a reflexive association

To create a reflexive association:

Click the Association button fi; in the toolbar:

2. Click on the class concerned and drag the mouse outside the class, then
return to it and release the mouse button.
The reflexive association appears in the form of a half-circle.
w [f there is an association of a class to itself, the roles need to be

named in order to distinguish between the corresponding links in the
drawing.

Associations

311

312

THE PARTS

In a class diagram, a part represents a role played by an instance of a class or
component at execution of a task.
A part belongs to a class. Ownership is specified on the link of the part.
In the example below, the “Order” class comprises the
“Person” class.
The part is owned by the “Order” class and references the
“Person” class.

Order Person

Person =

Creating a Part between two Classes

A part is a directional link that connects two classes only.

To build an part between two classes:
1. In the objects toolbar of the class diagram, click Part.
2. Draw a link from the owner class to the referenced class.
The name of the part is automatically defined.

Defining the Identifier of a Class via a Part

In the example below, the identifier of the “Oder line” class can be defined from the
“Order” class through the “Order line” part.

Order Order line

Order [in ——

To define the identifier of the “Order line” class:
1. Display the properties of the “Order line” class.
2. Select the Identifier page.

The Class Diagram

3. Right-click the Members folder and select Connect > Part.

~ Properties of Order line
H idemifier v

n;

|
E Order line
|
Identifier
1

? ID_Order line
L

Membare
Connect B AssociationEnd

= Attribute
- Generalization

1> Part
¥

4. Select the proposed part.
5. Click OK.

Multiplicities of the Associated Classes

With multiplicities you can specify the minimum and maximum number of instances
linked by the part.

Example: 1 order comprises 1 or several order line(s).

Multiplicity of the class referenced by the part

The multiplicity of the referenced class must be indicated on the part link.

To define the multiplicity of the referenced class:
1. Right-click the part link.

Order Order line

Order line.

2. Select Multiplicity then the desired value.

The Parts

313

314

Multiplicity of the owner class of the part

To define the multiplicity of the owner class of the part:
1. Right-click the part role associated with the owner class.

Order Order line

Order line.

2. In the pop-up menu that appears, select Multiplicity then the desired

value.

Aggregation and Composition Relationships

On the part that links two classes, you can define an aggregation or composition
relationship.

Aggregation is a special form of association, indicating that one of
the entities contains the other.

A composition is a strong aggregation where the lifetime of the
components coincides with that of the composite. A composition is a
fixed aggregation with a multiplicity of 1.

To define a composition or an aggregation link between two classes:

1. Right-click the part.

2. Select Whole/Part then the desired value:
e Aggregate
e Composite

The Class Diagram
The Parts

Associated multiplicities

The following table presents the multiplicities automatically associated with
aggregations and compositions.

Corre- Example
sponding
multiplicity
Composition 1
Order Invoice
—Invoice [0.1]——>
1, 1..*
Aggregation . 0/1
Car Wheel
e Wheel [
0..1, 1..*
None *
Person Car
X X
’

315

316

ANENENENENEN

GENERALIZATIONS

A generalization represents an inheritance relationship between a general class and
a more specific class. The more specific class is fully consistent with the more
general class and inherits its characteristics and behavior. However, it also contains
additional information. Any instance of the more specific class is also an instance of
the general class.

What is a Generalization?
Multiple Subclasses
Advantages of Subclasses
Multiple Inheritance
Creating a generalization
Discriminator

What is a Generalization?

Class A is a generalization of class B. This implies that all objects in class B are also
objects in class A. In other words, B is a subset of A.

B is then the subclass and A the superclass.
Example A: Person, B: Bostonian.

B is a subset of A, so the objects in class B inherit the characteristics of those in
class A.

It is therefore unnecessary to redescribe for class B:

e Its attributes
e Its operations
e [Its associations

The Class Diagram
Generalizations

Example

The "Large Client” class, representing Clients with a 12-month revenue exceeding
$1 million, can be a specialization of the Client class (origin).

Client Order

+Crder date
Planned delivery date

+Calculate order amount()
+Create arder(Client name: Client)

Orcler

Large client Article

fssue

In the above example, the associations and attributes specified for “Client” are also
valid for “Large client”.

Other examples of generalizations:
e Prospect and client are two subclasses of "person".

Person
cmﬁ Nﬂsped
Client Prospect

e Export order is a subclass of the "order" class.

e Individual person and corporate person are two subclasses of the
"person" class.

e Polygon, ellipse, and circle are subclasses of the "shape" class.
Oak, elm, and birch are subclasses of the "tree" class.
Motor vehicle, all-terrain vehicle, and amphibious vehicle are subclasses
of the "vehicle" class.

e Truck is a subclass of the "motor vehicle" class.

317

318

Multiple Subclasses

When a class has multiple subclasses, they:
e are not necessarily exclusive.
e do not necessarily partition the set.

Advantages of Subclasses

Client
Address
Code
Company Person
hla mmelas s Mate mf hirtk

A subclass inherits all the attributes, operations, and associations of its superclass,
but can have its own attributes or associations that the superclass does not have.

A subclass can also have specific attributes. These only have meaning for that
particular subclass. In the above example:

e "Registry number" and "number of employees" only have meaning for a

"company".

"Date of birth" is a characteristic of a "person", not a "company".

It is also useful to calculate the "age" of a "person". This attribute and
this operation are generally not needed for a "company".

The Class Diagram
Generalizations

A subclass can also have specific associations.

Client
Address
Code
Company Person Professic
Mo, employees Diate of hirth ’ Situation ! catego
Registry number Calculate agel)

e A "person" falls into a "socio-professional group": "manager",
"employee", "shop keeper", "grower", etc. This classification makes no
sense for a "company". There is also a classification for companies, but it

differs from that for persons.

Multiple Inheritance

It is sometimes useful to specify that a class has several superclasses. The subclass
inherits all the characteristics of both superclasses. This possibility should be used
carefully.

w Multiple inheritance is not taken into account when generating
tables.

Creating a generalization

To create a generalization:

1. Click the Generalization button = in the toolbar.

2. Click the subclass concerned, and drag the mouse to the superclass
before releasing the button.

The generalization is now indicated in the diagram by an arrow.

Person

E\ Prospect

319

320

Discriminator

The discriminator is the attribute of a generalization, the value of which distributes

objects into the sub-classes associated with the generalization.

For example, the gender code attribute divides the objects in the person class into

the man and woman subclasses.

Person

Gender CM

Man

You can define discriminator(s) in the generalization properties dialog box, under

the Discriminators page.

w [t js also possible to specify whether a generalization:

Is Disjoint: An instance cannot belong to two subclasses of the
generalization simultaneously.

Is Complete: All instances of the superclass belong to at least one of the

Wder code

Woman

subclasses of this generalization.

The Class Diagram
Specifying Interfaces .

SPECIFYING INTERFACES

An interface represents the visible part of a class or package in a contractual client-
supplier type relationship. The interface is a class stereotype.

An interface is a named set of operations that describe the behavior of an element.
In particular, an interface represents the visible part of a class or package in a
contractual client-supplier type relationship.

These are interfaces between the different components of the computer system.

Creating an Interface

To create an interface class in a class diagram:
1. In the toolbar, select Interface - .
2. Click in the diagram.
3. In the dialog box that appears, enter the name of the interface and click
the Add button.
The interface class then appears in the diagram.

You can then specify the operations of the interface as for any other class.

Connecting an interface to a class

When you connect a class to an interface, you must specify if it is an interface
required or provided by the class.

A required interface is an interface necessary for object operation.
A provided interface is an interface made available by an object to other objects.

To connect an interface to a class:

1. Click the Link button [l
Create the link from the class to the interface.
A dialog box appears:

3. Indicate the type of link to be created: provided interface or required
interface.

w Other types of links, specific to classes, can be displayed.
4. Click OK.

Book
Book interface O THemeSting
+SEMN: String
FFnaTtetAwronn | T +CreateBookl]
+FinaTitle()
+LinkAuthor()
+LinkCategory()

321

322

SPECIFYING DEPENDENCIES

In the class diagram, to indicate that a package references a class or another
package:

1. Click the Link button [l
2. Then carry out the link from a package to the package or class that it
references.

w The Views @ putton allows you to specify the buttons that you
want to appear in the objects toolbar.

The Class Diagram
Specifying Parameterized Classes .

SPECIFYING PARAMETERIZED CLASSES

A parameterized class enables definition of characteristics and a behavior that
varies as a function of the value of certain parameters. For example, a
parameterized class can be used to manage object lists. In this case the parameter
will be the object type to be managed in the form of a list. This type of class is
implemented in particular in C++ language.

To specify a parameterized class:

1. Open the Characteristics property page of the class.
2. You can enter the parameters and specify their type if necessary.

TemplateParameters: Object, ListTyp|

The class parameters are displayed at top right.

To link a class to a parameterized class:

1. Click the Link button [l
2. Create the link from the class to the parameterized class.

Book

+Mame: String
+1SBM: String
+ireateBook() F-- - ==hind==(]- -
+FindTitle()
+Linkauthor()
+LinkCategary()

[hject, ListType
Collection List

323

CONSTRAINTS

A constraint is a declaration that establishes a restriction or business rule generally
involving several classes.

Most constraints involve associations between classes.

Examples of constraints:

e The person in charge of a department must belong to the department.
e Any invoiced order must already have been delivered.
e The delivery date must be later than the order date.

A sensor covering a zone can trigger an alarm for that zone only.

To create a constraint in the class diagram:
1. Click the Constraint button {} in the object toolbar.
w [f it is not displayed, select View Views and Details and select

the "Constraints" check box.

2. Then click one of the associations concerned by the constraint, and drag
the mouse to the second association before releasing the mouse button.
The Add Constraint dialog box appears.

3. Enter the name of the constraint, then click Add.
The constraint then appears in the drawing.

m You can link a constraint to other classes or associations using the
Link button [l

324

OBJECT DIAGRAM

The Class Diagram
Object Diagram .

An object diagram or instance diagram contains objects with values illustrating their
attributes and links. It shows in detail the state of the system at a given moment.

You can create the object diagram of a class, component, package or use case.

:Library Title
:Category-2
:Loans Copy :Book-1
:Member :Author-1

Objects

An object is an entity with a well-defined boundary and identity that encapsulates
state and behavior. Its state is represented by the values of its attributes and its
relationships with other objects. Its behavior is represented by its operations and

methods. An object is an instance of a class.

325

326

Examples of objects:
e Business objects:
e John Williams, Elizabeth Davis, Paul Smith are instances of the person
class.
e Orders 10533 and 7322 are instances of the order class.
e Sony SPD-1730 Monitor, Compaq Deskpro 200 are instances of the
item class.
e Dupont and Burger King are instances of the company class.
e Technical objects used for programming:
e DIg_Order_Create, DIg_Client_Query are instances of the window
class.
e Str_Client_Name, Str_Product_Comment are instances of the string
class.

w The objects represented in an object diagram can be instances of a
class, package, use case, component, or node, to enable defining
sequence diagrams at the desired level of detail.

Creating an object (instance)

To create an object:

1. Click the Instance button. I
You can create objects of different types. The arrow at the right of the
button offers a shortcut to Class and Component object types, the most
frequently used.

2. Then click in the diagram work area.
The window for adding an instance opens.

3. Enter the instance Name.
4. Specify the Instance Type if necessary.
5. Click Add.

The instance appears in the diagram.

Instance properties

To open the properties dialog box of an instance:

)} Select the instance in question and click Properties in the edit window if
it is not activated.

The Class Diagram
Object Diagram

It contains several pages where you can define the properties of an instance.

Properties of Instance2 ®
E Characteristics +
Local name: Instance?2
Owner: Package V| Package-1 »
Visibility: Public hd
Instanciated Element: | copy >
Multiplicity: v

OK Cancel Apply 'O

In the Characteristics page, you can:

Select the Instance kind (Actor, Class, etc.).

You can specify of which Class, Actor, etc. this object is an instance.
Indicate a name for this instance.

Specify its Stereotype.

Value of an attribute

To specify the value of an attribute:

1. Display the properties of the instance of the class that contains the
attribute.

2. Select the Attributes page.

3. In the corresponding column, indicate the value of the attribute. You can
specify an instanced value or a constant value.
e Instanced value: click in this column to display the list of possible

instances for the selected attribute. These are variable values.

e Value: click in the column and enter the value of the attribute.

Links

A link represents an instance of an association between two objects.

327

328

Examples of links between objects:

e Order no. 10733 was placed by John Williams.

e Order no. 10733 includes the products Sony SPD-1730 Monitor and
Compaq Deskpro 200.

e John Williams works for Dupont.

e The window Dlg_Client_Query displays the string Str_Client_Name.

Creating a link

To create a link:

1. Click the Link button @ in the diagram toolbar.
2. Click one of the objects concerned, and drag the mouse to the second
object before releasing the mouse button.

The link then appears in the diagram.

If there is already a link between the two objects, a dialog box asks you to choose
an existing link or create a new one.

Link properties

To open the properties dialog box of a link:
) Select the center of the link to display its Properties.

wm If you do not click on the center of the link, the properties dialog
box for one of the roles will be displayed.

Under the Characteristics page, you can specify:

e The Name of the link.

The link Stereotype.

The Association corresponding to the link.

The Visibility of the link.

The Package containing the link.

In the Link Role page:
e For each Instance connected by this link, the name of the Role and its
Multiplicity.
w Only the associations between the classes of the two instances are

listed.
Role properties

To open the properties dialog box of a role:

1. In the properties window of a link, select the Link Role page.
2. Select the role in question and click Properties

w The button displays the hidden commands.

The Properties dialog box of the role opens.

The Class Diagram
Object Diagram .

In this dialog box you can specify:

A Name for the role.

The Role for this instance.

The Multiplicity for the role.

The values for the role Qualifiers, defined at the class level.

329

Structure and Deployment Diagrams .

STRUCTURE AND DEPLOYMENT DIAGRAMS

In addition to class and object diagrams, structural diagrams include:

v/ The Package Diagram, enabling organization of elements of the model

v/ The Component Diagram, highlighting dependency relationships between
components

v/ Composite Structure Diagram, describing interactions between components and
their parts

327

THE PACKAGE DIAGRAM

A package diagram enables organization of modeling elements, in order to partition
the work involved in specification and development.

An element should only appear in a single package.

Dividing into packages is generally carried out so as to minimize interactions
between different packages.

Example of a package diagram

The "HBC" package contains the "Commercial IS" and "Production Management"
packages.

The "Production Management" package can be divided into two packages, "Digital
Control" and "Alarm System".

The "Commercial IS" package contains the "Prospect", "Client", "Company",
"Person", "Order", and "Product" classes.

1
HBC
[] []

Commercial IS Production management
| Prospect || Client ’7 Order ‘ | |

Digital control| |Alarm system

[EEE]E

Creating a Package Diagram

A package diagram is created from a package.

To create a packages diagram with Hopex IT Architecture from Design (UML)
navigation pane:
1. Click Packages sub-menu.
2. Select the package stream that interests you and click New Diagram.
3. Select Package Diagram.
The diagram opens in the edit window.

328 HOPEX IT Architecture

Structure and Deployment Diagrams .
The Package Diagram

Defining Packages

A package partitions the domain studied and the associated work. It enables
grouping of various elements, in particular use cases and classes. A package can
also contain other packages. Packages are interconnected through contractual
reports defining their interface.

Examples of packages:
e The commercial information system.
Accounting.
Production management.
Digital control of a machine.
Inventory management.
Alarm system and telephone management.

To add in the diagram an existing package:

1. In the package diagram, click the Package button in the object toolbar,
then click the workspace.
2. In the Add Package dialog box, select List in the drop-down list box

using the arrow » .

The list of packages appears:

3. Select the desired package and click OK.
The name of the diagram appears in the Add UML Package dialog box.
4. Click Add.

The package appears in the diagram.

Defining Classes

The package diagram can be used to place classes in different packages.
To quickly add a set of classes to the package diagram:
1. Click Main Menu > Advanced Search to open the search assistant.

2. In the wizard, select the "Class" metaclass and click Query Q.

The list of repository classes appears.
3. Select the classes you want and drop them in the diagram.

Specifying Dependencies in a Package Diagram

Links allow you to indicate if a package contains or references a class or another
package.

329

To indicate that a package references a class or another package:

Click the [button.

2. Then carry out the link from a package to the package or class that it
references.
A dialog box asks you the type of link to be created.

3. Select "Referenced package" or "Referenced class" as required.

-—

330 HOPEX IT Architecture

Structure and Deployment Diagrams
The Component Diagram

THE COMPONENT DIAGRAM

A component diagram shows the interdependency of software components and
interfaces (it defines who uses what).

A component is an implementation element of the system: it can be
software, a program, a code element, or a physical element such as a
work document.

An interface represents the visible part of a class or package in a
contractual client-supplier type relationship. The interface is a class
stereotype.

A component diagram contains components and classes of the "Interface"
stereotype. It is also possible to specify packages implemented by the components.

Example of a component diagram

This diagram describes the elements contained in the "Order" component and the
interactions of these elements with external components.

Order
Account E Account 1

—

& : Order Header
v << Azzembly 3>
I. :
) Crdered ttem
Accournt Peyatle < Delegate »> 1 Product
Concars ' -
Line ltem Crderable fem

——C

Creating a Component Diagram

In Hopex IT Architecture, you can create a component diagram using a
component or package.
To create a component diagram with Hopex IT Architecture from Design (UML)

navigation menu:
1. From the navigation sub-menu, click Packages.
2. Select the package stream that interests you and click New Diagram.
3. Select Components Diagram.
The diagram appears in the edit window.

331

332

Components

A component represents a modular part of a system that encapsulates its content,
and which can be replaced in its environment. A component defines its behavior by
means of interfaces that it provides and requires.

One component can be replaced by another if their interfaces conform.
A component can be a software package, program, code unit, etc.

It is represented by the following icon: @

Interfaces

Creating component interfaces

An interface represents the visible part of a class or package in a contractual client-
supplier type relationship.

The interface is a particular type of class.
To create a class of "Interface" stereotype in the composite structure diagram:

1. Click the Interface button © , then click in the diagram.

2. In the dialog box that appears, enter the name of the class.
3. Click Add.

w You can specify the details for the interface in terms of attributes
and operations in the class diagram in the same way as for a class.

Linking interfaces to other objects
Two link types enable differentiation of required interfaces and provided interfaces.

A required interface is an interface necessary for object operation.

Example: the "Purchasing Management" component requires the
"Product" interface for its operation to be able to
associate a purchase order with products ordered.

A provided interface is an interface made available by an object to other objects.

Example: the "Product Management" component makes available
the "Product" interface.

You can define interfaces required and provided by an object independently of other
objects.

To specify that an interface is supported or required by an object:

1. Click the Connect [I button and drag the link from the object to the
interface.
A dialog box appears:

HOPEX IT Architecture

Structure and Deployment Diagrams .
The Component Diagram .

2. Indicate the type of link to be created:
e Required interface
e Supported interface

3. Click OK.

The link then appears in the diagram.

The interface shape differs according to link type:

Connecting interfaces
Two interfaces can be interconnected. This connection is modeled by a connector.

You can also indicate that an interface provided by an object is required by another.
Here it is one and the same interface.

Purchase @ Provuct Products El

- Product

Ports
Ports enable connection of a component to its parts or to its environment.
Ports are represented by a square in the diagram, placed at the edge of the
described element when they assure connection with the exterior.
They are connected to components by connectors.
Ports can specify queries sent and services provided by the component, as well as
queries and services they may require from other parts of the system. These queries
and services are represented by classes of interface type.
You can view interfaces associated with a port in the properties dialog box of the
port, in the Provided and Required Interfaces tab.

Connectors

Connectors enable connection of diagram objects.

Connectors of simple type do not specify a particular connection type, they are
notably used to connect instances of objects described in collaborations.

In the composite structure diagram, it is possible to specify the type of connector
between two objects: Assembly or Delegate.

333

334

Delegate connector

A "Delegate" type connector indicates the redirection of queries to a component
element responsible for their execution.

The delegation link can be made directly between the component port and the
component element, or between the component port and the element port.

Below, the "Order" component delegates management of accounts to be debited to
the "Order Header" class.

Order
Account E Account 1
—

: Order Header
v << Aszzembly 3>

—KED

Account Payable < Delegate >> f 1

Assembly connector

An "Assembly" type connector is a connector between two or more components or
ports indicating that one or more components provide services that others use.

m These can be other objects or components.

To connect ports or components that share an interface, you can also use "Provided
Interface" and "Required Interface" links.

An "Assembly" type connector connects the interface provided by the "Account"
component to the interface required by the "Order Header" class.

Order
Account E Account 1

Order Header
4 Aszerbly 3>

]_

¢ Delegate »» w 1

Account Payahle

HOPEX IT Architecture

Structure and Deployment Diagrams .
Composite Structure Diagram .

COMPOSITE STRUCTURE DIAGRAM

The composite structure diagram enables description of the internal structure of a
component, a package or a structured class.

It also enables specification of collaborations that intervene between elements of
the structure in execution of a task, highlighting the role played by each element in
the collaborations.

Elements of this diagram are parts, ports by which parts interact with the exterior,
and connectors linking the parts between themselves and with the ports.

Example of a composite structure diagram

This diagram describes the role played by parts in the "Brokered Sale" collaboration.

- —
—
-~ T~
/ \\‘\
~ \;’\
/ — T - \
/ P \

/ Buyer) Seller

f Broker | 0 (. Wholesale:Sale)........... Producer \]
- -""‘--\._‘____‘__'_'_'_,..-'-

1\ . Seler /
\ R /
\\ //’HJ Ity Buyer //
‘x\ \ Retail:Sale }{ Customer //

T~ e T ..-H/ -~
— —_— —

1“‘-..__“_‘-‘_ ‘r""_-//

——— —— =

Creating a Composite Structure Diagram

To create a composite structure diagram with Hopex IT Architecture from
Design (UML) navigation menu:
1. From the navigation sub-menu, click Components.
2. Select component stream that interests you and click New Diagram.
3. Select Composite structure diagram.
The diagram opens in the edit window.

335

Parts

A part represents a role played by an instance of a class or component at execution
of a task.

Parts are interconnected by connectors or dependencies.

A part can also be connected, via a connector, to a port which acts as interface
between the described component and the exterior.

For more details on these elements, see:

Connectors

Dependency links

Ports.

SNENEN

Multiplicities defined on parts indicate the number of instances created. Multiplicities
on connector roles indicate the number of links that can be created for each of these
instances.

To define multiplicity of a part:
1. Open the properties dialog box of the part.
2. Select the Characteristics page.
3. Click the arrow in the Multiplicity box and select the required
multiplicity.
4. Click OK.

Collaborations

In the composite structure diagram, a collaboration describes the role played by
each part (instance) in execution of a task.

A collaboration (UML) describes a collaborative structure between

several elements (roles), each accomplishing a specialized function and
collectively producing an expected functionality of the system. Its
objective is to show how a system functions independently of a specific
use. We therefore generally remove the precise identity of the
participating classes or instances.

It is represented by a dotted line oval containing the collaboration instances.

These instances are interconnected by connectors. The role that corresponds to the
instance name is displayed at each end of the connector.

A connector is a link used to establish communication between
several objects. A delegation connector links the external contract of the
object (as specified by its ports and/or inters) to internal objects that
execute it. An assembly connector between a number of objects (or
their ports) specifies how one of the objects supplies the interface
required by another.

The model of a collaboration can be applied to different instances.

336 HOPEX IT Architecture

Structure and Deployment Diagrams
Composite Structure Diagram

Collaboration use

A collaboration use represents application of the structure described by a
collaboration to a particular situation implementing classes or specific instances.
These classes or instances therefore play roles defined in the collaboration.

The instances are connected to the collaboration use by a dependency link on which
the role played by the instance must be specified.

A dependency specifies that the implementation or operation of one

or more elements requires the presence of one or more other elements.
There are several dependency stereotypes.

Collaboration use example

In the case of a purchasing request between two instances of
an actor, a collaboration is used. This collaboration
connects two roles: the role of buyer and the role of
seller. On the dependency that connects each instance to the
collaboration, you can indicate the role played by the
instance.

* Properties of Dependency Dependency-2 H=

General Characteristics | Source | Target | Complements | Texts |

Local name: I Dependency-2

OhAnEs ! IPackage j I

Skerectype: I

Target Element: I

Maone
Seller

ala|f®

Dependency links
A dependency specifies that implementation or operation of one or several elements
requires the presence of one or several other elements.

A dependency is a supplier/customer type relationship indicating source and target
elements in the collaboration.

Broker //) """""" Producer

337

338

A stereotype on the dependency enables specification of dependency type:

Binding: relationship between a template and a modeling element
generated from the template. It includes a list of arguments
corresponding with template parameters.

Derive : indicates a derivation relationship between modeling elements
that are generally, but not necessarily, of the same type. Such a
dependency relationship implies that one of the elements can be
calculated from the other.

Mapping UML/XML : expression that defines the relationship between
elements (classes, attributes, ...) of a schema or class diagram and
those of another schema or class diagram.

Refine: specifies a dependency relationship between modeling elements
at different semantic levels, such as analysis and design.

Trace: specifies a traceability relationship between modeling elements or
sets of modeling elements that represent the same concept in different
models.

To specify dependency type:

1.
2.
3.

Open the properties dialog box of the dependency.

Select the Characteristics page.

In the Stereotype box drop-down list, select one of the proposed
stereotypes.

The arrow 2 also allows you to create new stereotypes.

HOPEX IT Architecture

State Machine Diagram .

STATE MACHINE DIAGRAM

A state machine diagram enables description of possible behaviors of an object, depending on the
events it experiences during its life cycle.

The following points are covered here:

Presentation of the State Machine Diagram
Creating a State Machine Diagram

States

State Transitions

SNENENEN

339

340

PRESENTATION OF THE STATE MACHINE DIAGRAM

A state machine is the set of states and transitions between states that define the
life cycle of an object that is variable over time.

The state machine diagram enables representation of the sequence of states that
an object can take in response to interactions with the objects (internal or external
to the studied system) in its environment.
Example of state machine diagram

The diagram below describes possible behaviors of an automated teller machine:

ATM State Machine)

(Yerify Card

° L

Accept Card

Out of Service Cut of Service | Read Amount :Read Abored
Amount SM

Felease Card
[Verify Transaction Release Card

Creating a State Machine Diagram

A state machine diagram is created based on a state machine.
You can create a state machine using a package, class or component.

To create a state machine diagram with Hopex IT Architecture from Design
(UML) navigation menu:
1. From the navigation sub-menu, click status.
2. Select machine stream that interests you and click New Diagram.
3. State Machine Diagram.
The diagram opens in the edit window.

HOPEX IT Architecture

State Machine Diagram
Presentation of the State Machine Diagram

The diagram is initialized by creation of a region. A region is part of a composite
state or state machine which contains states and transitions and of which execution
is autonomous.

341

STATES

A state is a condition or situation in the life of an object, during which it satisfies
some condition, performs some activity, or waits for some event. A state represents
an interval of time delimited by two events. It is a phase an object passes through
during its life cycle.

Examples of object states
e A person can be:
e Unmarried
e Married
e Divorced
e An item can be:
e Available
In stock
At reorder level
Out of stock
etc.

Creating a State

To create a state in a state machine diagram:
1. Click the arrow associated with the State button of the object insert

toolbar '~

2. Select a state type.
3. Click in the diagram work area.
The Add State dialog box opens.

4. Indicate the Name of the state and click Create.
The state appears in the diagram.
State types

It is necessary to specify the state type at the time of its creation. It can be:

. - | A normal state: has no sub-structure.

. A composite state: comprises several states, described in the
diagram.

o A sub-machine state: calls the descriptor of a state machine
described elsewhere. See Detailing Behavior of a State.

° L |A final state

When you place a state in another state, it is automatically connected as a
component of this state.

342 HOPEX IT Architecture

State Machine Diagram
States .

Pseudo-states

Pseudo-states are used to specify complex paths by combining several transitions
between states.

They can be of different types: initial, final, choice, deep history, shallow history,
input, output, fork, join, junction or reference.

Initial

IT" & [nitial

{} s Terminate
< Choice

&5 (@) Deep History

@v O Enkry Point

@ Exit Poink

..I: Fork.

::I-» Join

& Junction
@ Reference

(H) Shallow Histary

An initial pseudo-state has a single output transition to the initial state of the object
at its creation.
Deep history

A deep history pseudo-state represents the last active configuration of a composite
state containing it; that is the configuration that was active the last time the
composite state was exited.

Simple history

A simple history pseudo-state represents the most recent active sub-state of a
composite state (without the sub-states of this sub-state).

Fork

A fork separates a transition into several concurrent transitions.

Join

A join is the grouping of several transitions into a single transition.

Choice

Represents the choice of a transition between several possible transitions.

Junction

A junction is used to define paths of complex transitions between several states.

343

344

Input

Entry point of a state machine or of a composite state.

Output

Exit point of a state machine or of a composite state.

Reference

Reference to an input or output of a state machine or of a composite state.

Final

Input in this pseudo-state involves complete shutdown of the state machine.

Deep history

A Deep History state represents the last active configuration of a composite state;
that is the configuration that was active the last time the composite state was
exited.

A Simple History state represents the most recent active sub-state of the
composite state.

Example:

Consider the "Married" state as the last active configuration. Sub-states of this state
are "With children" and "Without children". In the case of a deep history, the "With
children" and "Without children" sub-state is specified. In the case of a simple
history, only the "Married" state is taken into account.

Detailing Behavior of a State

A state can be made up of sub-states.

To describe composition of a state in a diagram:
1. Open the pop-up menu of a state and select New > Detailing
Behavior.
The state machine diagram creation window opens.
2. Click New.
The diagram opens.

You can also define composition of a state by associating it with a new or existing
state machine:
1. Open the Characteristics property page of the described state.
2. In the Detailing Behavior box, create a state machine or query an
existing state machine.

HOPEX IT Architecture

State Machine Diagram

State Properties

To access the state properties:
1. Right-click the state.
2. Select Properties.
The properties dialog box of the state appears:

This can be used to:

e Modify the state Name.

e Indicate whether the sub-states are Concurrent, meaning they can be
executed simultaneously.

e Indicate the Detailing Behavior (in the case of a complex state). See
Detailing Behavior of a State.

e Specify the Activities that can be performed at input, output or while
the object is in this state.

w The contents of the properties dialog box of a state vary depending
on state type.

States |

345

346

STATE TRANSITIONS

Passage from one node to another is represented by a transition.

A transition is passage of an object from one state to another. A
transition is the response of an object to an event it receives. When an
event occurs and certain conditions are satisfied, the object executes
certain actions while still in the first state, before passing to the second
state.

All authorized transitions must be defined. Those that are not defined are prohibited.
Examples of transitions:

For the marital status of a person, certain transitions are possible:

e It can change from the "unmarried" to the "married" state
e It can change from the "married" to the "divorced" state.

Other transitions are not possible:
e The state cannot change from "unmarried" to "divorced".

Creating a Transition

To create an transition between two states:

"

1. In the state machine diagram, click Transition (UML) in the insert
toolbar.
2. Click the source state and drag the mouse to the target state.

3. Release the mouse button. The association is created.

Transition Types

A transition can be external, internal or local.

You can specify the transition type in the Characteristics property page of the
transition.

External transition

An external transition is a transition that modifies the active state.

Internal transition

An internal transition enables an object to react to the arrival of an event that does
not result in a state change but has an effect such as calling an operation or sending
a message. For example, when pulling items from inventory, an item may not
change state if the quantity remaining in the inventory is sufficient and does not fall
below the reorder level or shortage level.

HOPEX IT Architecture

State Machine Diagram
State Transitions .

Local transition

A local transition applies to sub-states of a composite state. It can cause a change
of state only within the composite state.

Transition Effects

Triggering of a transition can be accompanied by an effect. The effect can be
represented by:

e An activity

e A collaboration

e An interaction

e A state machine

To define effect of a transition:

1. Open the Characteristics property page of the transition.
2. Click the arrow in the Effect (Behavior) box and create or connect the
object that defines the effect.

Transition Effect Display

To modify how the transition effects are displayed.
1. In the state machine diagram, right-click the transition and select
Shapes and Details.
2. Then select “Effect” in the tree that appears.

You can now specify whether to display all or part of the transition effects and their
characteristics.

Transition Triggering Event

In the properties dialog box of a transition in the Event tab, you can indicate the
Event Kind that triggers a transition.

347

348

It can be:

Any event

Calling an operation

Changing the object concerned by the transition
Creating an object

Destruction of an object
Sending a signal

Sending an operation

Sending a signal from the object
Receiving a signal

Receiving an operation

A timer

A timer is an event determined only by time elapsed. Example:

Monday, at 4 pm, etc.

Fields displayed under Event Kind vary according to the event kind selected.

You can select the object concerned by the effect.

In the case of an operation or signal, you can specify values of parameters sent.

HOPEX IT Architecture

Activity Diagram .

ACTIVITY DIAGRAM

The activity diagram is very similar to the state machine diagram. Unlike the state machine diagram
which describes object behavior via state sequencing, the activity diagram describes element
behavior in terms of actions.

Activity Diagram
Partitions

Nodes

Flows

ANENENEN

349

ACTIVITY DIAGRAM

An activity diagram represents sequencing of steps describing behavior of a system
element.

Steps are modeled by nodes - nodes of action, configuration or control - coordinated
by data flows or control flows.

Example of an activity diagram

Manage Order

5

= Receive .

5 Fill Order Py Close Order
=

g

< [Order accepted]

5

&

E Send Invoice

= Accept Payment
] S
=<1

5 Irvoice

&

o

2 Make Payment

3

Creating an Activity Diagram
In Hopex IT Architecture, an activity diagram is created based on a package or
an activity.
You can create an activity for a package, component or class.

To create an activity diagram:

1. Right-click the package or the activity concerned.
2. In the pop-up menu that appears, click New > Activity Diagram.
The new activity diagram opens.

350 HOPEX IT Architecture

Activity Diagram
Partitions .

PARTITIONS

An activity diagram can be divided into partitions. Each partition contains nodes or
actions as well as the flows between these elements.

You can use partitions to organize tasks or to specify the element responsible for
implementation of multiple tasks.

For more details on swimlanes, see the Hopex Common Features guide,
"Handling Repository Objects" chapter, "Using Swimlanes” section.

N\

Fill Order

Receive
Order

Activity Partition

[Order accepted

Y

Invoice

Activity Partition

Activity Partition

Creating a Partition

To create a partition in the activity diagram:

1. Click the Partition button |]:| in the object insert toolbar.

2. Specify its name.
3. Click Add.

Partition Properties

The State page presents the states contained in the partition.

351

The Complements page is used to specify the element represented by the
partition. This is the element that implements the elements of the partition. It can
be an actor, class or component.

352 HOPEX IT Architecture

Activity Diagram
Nodes .

NODES

Nodes enable modeling of activity steps. There are different node types in Hopex:
e Object nodes
e Parameter nodes
e Control nodes
e Object nodes: Input, Output and Exchange Pins

Object nodes

Actions are the basic steps of behavior represented by the activity.

Coordination of actions is by control flows and data flows.

Creating an Action

To create an action in an activity diagram:
1. In the diagram object insert toolbar, select the button corresponding to
the action type then click the work plan.
The dialog box for adding an action of the selected type opens.
w The insert toolbar offers three main types of actions.
2. Specify its name and click Add.

Modifying the Action Type

In the Characteristics property page of the action, you can modify the action type.
It can be:
e Calling an operation of another object
Creating an object
Destruction of an object
Local execution of an operation of the object
Sending a signal from the object
Terminating the object
etc.

Parameter nodes

The parameter nodes of an activity describe the inputs and outputs of this activity.

They transmit parameters to the activity via flows which they send and receive.

353

Control nodes

A control node coordinates the flows between nodes of an activity.

A control node can be of initial, final, decision, merge, fork or join type.

@ |[nitial
& v
() £ Fork
-% Decision
® Activity Final
© # Flow Final
G w
— # Join

Last tr: 3 Merge

Control node types

Initial

An initial node indicates where the control flow starts when the activity is invoked.
An activity can have several initial Nodes.

Final

When a token reaches a final node an activity, all flows of the activity are stopped.
Conversely, a final Node a flow destroys tokens that arrive, but has no effect on
other tokens of the activity.

Decision

A decision makes a choice of one flow from among several possible output flows.
Output flows are selected according to their guard conditions.

Merge

A merge fusion (merge) groups several alternative input flows into a single output
flow. It is not used to synchronize concurrent flows, but to accept a single flow from
among several.

Fork

A fork separates a flow into several concurrent flows. Tokens arriving at a fork are
duplicated through the output flows.

354 HOPEX IT Architecture

Activity Diagram
Nodes .

Join

A join synchronizes multiple flows. The flow is triggered when all input flows are
available.

Object nodes: Input, Output and Exchange Pins

To specify input values of an action and return values, we use object nodes called
input and output pins. The action can only start when a value is assigned to the input
pin. Similarly, when the action is completed, a value must be assigned to the output

pin.

Input pin
An input pin supports input values consumed by an action that it receives from other
actions.

Output pin

An output pin supports output values produced by an action and supplies these
values to other actions through flows.

Exchange pin

An exchange pin is used to represent data exchanged between two actions.

Flows

Passage from one node to another is represented by a flow.

Control flow

A control flow starts an action node when the previous node is completed. Objects
and data cannot be transmitted by a control flow.

Object flows

An object flow enables transmission of data or objects from one Node to another
within an activity.

355

HOPEX IT Architecture

Interaction Diagrams

INTERACTION DIAGRAMS

Interaction diagrams, that is the sequence diagram, communication diagram and interaction
overview diagram, represent a series of interactions between objects, ordered in time. They show
one or more possible illustrations of a system.

The following points are covered here: :

Interactions

Sequence Diagram
Communication Diagram
Interaction Overview Diagram

SNENENEN

357

358

INTERACTIONS

An interaction describes behavior of a system in a particular context by exchanges
of messages between system elements.

While state machine diagrams or activity diagrams study individual behaviors,
interaction diagrams concentrate on cooperation of a group of objects.

Creating an Interaction

You can create an interaction from a package, class or component.
To create an interaction with Hopex IT Architecture using Design (UML)
navigation pane:

1. Click Interaction sub-menu.

2. Click the New button.

3. Enter the name of the interaction and an owner if necessary.
4. Click OK.

Creating an Interaction Diagram

The sequence diagram, communication diagram and interaction overview diagram
are created using an interaction.
To create an interaction diagram:

1. Right-click on an interaction.

2. In the pop-up menu that appears, click New > Interaction Diagram.

o
Message

SEQUENCE DIAGRAM

Interaction Diagrams
Sequence Diagram

The sequence diagram highlights the chronology of messages exchanged between
objects participating in an interaction. These objects are represented in the diagram

by their lifelines.

Example of a sequence diagram

The diagram below describes behavior of an automated teller machine:
e Two entry points (represented by lifelines) have a user access check.
This check is described in an interaction.
e Depending on the result of the check, either access is refused and the
user card is rejected, or door opening is actuated;
e An optional behavior (represented by a combined fragment) can
influence door opening.

sd AC User Access)

Access Point

| P2

Authorizer

Console

*—

ref

AL Extablish Accesz1()

— Lifeline

Interaction Use

Card Ejection
e
|

opt)

[Fin OK]
P2-->Gate(Please

= E Enter]

L1

ref

AC Open Daor)

Combined Fragment
&—— (Option)

359

360

Creating a Sequence Diagram

To create a sequence diagram in Hopex IT Architecture :

1. Right-click on an interaction.
2. In the pop-up menu that appears, click New > Interaction Diagram.

See also Creating an Interaction.

Lifelines

A lifeline represents a participant in an interaction.

Lifelines are instances of different types (of classes, of actors, etc.).

In a sequence diagram, time is represented as passing from top to bottom along the
lifelines of these objects. Message instances transit between these objects.

w The instances represented in a sequence diagram can be instances
of a class, actor, package, use case, component, or node, used to define
the sequence diagrams at the desired level of detail.

Creating a lifeline

To create a lifeline/

1. Click the Lifeline 53] button.
2. Click in the diagram.
A dialog box opens.

3. Enter the name of the lifeline.
4. Click Add.
The lifeline appears in the diagram.

Lifeline properties

To access properties of a lifeline:
) Select the instance and click Properties in the edit window if it is not
activated.

You can select the Type of the object (Actor, Class, etc.), specify the Class, Actor,
etc. of which it is an instance, and indicate its Stereotype.

Messages

A message defines a particular communication between lifelines of an interaction. It
specifies the sender and receiver via intermediate occurrence specifications, as well
as the type of communication. This communication can be, for example, sending a
signal, calling an operation or deleting an instance.

Interaction Diagrams
Sequence Diagram

Examples of exchanged messages
1) The message sent by the "Client" actor to the "Order" class carries the "New

Order" signal.
% ‘Order

:Client

1:MewQOrder
|

2) The message sent by the "Order" class to the "Product" class calls the "Reduce
inventory" operation.

Order :Product

BI 2:Reducelnventory H
Creating a message

To create a message in the sequence diagram:
1. Click the Message button in the insert toolbar, selecting the required
message type.

= ‘% — Complete

« Found

—= | 051

= Unknown

2. Click on the dotted line under the first object, and hold down the mouse
button while dragging the cursor to the dotted line under the second

object.
The message exchanged between the two objects is drawn.

361

362

Message types

You can create four types of message:

e In a message type "Complete", the sender and receiver are both defined.

e In a message type "Lost", only the sender is known. Here we consider
that the message never reaches its destination.

e In a message type "Found", only the receiver is known. This is the case
when origin of the message is outside the description context.

e In a message type "Unknown", neither sender nor receiver are defined.

Execution Specification

An execution specification represents an action or behavior unit that progresses
from a start occurrence specification to an end occurrence specification.

Internaut

Creating an execution specification

To create an execution specification:

1. In the sequence diagram, click the Execution Specification button Ll
in the object insert toolbar.

2. Position it on the lifeline concerned.
The specification appears in the diagram.

Occurrence specification

Creation of a message or an execution specification automatically creates
occurrence specifications.

Interaction Diagrams
Sequence Diagram

An occurrence specification is a syntax point at the extremity of a message or at the
start or end of an execution specification.

Occurrence specifications are ordered along a lifeline.
These are basic semantic units of an interaction.

You can access the pop-up menu of an occurrence specification by right-clicking one
of the extremities of a message.

=

Internaut Sitel

. ! - (<)
\-_._-E‘Ecurrence Specification
[y Copy
ﬁ #Add to Favorites -
3¢ Delete
E Diagrams Containing Object —

@ Explore X
Theck 3

Manage 3

IiL| Properties

Calculating sequence numbers

From positioning of occurrence specifications, a calculation tool enables ordering of
messages and execution specifications.

To order messages circulating between lifelines of an interaction:
1. Open the pop-up menu of the described interaction.
2. Select Calculate Sequence Numbers.
The tool automatically applies numbers to messages.

363

364

Example

=
Ll
=
=
Ll
=
[==]

11 m2
2 m3
21 m3
211 m3
2111 m2

You can manually modify the sequence number of a message in the message
properties dialog box:

) Select the Characteristics tab and change the value in the Sequence
Expression.

When you restart calculation of sequence numbers, this updates sequencing
according to the modifications made.

Combined Fragment

A combined fragment enables concise description of several execution sequences.

A combined fragment is defined by an interaction operator and the corresponding
interaction operands.

Interaction Diagrams
Sequence Diagram

Creating a combined fragment

To create a combined fragment:
1. In the sequence diagram insert toolbar, click the Combined Fragment
button.
You can associate different types of interaction operator to a combined
fragment. The arrow at the right of the button offers shortcuts to four of
these. See Interaction operator type.

B~ 1 Alternatives
=
£ Option
' £1 Parallel
— 1 Loop

2. Click in the diagram.
The combined fragment creation dialog box appears.

3. Specify its Name and the Interaction Operator Type if not already
indicated.

4. Click Finish.

A combined fragment is represented by a rectangle with the interaction operator
type displayed at the top left-hand corner.

365

366

In the example below, a combined fragment of option type translates a behavior
that could disturb normal operation (door opening).

=d AC User Accass J

Access Point Authorizer Console

B P2

ref

AL Establish Access-1()

opt I J

[Pin QK]
P2-->Gate[Please

< Enter]

ref

AL Open Door]

Interaction operator type

The interaction operator type conditions meaning of the combined fragment. There
are various operator types: seq, alt, opt, break, par, strict, loop, region, neg, assert,
ignore and consider.

Alternatives

Alt expresses the possibility of choosing between different possible behaviors by
evaluating guard conditions associated with each of the operands. Only one of these
operands can be executed.

The Else operand is selected when none of the other conditions is satisfied.

Option

Opt represents a choice between the unique operand proposed, or none.

Break

Break represents a stop scenario that is executed instead of the rest of the
containing interaction fragment.

Interaction Diagrams
Sequence Diagram

Parallel

Par means that the different operands can be executed in parallel. Occurrence
specifications of different interaction operands can be sequenced in various ways as
long as the order imposed by each operand is maintained.

Weak Sequencing

Seq designates weak sequencing between behaviors of operands defined by three
properties:

- Order of occurrence specifications within each of the operands is maintained in the
result.

- Occurrence specifications of different lifelines from different operands can appear
in any order.

- Occurrence specifications of the same lifeline from different operands are ordered
so that the occurrence specification of the first operand appears before that of the
second.

Strict Sequencing

Strict defines strict sequencing of operand behaviors.

Negative

Neg represents an invalid operand.

Critical Area

Critical represents an area that must be processed atomically, meaning that
occurrence specifications cannot be sequenced with those of this critical area.

Ignore/Consider
Ignore and consider require that a list of relevant messages be specified.

Ignore indicates that the types of certain messages are ignored in the combined
fragment.

Consider indicates that certain messages will be considered in the combined
fragment. This is equivalent to defining all other messages as 'ignored'.

Assertion

Assert represents a sequence that is the only one valid for a given message.

Therefore any sequence defined by an interaction fragment that starts with
messages leading to the sequence defined by the Assert block and continuing with
an exchange of messages that do not respect the Assert block must be defined as
invalid.

Assertions are frequently used in combination with Ignore and Consider types.

367

Loop

Loop indicates that the interaction operand will be repeated a certain number of
times. It is possible to specify minimum and maximum number of loops, as well as
an expression of loop continuation.

Interaction operands

An interaction operand is contained in a combined fragment, and represents an
operand of the expression given by the containing combined fragment. It can be
conditioned by an interaction constraint, which acts as guard condition.

Creating an Interaction Operand

To create an interaction operand:

1. Right-click the combined fragment which contains the interaction
operand.

2. Select New > Interaction Operand.

3. Name the operand and click OK.

Creating an Interaction Constraint

To create the interaction constraint that will condition the operand:
1. Open the properties dialog box of the interaction operand.
2. Click the Characteristics tab.
3. In the Condition frame, click New.
4. The condition is represented by a constraint. Define the constraint and
click OK.

Interaction Use

An interaction use refers to an interaction. It is a means of copying content of the
interaction referenced at the interaction occurrence location.

368

Interaction Diagrams
Sequence Diagram

Example

sd AC User Access)

Access Point Authorizer Conzole

1l P2

ref

A2 Establish Acceszs-1[)

To create an interaction use:

1. Click the Interaction Use button
. Click in the diagram.
3. In the dialog box that appears, specify the name and the interaction
called.
4. Click Finish.

You can specify arguments of an interaction use. An argument is a specific value
corresponding to a parameter of the interaction called. In addition, when the
argument has been created on the interaction use, you must align it with the
interaction parameter called.

To create an argument:
1. Open the Characteristics property page of the interaction use.
2. In the Arguments frame, click the New button.
A value specification is created.
You can rename it and specify its characteristics by opening its properties
dialog box.

To align the argument with the interaction parameter called:
1. In the Characteristics property page of the interaction use.
2. Click the arrow at the right of the Interaction called box and select
Modify .
A dialog box displays characteristics of the interaction called.
3. For each parameter, click in the value column and select the
corresponding value specification.

Gate

A gate is a connection point between a message external to an interaction fragment
and a message belonging to this interaction fragment.

369

370

Example

sd AC UserAccess)

Access Point Authorizer Console

] B2

ref

(o—

To create a gate in the sequence diagram:

AL Establizh Access1()

Click the Gate button il in the object insert toolbar.
2. Click on the frame outlining the interaction at the point you wish to

position the gate.
The gate then appears in the diagram.

-—

Continuation

A continuation is a syntax means for defining the continuation of sequences of
different branches of an Alternatives combined fragment. Continuations are similar
to labels representing intermediate points in a control flow.

Interaction Diagrams
Communication Diagram

COMMUNICATION DIAGRAM

The communication diagram is a simplified representation of the sequence diagram,
concentrating on message exchanges between objects within an interaction.

The sequence and communication diagrams are isomorphic. When a communication
diagram relates to an interaction already described in a sequence diagram, it is
automatically initialized from the information contained in the sequence diagram.

Example

Sequence Diagram

I=
L
Eol
£
L]
=
=

11 m2
2 m3
21 m3
211 m3
21.1.1 m2

371

Communication Diagram

sd M

Tam’

\
Yo\ 2im2
1b.1:m3 \ "\,\ 1b.1.1:m3,
Vo 1ho1.1.1im2
AR
\.\ \'q
\
s[u]:B

Diagram objects

Communication diagram objects are lifelines and messages transmitted by
connectors.

When you connect two lifelines with a connector il, the connector creation dialog
box proposes messages that may be transmitted.

When the connector has been created, you can associate new messages in its
properties dialog box, in the Message tab.

The sequence of messages is given by a sequence number associated with each
message. See Calculating sequence numbers.

For more details on connectors, see Connectors.

372

Interaction Diagrams
Interaction Overview Diagram

INTERACTION OVERVIEW DIAGRAM

The interaction overview diagram describes sequences possible between scenarios

previously identified in the form of sequence diagrams. It gives an overview of
control flows.

sd AT Systern Lifelines: :AC System, :User, :AC Spstem, :User

:User :AC System

Card Ejection

sd 52

-User :AC System
LifeLine-->LifeLine[Please
Enter)
@@ ref
Open Door)

Objects represented in the interaction overview diagram are interactions and
interaction uses, lifelines, messages, control nodes and control flows.

373

The deployment diagram .

THE DEPLOYMENT DIAGRAM

The deployment diagram complements the component diagram with hardware resources on which
components run.

v Presentation of the Deployment Diagram.

375

376

PRESENTATION OF THE DEPLOYMENT DIAGRAM

The deployment diagram complements the component diagram. It describes
hardware resources (computer, router, etc.) in the system, and indicates
distribution of components on these hardware resources.

It also describes connections between components or nodes.

This diagram also allows specification of interfaces required and implemented for
sequencing of components.

It can be illustrated and supplemented by the addition of node, component or class
instances.

Example of a deployment diagram

Application Server

EJBC Container

<edevicer >
:Application Server

Web Server

<<Instance - Instance>> :EJBC Container

Student @
Seminar@

Student Administration D

Creating a Deployment Diagram

In Hopex IT Architecture, a deployment diagram is created from a package.
To create deployment diagram with Hopex IT Architecture from Design (UML)
navigation menu:

1. Click Packages sub-menu.

2. Select the package stream that interests you and click New Diagram.
3. Select Deployment Diagram.
The new deployment diagram opens in the Edit window.

HOPEX IT Architecture

The deployment diagram
Presentation of the Deployment Diagram

Deployment Diagram Objects

Node

A Node is a physical object representing an IT resource, generally with a memory
and often with calculation capabilities, on which components can be deployed

Nodes can comprise other Nodes or artifacts. To indicate that a component is
assigned to Node, either place the component in the node, or connect the
component to the node by a dependency link.

See Dependency links.

You can create a node in the deployment diagram using the Node (UML) button

ﬁ'l in the insert toolbar.

Communication path

Connections between Nodes are represented by communication paths via which
signals and messages are exchanged.

Component

A component represents a modular part of a system that encapsulates its content,
and which can be replaced in its environment. A component defines its behavior by
means of interfaces that it provides and requires.

One component can be replaced by another if their interfaces conform.

A component can be a software package, program, code unit, etc.

Artifact

An artifact D represents a physical information element used or produced by the

software development process, or by the deployment or implementation of a
system. Example: source files, scripts, executable binary files, development
deliverables, word processing documents, electronic messages, etc.

Manifestation

A manifestation [=l] is the real physical restoration in an artifact of one or several
modeling elements such as components or classes.

The source of a manifestation dependency is an artifact, the target a component or
class.

377

378

Deployment specification

Deployment specification enables indication of the characteristics that determine
execution parameters of an artifact or component deployed on Node.

Configuration

The configuration button <>"'l enables creation of the link between a deployment
specification and a deployment.

Example

AppServer

.....................

<Lartifacts >
Order.jar

)

<{deplayment spec:>
Deployment Specification

HOPEX IT Architecture

Appendix: Attribute type .

APPENDIX: ATTRIBUTE TYPE

The following points are covered here:

v/ Primitive Types
v/ Packages and Primitive Types
v Defining New Primitive Types

379

PRIMITIVE TYPES

A primitive type is used to group characteristics shared by several attributes.
Primitive types are implemented as classes.

Prerequisite: Importing the Primitive Types

To access primitive types in Hopex IT Architecture, the administrator must import
the “ISQL ANSI” module in your environment. To import a module in Hopex, see
Modules > Importing a Module documentation.

Defining a Primitive Type

Primitive types are defined in a class diagram.

These are classes for which the following is specified:
e They are of the "Primitive Type” stereotype.
e They are "Abstract” classes because they will not be instantiated.

e They are "Non-persistent"” classes. They should not have a corresponding
table in the database.

To specify types of class attributes:
1. Open the properties of the class and select the Internal
Characteristics page.
2. Expand the Attributes section.
3. Click the Type expression field and select the attribute type using the
arrow.

The following classes are in the standard list:

Alphanumeric types Other Informa-
tion
M-Char Alphanumeric string of fixed Length
length
M-Varchar Alphanumeric string of variable
length

Numeric types

M-Numeric Number Length, decimal
places

M-Amount Amount expressed as currency Length, decimal
places

380 HOPEX IT Architecture

Appendix: Attribute type
Primitive Types

Date types

M-Date Date

M-Time Time
M-Datetime Date and time

Binary types

M-Timestamp

Identification automatically gen-
erated from the date and time,
expressed in thousandths of sec-
onds since 01 January 1970

M-Bool

Boolean, equals 0 or 1

M-Multimedia

Binary string

381

382

PACKAGES AND PRIMITIVE TYPES

Packages

A package partitions the domain studied and the associated work.
It enables grouping of various elements, in particular use cases and
classes. A package can also contain other packages. Packages are
interconnected through contractual reports defining their interface.
The assignment of classes to packages imposes a rigid structure. As a class can
belong to only one package, it is necessary to define client/supplier relationships so
packages can use classes they do not own when they need to.

This is especially important for primitive type classes, because they will be used to
define the attributes of other classes.
w Rule: a class can belong to only one package.

What primitive types are available for typing the class attributes depends on which
package the class is in.

The type you can give to class attributes can only be primitive types defined for the
package containing the class.

The accessible primitive types are public classes with the “Primitive Type”
stereotype, that are contained in or are used by the package or the packages of
which it is the client.

You can define a reference package (or several reference packages) containing the
primitive types used by the enterprise. All the other packages are declared as clients
of the reference package of primitive types.

HOPEX IT Architecture

Appendix: Attribute type
Packages and Primitive Types

In the example below, the “Data types reference” package contains the classes
“Address”, “Code”, “Date”, etc.

{# Package Standard:Type 0] =|
Explore Display Help

2HrEoonnaE|
& Standard::Types::Data types reference ﬂ
] Description {13

H-ED) Model class (18}

H-E3 ownedGeneralization (40}

b
b
b
b

H

H- & pAddress

H-& amount

H-E Code

H- & Comment

H- & Company name

H- & Company registration number
H- & Date

H- & Decimal

H- & Designation

H-2 First name

H- 3 Identifier

H- & Mumerics

H- & Price

H- & Rate

H

& Reference LI
oA

T OO O o O e O o O e OO Ot O e O oy O O e O O e O O

It is referenced by the packages "Library", "Order management", etc.

The class attributes for these packages can be typed using the types “Address”,
“Code”, “Date”, etc.

It is also possible to specify directly that a package uses a class contained in another
package.

In the example below, the classes “P-Datetime”, “P-Multimedia”, "P-Numeric", etc.
are used by the “Data Type Reference” package without being owned by that
package.

Of these classes, only "M-Multimedia” is exported by the package for public use.

383

384

E Package Standard:Types:Data types reference - Explore

Explore Display Help

=10l x|

Bel2z[eoon aEal?

'_:l Standard:: Types::Data bypes reference ﬂ

Referenced Class of Package Standard:

iTypes::Data bypes reference

2 Description {13 Local name IStereotype IisAbstract IisRoot IPersistencechmIIName |\u'isibility
B2 Madel class (18) = P-Autoldentifier Primnitive type Standarc =
a Ownedaeneralization (407 = P-Binary Primitive type Standarc
a ReferencedPackage (1) = P-Byte Primitive type Skandarc
B ownedClass amn = P-Character Primnitive type Standarc
a ;ieferenced Class (24) = P-Currency Pr!m!t!ve bype Standarc
[]___‘-_;. R — = P-Date) Pr!m!t!ve bype Standarc)
= P-Datetime Primitive type Abstract Mot root Mo Standarc Private
-3 P-Binary = P-Decimal Prirnitive bype Standarc
-3 pyte = P-Double Prirnitive bype Standarc
-3 p-Character = P-Float Primitive type Skandarc
& p-Currency = P-Inkeger Primitive type Concrete Mot root Standarc
F- & p-Date = P-Long Integer Primitive type Skandarc
o . Primitive type Skandarc
. o
@ p-Double P-Murneric Primitive type Abstract Mo Standarc Private
= P-Real Primitive type Standarc
(-3 P-Float = P-Smallint Prirnitive bype Standarc
-3 p-Inkeger @ P-String Primitive type Standarc
-3 p-Long Integer = P-Text Primitive type Skandarc
& p-Long Real = P-Time Primitive type Abstract Mo Standarc Private
F-&E p-Mulimedia = P-Timestamp Primitive type Abstract Mo Standarc Private
F- & P-Mumeric = P-Tinyink Primitive bype Standarc o
F-E ppesl ~ | | = P-Yarbinary Primitive bype Standarc -
ET| s} s
| | Class P-Date

HOPEX IT Architecture

DEFINING NEW PRIMITIVE TYPES

New primitive types can be defined using a class diagram.

Appendix: Attribute type

Defining New Primitive Types

Depending on whether classes have been organized into packages, the class
diagram can describe:
e A reference database.
e The package of reference types.

You can define your own primitive types by declaring them as

standard primitive types, as shown in the example below:

subclasses of the

Datetime |

| Binary String

<<Primitive typa:>

<<Primitive typa:*
P-Date

P-Byte

<¢Data Type:>
Code
fbstract}

<<Primitive typa:>

Character String

<¢Data Type::
Company name
fbstract}

<<Primitive typa:>
P-Text

P-Varbinary

<¢Data Type:>

<<Primitive typa>

P-Character

Identifier H=
[8bstract}

<<Primitive typa>

-

<¢Data Type:>
Reference
fbstract}

<<Primitive typa>

<<Primitive typa:>
P-Varchar
fbstract}

71T

<¢Data Type:>
Hame
fbstract}

P-Multimedia P-Binary <<Data Type?>
<<Data Type>> {Pbstract} First name
Date Ifbstract}
fbstract}
<<0ata Types:
Address
fbstract}
Data Type

<<Primitive typa:>
P-Datetime
fbstract}

<¢Data Type:>

Comment
fbstract}

<<Primitive typa:>
P-String

<¢Data Type:>
Designation
fbstract}

<<Primitive typa:>
P-Humeric
fbstract}

<<Primitive typa:*
P-Time
fbstract}

Numeric

<<Primitive typa:*
P-Currency

<¢Data Type:>

<<Primitive typa:*
P-Timestamp
fbstract}

Company
registration
<<[0ata Typasr number
Humeric5 {rbstract}
fbstract}
Rate
fbstract}

<<Primitive typa:>
P-Integer

<<Primitive typa:>
P-Long Real

<<0ata Types:
Price
fbstract}

<¢Data Type:>
Amount
fbstract}

<<Primitive typa:>
P-Smallint

<<Primitive typa:*
P-Long Integer

<<Primitive typa:>
P-Autoldentifier

<<Primitive typa:>
P-Real

<¢Data Type:>

<¢Data Type:>

<<Primitive typa:>

<<Primitive typa:>

<<Primitive typa:>

<<Primitive typa:>

ZipCode Decimal P-Decimal P-Float P-Double P-Tinyint
{fbstract}] {fbstract}
The primitive types defined as subclasses will automatically inh

erit the

characteristics of their superclass. In particular, the datatype conversion rule for the
superclass is applied to the subclass.

It is possible to specify a length and a number of decimal places for the subclass.
These will be taken into account when generating the data types if they were not
already defined for the superclass.

Inheritance can occur at several levels.

385

386

In the following example, the primitive type “ZipCode” is a specialization of the
“Numeric5” type of length 5, which is itself a specialization of the standard type “P-
Numeric”.

l_:| Standard:: Types::Data bypes reference:: ZipCode
B3 Attribute (2)
Ea Generalization (1)
2 _CodePostal
Ea Superilass (1)
E|I:l Murnerics
Ea Generalization (1)
| E|I:l _Murnerics
Ea Superilass (1)
B3 p-Mumeric

If the new primitive type is not defined directly or indirectly as a subclass of a
standard primitive type, the conversion table that maps primitive types to column
data types must be updated.
w A connection can also be directly defined between a type and the
corresponding SQL datatype generated for each target DBMS without

using the inheritance mechanism (see "Mappings between Pivot Types
and Datatypes" in the Hopex Database guide).

Compound Primitive Type

You can define a compound primitive type by assigning to it a list of attributes.

=<Primitive type==
Address

+Etreet Mumber
+=treet Matne
+Zipy Code
+City

+5State

Here the Address type is composed of number, street, zip code, city, and country.
The derivation of the Address attribute will produce these five columns.

It is possible to have several levels of compound types by assigning a compound
type to an attribute of a compound type.

For example, the zip code can be broken down into the five main digits and the four-
digit extension:

==Primitive type==

Address ==Primtive type=>=
Zip code
+5treet Mumber
+5treet Mame +5tate code
+Zip Code +Towen code
+City
+5tate

HOPEX IT Architecture

HOPEX XMI 2.1 Import for UML2

XMI IMPORT OVERVIEW

The XML Metadata Interchange XMl is an OMG standard for exchanging UML Models between different
UML products such as modeling tools and UML Design.

The XMI Import project aims at importing the content of .xmi and .uml files into HOPEX so that users can
reproduce diagrams from other platforms. Only the data (the objects) are imported, not the drawings.

Prerequisites

The XMI Import feature supports UML versions from 2.3 to 2.5. A file with a version lower than 2.3 or higher
than 2.5 can be imported, without guarantee of full success.

Scope of XMI Import

The purpose of the XMI Import tool is to import XMI data into HOPEX repository. The objects imported are
those belonging to the Class Diagram, Use Case Diagram, Component Diagram, Composite Structure
Diagram, Activity Diagram, Communication Diagram, Sequence Diagram, State Machine Diagram,
Interaction Overview Diagram, Object Diagram, Deployment Diagram, etc.

See object details in HOPEX/XMI Object Mapping.

&" Only objects are imported. The XMI Import tool does not take into account UML profiles, extensions
and graphical diagram drawings.

HOPEX XMI 2.1 Import for UML2 page 2/26

IMPORTING XMI AND UML FILES

Depending on the source tool, the XMl import tool can import .xmi or .uml files.
To import a file:

1. In HOPEX, select Main Menu > Import > XMI 2.x UML 2.5 (*.uml; *.xmi).

T |
= e e %Last connection G

7 minutes ago

Profile: Data Architect

Repository: DE

Environment: 1700_001_tst_&6626
0, Switch Profile »
D Save
E’ Logout
[Import >
- HOPEX Files
- Export >

XMI 2.x UML 2.5 (*uml ;*xmi)

g Set Current Library
) Excel (*xls;*xlsx)

Advanced Search
Visio (*.vsd;*.vsdx)

®

] English >

The import wizard appears.
2. In File Location, select the file to be imported.
3. Select the library in which you want to import the data (optional).
4. Click Next.

The wizard shows the import process progression.

Then it shows the report of imported data.

HOPEX XMI 2.1 Import for UML2 page 3/26

HOPEX/XMI OBJECT MAPPING

The following paragraph indicates what kinds of objects are imported by UML2 diagram types. Only objects
belonging to the selected package are imported.

All objects that do not belong to a package are attached to a package called “Default Package”.
A package “UML Primitive Types” is imported by default if not already.

Class Diagram

Classes, attributes, associations, association ends, generalizations, generalization sets, operations,
parameters, data types, primitive types, interfaces, enumerations, etc.

Use Case Diagram

Use cases, actors, packages, constraints, extension points (text), participations, extensions (link), inclusions
(link), generalization, dependencies, etc.

State Machine Diagram

State machines, regions, states, pseudo states, transitions, constraints, etc.
Protocol State Machine Diagram

Protocol state machines, regions, states, pseudo states, transitions, constraints, etc.
Activity UML Diagram

Actions, control nodes, Input Pins, Output Pins, Exchange Pins, central buffer nodes, data store nodes,
activity partitions, control flows, object flows, exception handlers, activities uml, activity parameter nodes,
structured activity nodes, expansion regions, expansion nodes, interruptible activity regions, etc.

Component Diagram

Classes.

Elements such Components, ports packages, interfaces, required interfaces, provided interfaces, Connectors or realized
elements may be imported.

Composite Structure Diagram

Collaborations UML, collaboration uses, parts, dependencies, connectors, interfaces, classes, provided
interfaces, required interfaces, etc.

HOPEX XMI 2.1 Import for UML2 page 4/26

Sequence Diagram

Life lines, combined fragments, interaction uses, gates, states invariant, UML messages, constraints, etc.

Messages include those exchanged directly between lifelines as well as messages exchanged through execution specification.

Communication Diagram
Life lines, connectors, UML messages, etc.
Deployment Diagram

Packages, components, artifacts UML, nodes UML, devices, execution environments, interfaces,
deployment specifications, deployments, manifestations, deployment configurations, component instances,
device instances, node instances, execution environment instances, communication paths, etc.

&é* Only objects owned by the selected package or its sub-packages are exported.

Objects that are linked to objects contained in the selected export package but owned by another
package are also exported in order to ensure links. However, they will be owned by the exported
package.

HOPEX XMI 2.1 Import for UML2 page 5/26

The following table indicates concepts managed by the export tool:

Class Diagram

MEGA Concepts

MetaAttribute

MetaAssociation(End)

Class

Data Type

Name
xmi_id
Visibility
Comment
Abstract
IsLeaf
IsActive

Client Dependency

Name

Class Target Dependency

Realization Class
Nested Class
Association
Connector
Association Class
Attribute
Operation (UML)
Generalization
Required Interface
Provided Interface
Constraint

Port
AssociationEnd

Owned Part

Behavior: State Machine
Behavior: Activity Uml
Behavior: Interaction Uml
Behavior: Collaboration Uml

Protocol: ProtocolStateMachineDiagram

Source Dependency

Class Target Dependency

HOPEX XMI 2.1 Import for UML2

page 6/26

MEGA Concepts MetaAttribute MetaAssociation(End)
xmi_id Nested Class
Visibility
Abstract
IsLeaf
IsActive
Client Dependency

Interface xmi_id Class Target Dependency
Name Nested Class
Visibility Association
Comment Attribute
Abstract Operation (UML)
IsLeaf Generalization

Enumeration

LiteralValue

Client Dependency

_Hexaidabs
Name
Visibility
Comment

Client Dependency

_Hexaidabs

Name

RequiredInterface

SpecificationInterface

Class Target Dependency
Attribute

Operation (UML)

Literal Value
RequiredInterface

Specification Interface

Value Slot

HOPEX XMI 2.1 Import for UML2

page 7/26

MEGA Concepts MetaAttribute MetaAssociation(End)
Expression xmi_id Class Target Dependency
Name Specification Interface
Visibility
Comment

Primitive Type

Association

Association End

Association Class

Client Dependency

Name
xmi_id
Visibility
Abstract
IsLeaf

IsActive

xmi_id

Name

Visibility

Comment
IsAssociationDerived

IsNavigable

xmi_id
Name

Aggregation:
Composite/Shared

xmi_id

Class Target Dependency

Nested Class

Connection
Dependency (Target Association)

Class via AssociationEnd

Association

Dependency

Class Target Dependency

HOPEX XMI 2.1 Import for UML2

page 8/26

MEGA Concepts MetaAttribute MetaAssociation(End)
Name Nested Class
Visibility AssociationEnd
Comment Association
IsLeaf Association Class
Abstract Class via AssociationEnd
IsActive Attribute
IsAssociationDerived Operation (UML)
IsNavigable

Attribute xmi_id Dependency (Target Attribute)
Name AttributType
Visibility
Comment
IsLeaf
IsOrdred
Uniqueness
ReadOnly
IsDerived
InitialValue

Operation (UML)

Multiplicity: UpperValue,

LowerValue

xmi_id
Name
Visibility

Comment

Precondition
Postcondition
Parameter

ReturnType

HOPEX XMI 2.1 Import for UML2

page 9/26

MEGA Concepts MetaAttribute MetaAssociation(End)
Abstract Target Dependency
IsQuery

Dependency _Hexaidabs Class Source
Name Class Target
Visibility Stereotype
Comment

Generalization xmi_id Super Class
Name UML constraint
Comment

GeneralizationSet xmi_id Generalization
Name
Comment
IsComplete
IsDisjoint

Constraint xmi_id ConstrainedClass
Name ConstrainedGeneralization
Comment ConstrainedElement
MaxInt Actor (UML)
Minint Package
Specification UseCase

UseCaseParticipation

HOPEX XMI 2.1 Import for UML2

page 10/26

MEGA Concepts MetaAttribute MetaAssociation(End)
Parameter _Hexaidabs Parameter Type
Name
Comment
Behavior (UML) _Hexaidabs
Name

Use Case Diagram

MEGA Concepts

UseCase

Actor (UML)

Participation

MetaAttribut
xmi_id

Name
Visibility

Comment

xmi_id
Name
Visibility

Comment

xmi_id

MetaAssociation(End)

UsesUseCase

OwnedExtension

ExtensionPoint

Behavior: State Machine
Behavior: Protocol State Machine
Behavior: Interaction UML
Behavior: Activity UML

Behavior: Collaboration UML
Constraint

Generalization

Participation

Constraint

Generalization

UseCase

HOPEX XMI 2.1 Import for UML2

page 11/26

Extension

Name
Comment

Multiplicity

xmi_id
Name

Comment

Actor (UML)

Constraint

Extended Use Case

Extension Location

Composite Structure and Communication Diagram

MEGA Concepts

Collaboration uml

Collaboration use

Part

MetaAttribut
xmi_id

Name
Comment
IsAbstract

IsLeaf

xmi_id
Name

Comment

xmi_id

Name

Visibility

Client Dependency

IsLeaf

IsUnique

MetaAssociation(End)

CollaborationRole
OwnedConnector

OwnedCollaborationUse

Type

ConnectorEnd (of the LifeLine who represents the
part)

Dependency

HOPEX XMI 2.1 Import for UML2

page 12/26

Connector

ConnectorEnd

IsOrdered
Multiplicity

Aggregation:

Composite/Shared

Comment

xmi_id

Name

Connector Kind

IsLeaf

xmi_id
Name

Multiplicity

OwnedConnectorEnd

Connector

State Machine

MEGA Concepts

State Machine

Region

State (UML)

MetaAttribut
xmi_id

Name
Comment

Reentrant

xmi_id

Name

Comment

xmi_id

MetaAssociation(End)

DetailedState

Region

State

PseudoState

Transition

Detailing Behavior

HOPEX XMI 2.1 Import for UML2

page 13/26

Pseudo State

Transition (UML)

Event (UML)

Protocol State Machine

Name

Comment

xmi_id
Name
Comment

PseudoStateKind

xmi_id
Name

Comment

xmi_id
Name

Comment

xmi_id
Name

Visibility

Outgoing
Incoming
OwnedRegion
DoActivity
ExitActivity
EntryActivivity

ConnectionPoint (Entry Point/ Exit Point)

Outgoing Transition

Incoming Transition

Source

Target

Source Pseudo State
Target Pseudo State
Trigger

Effect (Behavior)

Constraint

EventKind

Region

HOPEX XMI 2.1 Import for UML2

page 14/26

Trigger (UML)

Comment

xmi_id
Name

Comment

Event (UML)

Sequence, Communication and Interaction Overview Diagram

MEGA Concepts

MetaAttribut

MetaAssociation(End)

Interaction UML

Interaction Operand

OccurrenceSpecification

ExecutionSpecification

xmi_id
Name

Comment

xmi_id
Name

Comment

xmi_id
Name

Comment

xmi_id

Name

Gate

Fragment (Combined Fragment, State Invariant, ...)
LifeLine

Message

Action

Parameter

Operation (UML)

OwnedInteraction (UML)
OwnedInteractionOperand

Fragment (Combined Fragment, State Invariant, ...)
OwnedInteraction (UML)

OwnedInteractionOperand

Event (UML)

Message

start

finish

HOPEX XMI 2.1 Import for UML2

page 15/26

LifeLine

Combined Fragment

Interaction Use

State Invariant

Gate

Message UML

Comment

xmi_id
Name

Comment

xmi_id

Name

InteractionOperatorKind
Comment
xmi_id
Name

Comment

xmi_id
Name

Comment

xmi_id
Name

Comment

xmi_id

Name
MessageKind
MessageSort

Comment

ElementRepresentedByALifeline
ElementCoveringlLifeline

OwnedSelector

InteractionOperand

CoveredLifeline

RefersTo

CoveredLifeline

InvariantConstraint

CoveredLifeline

Receiver Sender Connector

HOPEX XMI 2.1 Import for UML2

page 16/26

Activity and Interaction Overview Diagram

MEGA Concepts

Action

Control Node

MetaAttribut
xmi_id
Name
IsLeaf
ActionKind

Comment

xmi_id
Name
IsLeaf
Comment

ControlNodeType

MetaAssociation(End)

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow
OwnerGroup
RequestOperation
CalledBehavior
StructuralFeatureElementManagedByAnAction
RequestSignal
Association
ClassManagedByAnAction
Variable
InputPin
OutputPin
ProtectingExceptionHandler
Trigger
LocalPostCondition
LocalPreCondition

Constraint

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow

OwnerGroup

HOPEX XMI 2.1 Import for UML2

page 17/26

Input Pin

Output Pin

Exchange Pin

Central Buffer Node

xmi_id

Name

IsLeaf
InputPinKind
ControlType
OrderingKind

Comment

xmi_id

Name

IsLeaf
OutputPinKind
ControlType
OrderingKind

Comment

xmi_id

Name

IsLeaf
ControlType
OrderingKind

Comment

xmi_id
Name

IsLeaf

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow

Constraint

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow

Constraint

OutgoingObjectFlow
IncomingObjectFlow

OwnerGroup

OutgoingObjectFlow
IncomingObjectFlow

OwnerGroup

HOPEX XMI 2.1 Import for UML2

page 18/26

Data Store Node

Activity Partition

Object Flow

Control Flow

ControlType
OrderingKind

Comment

xmi_id

Name

IsLeaf
ControlType
OrderingKind

Comment

xmi_id
Name
IsDimension
IsExternal

Comment

xmi_id
Name
IsLeaf

Comment

xmi_id
Name
IsLeaf

Comment

OutgoingObjectFlow
IncomingObjectFlow
OwnerGroup

Constraint

ContainedElement

Constraint

Guard

Weight
SourceElement
TargetElement

Constraint

Guard
Weight
SourceElement

TargetElement

HOPEX XMI 2.1 Import for UML2

page 19/26

Exception Handler

Activity UML

Activity Parameter Node

Structured Activity Node

xmi_id

Name

Comment

xmi_id

Name
Reentrant
SingleExecution
IsLeaf

Comment

xmi_id

Name

IsLeaf
ControlType
OrderingKind

Comment

xmi_id
Name
IsLeaf
Mustlsolate

Comment

Constraint

ProtectedNode
Exceptionlnput

Constraint

ElementOwnedByAnActivityUML

Constraint

OutgoingObjectFlow
IncomingObjectFlow

Constraint

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow
OwnerGroup
ContainedElement

InputPin

HOPEX XMI 2.1 Import for UML2

page 20/26

Expansion Node

Expansion Region

Interruptible Activity Region

Loop Node

xmi_id

Name

IsLeaf
ControlType
OrderingKind

Comment

xmi_id

Name

IsLeaf
Mustlsolate
ExpansionKind

Comment

xmi_id
Name

Comment

xmi_id
Name

IsLeaf

OutputPin

Constraint

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow
Region

Constraint

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow
OwnerGroup
ContainedElement
ExpansionNode
InputElement

OutputElement

OwnerGroup

ContainedElement

Constraint

OutgoingControlFlow
OutgoingObjectFlow

IncomingControlFlow

HOPEX XMI 2.1 Import for UML2

page 21/26

Conditional Node

Sequence Node

Mustlsolate
TestedFirst

Comment

xmi_id
Name

IsLeaf
Mustlsolate
Assured
Determinate

Comment

xmi_id
Name
IsLeaf
Mustlsolate

Comment

IncomingObjectFlow
OwnerGroup
ContainedElement
InputPin

OutputPin
Constraint

Test

OwnerGroup
ContainedElement
InputPin

OutputPin

Constraint
OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow

IncomingObjectFlow

OutgoingControlFlow
OutgoingObjectFlow
IncomingControlFlow
IncomingObjectFlow
OwnerGroup
ContainedElement
InputPin

OutputPin

Constraint

HOPEX XMI 2.1 Import for UML2

page 22/26

Package Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)
Package Name Client Dependency
xmi_id Package Target Dependency
Visibility Owned Class
Comment Owned Package

Owned Association

Association Class

Owned Dependency

Owned Element (UML): Generalization
Owned Use Case

Owned Actor (UML)

Constraint

Behavior: State Machine
Behavior: Protocol State Machine
Behavior: Activity Uml

Behavior: Interaction Uml
Behavior: Collaboration Uml
Owned Component

Owned Event

Component Diagram

MEGA Concepts MetaAttribut MetaAssociation(End)
Component xmi_id required Interface
Name provided
Comment Port

HOPEX XMI 2.1 Import for UML2 page 23/26

Isleaf
Visibility

Client Dependency

Port Xmi_id
Name
Comment

Client Dependency

Interface xmi_id
Name
Visibility
Comment
Abstract
IsLeaf

Client Dependency

OwnedPart

Class Target Dependency
Nested Class

Association

Association Class
Attribute

Operation (UML)
Generalization
RequiredInterface

SpecificationInterface

Deployment Diagram

MEGA Concepts MetaAttribut

Artifact UML xmi_id
Name
Comment

Client Dependency

Node UML xmi_id

MetaAssociation(End)

Target Dependency
OwnedAttribute

OwnedOperation

NestedArtifact

Deployment

HOPEX XMI 2.1 Import for UML2

page 24/26

Device

Execution Environment

Deployment Specification

Instance (Node
UML/Device/Execution
Specification/Component)

Communication Path

Name
Comment

Client Dependency

xmi_id
Name
Comment

Client Dependency

xmi_id
Name
Comment

Client Dependency

xmi_id
Name
Comment

Client Dependency

xmi_id
Name
Comment

Client Dependency

xmi_id
Name

Comment

Deployment

Deployment

Target Dependency

Instantiated Element

Target Dependency

Communication Path End

HOPEX XMI 2.1 Import for UML2

page 25/26

Deployment xmi_id Deployed Element
Name Deployment Configuration
Comment
Manifestation xmi_id Multiplicity
Name Deployed Element
Comment Deployment Configuration
Object Diagram
MEGA Concepts MetaAttribut MetaAssociation(End)
Instance xmi_id
Name
Comment
Link xmi_id LinkEnd
Name
Comment
LinkEnd xmi_id Instance
Name
Comment

HOPEX XMI 2.1 Import for UML2 page 26/26

HOPEX XMI 2.1 Export for UML2

XMI EXPORT OVERVIEW

The XML Metadata Interchange XMl is an OMG standard for exchanging UML Models between different
UML products such as modeling tools and UML Design.

The XM 2.1 Export project aims at exporting the content of HOPEX Diagrams as .xmi files so that models
modeled in HOPEX can be imported by UML tools such as Eclipse EMF.

Prerequisites

The XM 2.1 export feature is available with HOPEX UML, and supports XMl version 2.1 with UML 2.3.

Scope of XMI Export

The purpose of XMl export is to translate the specification of HOPEX Class Diagrams, Use Case Diagrams,
Component Diagram, Composite Structure Diagram, Activity Diagram, Communication Diagram, Sequence
Diagram and State Machine Diagrams into XMI. Diagrams and diagrams drawings are not considered except
with UML2 plugin for Eclipse.

The tool handles translation of the concepts of the above HOPEX diagrams that have a correspondence in
UML 2.0. The list of supported mappings is detailed below.

HOPEX XMI 2.1 Export for UML2 page 2/34

EXPORTING XMI FILES

Depending on the destination tool, the XMl export tool produces two types of file. For Eclipse with UML
plugin, the export will produce one .uml file for data and some .umlclass, .umlusc and/or .umlstm files for
diagrams (each file represents an HOPEX diagram).

For other modeling tools, as Enterprise Architect or MagicDraw UML, the export will produce one .xmi file
for data but no diagram description files will be generated.

Export for Eclipse with UML2 plugin
To export HOPEX data for Eclipse with UML2 plugin:

1. In HOPEX, select Main Menu > Export > XMl Export.

@ - CI=m

e P [save
Collaborative Workspace
«; Dispatch
« Refresh

« Discard

Logout

w Import

&« HOPEX Objects Export | & Export

XMI Export @ Set Current Library

E? Excel (* xls;* xIsx) Mapping Editor

The export dialog box appears.
2. Select the Package to be exported.
3. Specify the name and path of the file to be exported.
4. Under Options, check the Export for Eclipse parameter.

5. Click Next.

HOPEX XMI 2.1 Export for UML2 page 3/34

The window shows the export process progression.

Then the window showing the report of all exported data appears.

Export for other tools

Because many modeling tools do not support the UML Diagram Interchange Specification, the MEGA XMl
2.1 Export feature exports .xmi file for data but no diagram description files for other tools than Eclipse.

To export HOPEX data for modeling tools such as Enterprise Architect or MagicDraw UML:
1. In HOPEX, select Main Menu > Export > XMI Export.

The export dialog box appears.
2. Select the Package to be exported.
3. Specify the name and path of the file to be exported.
4. Uncheck the Export for Eclipse parameter.
5. Click Next >.
The window that appears shows the export process progression.

Then the window showing the report of all exported data appears.

HOPEX XMI 2.1 Export for UML2 page 4/34

HOPEX/XMI OBJECT MAPPING

The XM export feature translates a class diagram or use case diagram or state machine diagram or even
protocol state machine diagram specified in HOPEX into an XMI compliant output file.

The following paragraph indicates what kinds of objects are exported by UML2 diagram types. Only objects
belonging to the selected package are exported.

Class Diagram

Packages, classes, interfaces, enumerations, literal strings (expression text), associations, association roles,
generalizations, constraints, required interfaces (link), provided interfaces (supported interface link), data
types (class stereotype), primitive types (class stereotype), attributes, operations.

Use Case Diagram

Use cases, actors, packages, constraints, extension points (text), participations, extensions (link), inclusions
(link), generalization, dependencies.

State Machine Diagram

State machines, regions, states, pseudo states, transitions, constraints
Protocol State Machine Diagram

Protocol state machines, regions, states, pseudo states, transitions, constraints
Activity UML Diagram

Actions, control nodes, Input Pins, Output Pins, Exchange Pins, central buffer nodes, data store nodes,
activity partitions, control flows, object flows, exception handlers, activities uml, activity parameter nodes,
structured activity nodes, expansion regions, expansion nodes, interruptible activity regions.

Component Diagram

Classes.

Elements such Components, ports packages, interfaces, required interfaces, provided interfaces, Connectors or realized
elements may be imported.

HOPEX XMI 2.1 Export for UML2 page 5/34

Composite Structure Diagram

Collaborations UML, collaboration uses, parts, dependencies, connectors, interfaces, classes, provided
interfaces, required interfaces.

Sequence Diagram

Life lines, combined fragments, interaction uses, gates, states invariant, messages UML, constraints.

Messages include those exchanged directly between lifelines as well as messages exchanged through execution specification.

Communication Diagram
Life lines, connectors, messages UML.
Deployment Diagram

Packages, components, artifacts UML, nodes UML, devices, execution environments, interfaces,
deployment specifications, deployments, manifestations, deployment configurations, component instances,
device instances, node instances, execution environment instances, communication paths.

&* Only objects owned by the selected package or its sub-packages are exported.

Objects that are linked to objects contained in the selected export package but owned by another
package are also exported in order to ensure links. However, they will be owned by the exported
package.

HOPEX XMI 2.1 Export for UML2 page 6/34

The following table indicates concepts managed by the export tool:

HOPEX Concepts

B package
== Name
= _Hexaidabs
= Visibility
= Comment
= Client Dependency
‘= Package Target Dependency
‘Z Owned Class
‘Z Owned Package
‘Z Owned Association
‘T Association Class
‘Z Owned Dependency
‘Z Owned Element (UML): GeneralizationSet
‘Z Owned Use Case
‘= Owned Actor (UML)
‘Z Constraint
‘= Behavior: State Machine
‘Z Behavior: Protocol State Machine
‘Z Behavior: Activity Uml

‘Z Behavior: Interaction Uml

HOPEX XMI 2.1 Export for UML2 page 7/34

HOPEX Concepts

‘Z Behavior: Collaboration Uml
‘Z Owned Component

‘Z Owned Event

B class
== Name
= _Hexaidabs
= Visibility
= Comment
= Abstract
= lIsLeaf
= IsActive
== Client Dependency
‘Z Class Target Dependency
'Z Realization Class
‘Z Nested Class
'Z Association
‘= Connector
‘Z Association Class
‘T Attribute
‘= Operation (UML)
‘T Generalization

‘Z Required Interface

HOPEX XMI 2.1 Export for UML2

page 8/34

HOPEX Concepts

‘Z Provided Interface

‘Z Constraint

‘= Method

‘Z Port

‘Z AssociationEnd

‘= Owned Part

‘Z Behavior: State Machine
‘Z Behavior: Activity Uml

‘= Behavior: Interaction Uml

‘& Behavior: Collaboration Uml

B Data Type

== Name

= _Hexaidabs

= Visibility

= Abstract

= IsLeaf

= IsActive

= Client Dependency
‘Z Class Target Dependency

‘Z Nested Class

B Interface

= _Hexaidabs

HOPEX XMI 2.1 Export for UML2 page 9/34

HOPEX Concepts

== Name
= Visibility
= Comment
= Abstract
= lIsLeaf
= Client Dependency
‘= Class Target Dependency
‘T Nested Class
‘= Association
‘Z Association Class
T Attribute
‘= Operation (UML)
‘Z Generalization
‘Z RequiredInterface

‘= SpecificationInterface

B Enumeration
= _Hexaidabs
== Name
= Visibility
== Comment
= Client Dependency

‘Z Class Target Dependency

HOPEX XMI 2.1 Export for UML2 page 10/34

HOPEX Concepts

‘T Attribute

‘Z Operation (UML)
= Literal Value

‘= Requiredinterface

‘2 Specification Interface

B Expression

= _Hexaidabs

== Name

= Visibility

== Comment

= Client Dependency
‘= Class Target Dependency

‘Z Specification Interface

B primitive Type
== Name
= _Hexaidabs
= Visibility
= Abstract
= IsLeaf
= IsActive
‘Z Class Target Dependency

‘Z Nested Class

HOPEX XMI 2.1 Export for UML2 page 11/34

HOPEX Concepts

H Association
= _Hexaidabs
= Name
= Visibility
== Comment
= IsAssociationDerived
= IsNavigable
'Z Connection
‘= Dependency (Target Association)

‘& Class via AssociationEnd

H Association Class
= _Hexaidabs
== Name
= Visibility
== Comment
= IsLeaf
= Abstract
= IsActive
= IsAssociationDerived
= IsNavigable
‘Z Class Target Dependency

‘Z Nested Class

HOPEX XMI 2.1 Export for UML2 page 12/34

HOPEX Concepts

‘Z AssociationEnd

‘Z Association

‘= Association Class

'Z Class via AssociationEnd
‘T Attribute

‘= Operation (UML)

B Attribute

= _Hexaidabs

== Name

= Visibility

= Comment

= IsOrdred

= Uniqueness

= ReadOnly

= IsDerived

= InitialValue

= Multiplicity : UpperValue, LowerValue
‘Z Dependency (Target Attribute)
‘Z AttributType

‘Z OverloadedAttribute

H operation (UML)

= _Hexaidabs

HOPEX XMI 2.1 Export for UML2 page 13/34

HOPEX Concepts

== Name

= Visibility
= Comment
= Abstract
= IsQuery

‘= Precondition
‘= Postcondition
‘=T Method

‘= Parameter

‘2 ReturnType

‘Z Target Dependency

B Dependency
= _Hexaidabs
== Name
= Visibility
= Comment
‘Z Class Source

‘Z Class Target

B Generalization
= _Hexaidabs
=2 Name

= Comment

HOPEX XMI 2.1 Export for UML2 page 14/34

HOPEX Concepts

‘Z Super Class

‘T UML constraint

E GeneralizationSet
== _Hexaidabs

== Name

= Comment

= IsComplete

= IsDisjoint

‘= Target Dependency

‘T Generalization

H cConstraint

== _Hexaidabs

== Name

= Comment

= MaxInt

= Minint
‘Z ConstrainedClass
‘Z ConstrainedGeneralization
'Z ConstrainedElement
‘= Actor (UML)
‘Z Package

‘Z UseCase

HOPEX XMI 2.1 Export for UML2 page 15/34

HOPEX Concepts

‘Z UseCaseParticipation

B Parameter
= _Hexaidabs
== Name
= Comment

‘Z Parameter Type

E Behavior (UML)
= _Hexaidabs
== Name

‘2 Specification

EH usecCase
= _Hexaidabs
== Name
= Visibility
== Comment
‘T UsesUseCase
‘Z OwnedExtension
‘T ExtensionPoint
‘= Behavior: State Machine
‘Z Behavior: Protocol State Machine
'Z Behavior: Interaction UML

‘= Behavior: Activity UML

HOPEX XMI 2.1 Export for UML2 page 16/34

HOPEX Concepts

‘Z Constraint

‘T Generalization

B Actor (UML)

== _Hexaidabs
== Name

= Visibility

== Comment

‘Z Participation

‘Z OwnedExtension
‘Z Constraint

‘Z Generalization

B participation
= _Hexaidabs
== Name
== Comment
= Multiplicity
‘= UseCase
‘Z Actor (UML)

‘Z Constraint

B Extension
= _Hexaidabs

=3 Name

HOPEX XMI 2.1 Export for UML2 page 17/34

HOPEX Concepts

= Comment
‘Z Extended Use Case

‘Z Extension Location

H state Machine
= _Hexaidabs
= Name
= Comment
= Reentrant
‘Z DetailedState

‘Z Region

B Region
== _Hexaidabs
== Name
= Comment
T State
‘T PseudoState

‘Z Transition

B state (UML)
= _Hexaidabs
== Name
= Comment

‘Z Detailing Behavior

HOPEX XMI 2.1 Export for UML2 page 18/34

HOPEX Concepts

‘Z Outgoing

‘Z Incoming

‘Z OwnedRegion
‘= OwnedRegion
‘Z DoActivity

‘Z ExitActivity

‘= EntryActivivity

B Pseudo State

= _Hexaidabs

== Name

= Comment

=3 PseudoStateKind
‘Z Outgoing Transition

‘Z Incoming Transition

B Transition (UML)
= _Hexaidabs
== Name
== Comment
‘= Source
‘= Target
T Source Pseudo State

‘Z Target Pseudo State

HOPEX XMI 2.1 Export for UML2 page 19/34

HOPEX Concepts

= Trigger
‘Z Effect (Behavior)

‘Z Constraint

B Event (UML)
= _Hexaidabs
== Name

== Comment

B Protocol State Machine
= _Hexaidabs

= Name

= Reentrant

== Comment

‘Z Region

B Action

= _Hexaidabs

== Name

= IsLeaf

= ActionKind

== Comment

‘Z OutgoingControlFlow

‘= OutgoingObjectFlow

HOPEX XMI 2.1 Export for UML2 page 20/34

HOPEX Concepts

‘Z IncomingControlFlow

‘Z IncomingObjectFlow

‘Z OwnerGroup

‘= RequestOperation

‘Z CalledBehavior

‘Z StructuralFeatureElementManagedByAnAction
‘= RequestSignal

'Z Association

‘Z ClassManagedByAnAction
'Z Variable

‘Z InputPin

‘= OutputPin

‘Z ProtectingExceptionHandler
‘= Trigger

‘Z LocalPostCondition

‘Z LocalPreCondition

E control Node
= _Hexaidabs
== Name
= IsLeaf
= Comment

‘Z OutgoingControlFlow

HOPEX XMI 2.1 Export for UML2

page 21/34

HOPEX Concepts

‘Z OutgoingObjectFlow
‘Z IncomingControlFlow
‘Z IncomingObjectFlow

‘= OwnerGroup

B Input Pin

= _Hexaidabs

== Name

= IsLeaf

= ControlType

= OrderingKind

= Comment

‘= OutgoingControlFlow
‘Z OutgoingObjectFlow
‘Z IncomingControlFlow

‘Z IncomingObjectFlow

H output Pin
= _Hexaidabs
== Name
= IsLeaf
== ControlType
= OrderingKind

= Comment

HOPEX XMI 2.1 Export for UML2 page 22/34

HOPEX Concepts

‘Z OutgoingControlFlow
‘Z OutgoingObjectFlow
‘Z IncomingControlFlow

‘= IncomingObjectFlow

B Exchange Pin

= _Hexaidabs

== Name

= IsLeaf

= ControlType

= OrderingKind

= Comment

‘= OutgoingControlFlow
‘Z OutgoingObjectFlow
‘Z IncomingControlFlow
‘Z IncomingObjectFlow

‘Z OwnerGroup

E central Buffer Node
= _Hexaidabs

= Name

= IsLeaf

= ControlType

= OrderingKind

HOPEX XMI 2.1 Export for UML2 page 23/34

HOPEX Concepts

= Comment
‘Z OutgoingObjectFlow
‘Z IncomingObjectFlow

‘= OwnerGroup

E Data Store Node

= _Hexaidabs

== Name

= IsLeaf

= ControlType

= OrderingKind

= Comment

‘= OutgoingObjectFlow
‘Z IncomingObjectFlow

‘Z OwnerGroup

B Activity Partition
= _Hexaidabs
== Name
= IsDimension
= IsExternal
= Comment

‘Z ContainedElement

B object Flow

HOPEX XMI 2.1 Export for UML2 page 24/34

HOPEX Concepts

= _Hexaidabs
== Name

= IsLeaf

== Comment

‘Z Guard

‘T Weight

‘= SourceElement

‘Z TargetElement

E control Flow
= _Hexaidabs
= Name
= IsLeaf
= Comment

‘= Guard
‘T Weight
‘T SourceElement

‘= TargetElement

B Exception Handler
= _Hexaidabs
== Name
= Comment

‘Z ProtectedNode

HOPEX XMI 2.1 Export for UML2 page 25/34

HOPEX Concepts

‘Z Exceptionlnput

B Activity umL

= _Hexaidabs

== Name

=2 Reentrant

= SingleExecution
= IsLeaf

= Comment

‘Z ElementOwnedByAnActivityUML

B Activity Parameter Node
= _Hexaidabs
== Name
= IsLeaf
= ControlType
= OrderingKind
= Comment
‘= OutgoingObjectFlow

‘Z IncomingObjectFlow

B structured Activity Node
= _Hexaidabs
= Name

= IsLeaf

HOPEX XMI 2.1 Export for UML2 page 26/34

HOPEX Concepts

= Mustlsolate

== Comment
‘Z OutgoingControlFlow
‘= OutgoingObjectFlow
‘Z IncomingControlFlow
‘Z IncomingObjectFlow
‘= OwnerGroup

‘Z ContainedElement

B Expansion Node

= _Hexaidabs

=1 Name

= IsLeaf

= ControlType

= OrderingKind

== Comment

‘Z OutgoingControlFlow
‘= OutgoingObjectFlow
‘Z IncomingControlFlow
‘Z IncomingObjectFlow

‘Z Region

H Expansion Region

= _Hexaidabs

HOPEX XMI 2.1 Export for UML2 page 27/34

HOPEX Concepts

== Name

= IsLeaf

= Mustlsolate

== ExpansionKind

== Comment
‘Z OutgoingControlFlow
‘= OutgoingObjectFlow
‘Z IncomingControlFlow
‘Z IncomingObjectFlow
‘Z OwnerGroup
'Z ContainedElement

‘Z ExpansionNode

H Interruptible Activity Region
= _Hexaidabs

== Name

== Comment

‘Z ContainedElement

H collaboration uml
= _Hexaidabs
== Name
= Comment

= IsAbstract

HOPEX XMI 2.1 Export for UML2

page 28/34

HOPEX Concepts

= IsLeaf
‘Z CollaborationRole
‘Z OwnedConnector

‘Z OwnedCollaborationUse

E collaboration use
= _Hexaidabs
== Name
== Comment
= Type

‘Z Dependency

B Part
== _Hexaidabs
== Name
= Visibility
= Client Dependency
= IsUnique
= IsOrdered
== Multiplicity
= Comment
‘= ConnectorEnd (of the LifeLine who represents the part)

‘Z Dependency

B connector

HOPEX XMI 2.1 Export for UML2 page 29/34

HOPEX Concepts

= _Hexaidabs
== Name

= Connector Kind
= IsLeaf

= Comment

‘Z OwnedConnectorEnd

H LifeLine

= _Hexaidabs

== Name

== Comment

‘Z ElementRepresentedByALifeline
‘Z ElementCoveringlifeline

‘Z OwnedSelector

B combined Fragment

= _Hexaidabs

== Name

= InteractionOperatorKind
== Comment

‘Z InteractionOperand

‘Z CoveredLifeline

B Interaction Use

= _Hexaidabs

HOPEX XMI 2.1 Export for UML2

page 30/34

HOPEX Concepts

= Name

== InteractionOperatorKind
= Comment

‘Z RefersTo

‘T CoveredLifeline

H state Invariant

= _Hexaidabs

== Name

= Comment

‘Z InvariantConstraint

‘Z CoveredLifeline

B Gate
= _Hexaidabs
= Name

=3 Comment

BH Message umML
= _Hexaidabs
== Name
= MessageKind
== Comment
‘T Receiver

‘= Sender

HOPEX XMI 2.1 Export for UML2

page 31/34

HOPEX Concepts

‘Z Connector

B Artifact UML

= _Hexaidabs

== Name

== Comment

= Client Dependency

‘= Target Dependency

B Node uML

= _Hexaidabs

== Name

= Comment

== Client Dependency

‘Z Deployment

E Device

= _Hexaidabs

== Name

== Comment

= Client Dependency

‘Z Deployment

H Execution Environment
= _Hexaidabs

=3 Name

HOPEX XMI 2.1 Export for UML2 page 32/34

HOPEX Concepts

= Comment
= Client Dependency

‘Z Deployment

H Deployment Specification
= _Hexaidabs

== Name

== Comment

= Client Dependency

‘= Target Dependency

B Instance (Node UML/Device/Execution Specification/Component)
= _Hexaidabs
== Name
== Comment
= Client Dependency
‘Z Instantiated Element

‘Z Target Dependency

E Communication Path
= _Hexaidabs
== Name
== Comment
"Z Communication Path End

‘= Target Dependency

HOPEX XMI 2.1 Export for UML2 page 33/34

HOPEX Concepts

H Communication Path
= _Hexaidabs

= Name

== Comment

‘= Multiplicity

‘Z Deployment Target

B Deployment
= _Hexaidabs
== Name
== Comment
‘= Multiplicity
‘Z Deployed Element

‘Z Deployment Configuration

HOPEX XMI 2.1 Export for UML2

page 34/34

	Hopex IT Architecture
	Contents
	Introduction
	Presentation of Hopex IT Architecture
	The Scope Covered by Hopex IT Architecture
	Summary of Activities and Deliverables of Hopex IT Architecture
	Structure and positioning of the Hopex IT Architecture solution
	Hopex IT Architecture Profiles
	Business Roles of Hopex IT Architecture

	The Hopex IT Architecture Method
	Describing Application Architecture
	Application system environment description
	Describing application systems

	Describing Applications
	Describing flow scenarios
	Describing the structure of an application and its services

	Defining the Deployment Architecture of an Application
	Building the Logical Architecture
	Structure diagram of the logical application system
	Logical application system environment diagram

	Analyzing the functional coverage of the architecture implemented
	Describing Business Capabilities
	Identifying the technological capabilities associated to business capabilities
	Identifying the applications associated with functionalities

	Defining the technical infrastructure
	Resource Architecture Environment Diagram
	Describing Resource Architectures
	IT infrastructure assembly structure diagram
	Computing Device Assembly Diagram

	Designing applications
	Using UML formalism
	Describing batch processing
	Describing the list of services and interfaces
	Describing application processes

	Managing service catalogs

	Hopex IT Architecture Desktop Presentation
	Connecting to the solution
	Hopex IT Architecture Desktop Presentation
	Presentation of the Solution Architect workspace
	Presenting the Solution Architecture Functional Administrator workspace menus
	Presentation of the Application Designer workspace
	Presenting the Application Viewer workspace

	Switching between Profiles

	Before starting with Hopex IT Architecture
	Defining the Work Environment
	Accessing the list of libraries with Hopex IT Architecture
	Accessing the list of enterprises with Hopex IT Architecture

	Using Org-units
	Creating an org-unit
	Internal org-unit/external entity

	Using IT architecture diagrams
	Creating a structure diagram
	Diagram commands with Hopex IT Architecture
	Auto Layout in architecture diagrams
	Environment diagram initialization
	Creating a Sketching diagram with Hopex IT Architecture
	Creating an ArchiMate@ diagram with Hopex IT Architecture
	Using diagram comparison

	Hopex IT Architecture properties pages content
	Using duplication with Hopex IT Architecture
	Using duplication with Hopex IT Architecture in batch mode

	Using service catalogs
	Implementation of service catalogs
	Defining a service catalog
	Creating a technology services catalog
	Adding a service catalog item
	Service catalog reports

	Using Workflows
	Define a Policy Framework with Hopex IT Architecture
	Defining a Business Policy with Hopex IT Architecture
	Defining an Architecture Principle

	Defining Data Categories
	Defining Methodological Domains
	Importing components with Hopex IT Architecture
	Structure of the import/export Excel templates of Hopex IT Architecture
	Importing computing devices or technologies with Excel

	Using Tools of Conversion towards Hopex Aquila

	About This Guide
	Guide Structure
	Additional Resources
	Conventions used in the guide

	Architecture Specification
	Modeling Applications and System Architectures
	Hopex IT Architecture Concepts Overview
	Application
	Application System

	Describing an Application with Hopex IT Architecture
	Creating an Application with Hopex IT Architecture
	The properties of an application with Hopex IT Architecture
	Defining Application Functional Scope
	Describing structure and services of an application
	Describing an Application Environment with Hopex IT Architecture
	Describing an Application Environment
	Accessing the List of Application Environments
	Creating an application environment
	Application environment properties
	Application Environment Diagram presentation

	Specifying the Risks associated with an Application

	Describing System architecture
	Describing an Application System
	Creating an Application System
	Application System Properties
	Creating an application system structure diagram
	Using a Scenario of Application System Flows
	Describing an Application System Environment with Hopex IT Architecture
	Accessing the list of application system environments
	Creating an application system environment
	Application system environment properties
	Application system environment diagrams

	Modeling application architectures
	Describing data flows
	Defining a data flow and its usages
	Flow qualification
	Associating a Service Interface Used to a flow

	Using a Scenario of Application Flows Diagram
	Creating a Scenario of Application Flows diagram
	Adding an IT service to the scenario of application flows
	Creating an Application Flow
	Accessing Application Flow Properties
	Accessing a flow properties
	Creating an application flow channel
	Creating a System Triggering Event
	Adding an application data store to the scenario of application system flows
	Creating an application data channel

	Using communication systems
	Accessing the list of communication systems
	Communication System Properties
	Using Software Communication Chains

	Using a flow scenario sequence diagram
	Creating a flow scenario sequence diagram
	Instances of applications, IT services or interfaces
	Message instance

	Describing the structure and services of an application
	Application structure diagram
	Creating an Application Structure Diagram
	The components of an Application Structure Diagram
	Adding an IT Service to an application structure diagram

	Describing an IT Service with Hopex IT Architecture
	IT Service diagrams
	Accessing the list of IT services
	IT Service properties
	Using IT Service Structure Diagram

	Describing a microservice with Hopex IT Architecture
	Microservice diagrams
	Accessing the list of microservices
	Microservice properties with Hopex IT Architecture
	Using a Microservice Structure Diagram

	Creating an application Use Case Diagram

	Describing System Processes
	Managing System Processes with Hopex IT Architecture
	Accessing system processes
	Creating a system process diagram

	Specifying the behavior of a task in a System Process
	Les comportements
	Type de tâche

	Modeling Tasks of a System Process
	Functional Modeling Example
	Display the diagram describing a step in the system process in detail:

	Modeling Tasks of an IT Service

	Managing Data
	Using Data Stores
	Introduction to the data store concept
	Usage contexts
	Creating a local data store
	Creating a external data store
	Describing access to a data store

	Access Data Stores supports
	Accessing to data areas with Hopex IT Architecture
	Accessing the list of file structures with Hopex IT Architecture
	Accessing to NoSQL data domains with Hopex IT Architecture
	Accessing the list of relational schemes with Hopex IT Architecture

	Modeling technical architectures
	Describing an Application Deployment Architecture
	Accessing the application deployment architectures
	Describing an Application Deployment Architecture and its diagram
	Creating an Application Deployment Architecture

	Using an application deployment architecture diagram
	Adding a deployable application package in an application deployment architecture diagram
	Adding technical ports
	Describing package connections

	Describing a Deployable Application Package

	Describing an Application Deployment Environment
	Accessing the list of application deployment environments
	Describing an Application Deployment Environment
	Creating an Application Deployment Environment

	Using an Application Deployment Environment Diagram

	Describing an Application System Deployment Architecture
	Accessing the list of application system deployment architectures
	Describing an Application System Deployment Architecture
	Properties of an application system deployment architecture

	Deployment Architecture Templates
	Accessing the list of deployment architecture templates
	Describing an Application Deployment Template
	Components of an Application Deployment Template
	Creating an Application Deployment Template

	Presentation of standard Deployment Architecture Templates
	“3 Tiers Architecture (RDBMS)” Application deployment template
	“Mobile Application Architecture” Application deployment template
	“Standard Web Application Architecture” Application deployment template

	Using an Application Deployment Template

	Describing Software Technologies
	Describing a Software Technology
	Accessing the list of software technologies
	The properties of a software technology

	Describing a Technology Stack
	Accessing the list of technology stacks
	Properties of a software technology stack

	Using Cloud Services
	Accessing the list of Cloud Services
	Cloud Service properties

	Aligning IT and Business
	Describing Logical Application Architecture
	Describing a Logical Application System with Hopex IT Architecture
	Accessing the list of logical application systems with Hopex IT Architecture
	Creating a Logical Application System
	Logical Application System Properties
	Describing a logical application system structure

	Describing Logical Applications with Hopex IT Architecture
	Accessing the list of logical applications with Hopex IT Architecture
	Creating a logical application
	Logical Application Properties

	Logical Application System Environment Description
	Example of logical application system environment
	Accessing the list of logical application system environments
	Creating a logical application system environment
	Logical application system environment properties
	Using the Logical Application System Environment Diagram

	Describing Business Capabilities with Hopex IT Architecture
	Business capabilities examples with Hopex IT Architecture
	Using the Business Capability Maps with Hopex IT Architecture
	Accessing the list of business capability maps
	Creating a business capability map
	The properties of a business capability map
	Creating a business capability map diagram

	Using Business Capabilities with Hopex IT Architecture
	Accessing the list of business capabilities with Hopex IT Architecture
	Creating a business capability
	Describing a business capability
	Defining the functionalities associated with Business Capabilities

	Using Functionalities with Hopex IT Architecture
	Describing a Functionality Map with Hopex IT Architecture
	Accessing the list of functionality maps with Hopex IT Architecture
	Creating a functionality map
	Creating a functionality map diagram
	The properties of a functionality map

	Describing functionalities with Hopex IT Architecture
	Creating a Functionality Diagram with Hopex IT Architecture

	Describing a Technology Capability Map with Hopex IT Architecture
	Accessing the list of technology capability maps with Hopex IT Architecture
	Describing a technology capability
	Describing a hardware capability

	Using fulfillment mechanisms
	Describing Fulfillment of a Business Capability
	Creating Fulfillment of a Business capability
	Analyzing enterprise capability implementation

	Describing the fulfillment of a Functionality
	Creating Fulfillment of a Functionality
	Identifying the applications associated with functionalities

	Access to implementations from a service point

	Modeling IT Infrastructures
	Describing Resource Architectures
	Describing Resource Architectures
	Creating a Resource Architecture Assembly Diagram:
	Using a Resource Architecture Assembly Diagram

	Describing a Resource Architecture Environment
	Creating a resource architecture environment
	The properties of a resource architecture environment
	To create a resource architecture environment diagram
	Describing a resource architecture environment diagram

	Describing a resource configuration
	Creating a resource configuration
	Creating a resource configuration diagram
	Using a Resource Configuration Diagram

	Describing an Hardware
	Creating an Hardware
	Creating a Hardware Assembly Structure Diagram
	Using a hardware assembly structure diagram

	Describing IT Infrastructures
	Describing an IT infrastructure
	Creating an IT infrastructure
	Creating an Infrastructure Assembly Structure Diagram
	Using an infrastructure assembly structure diagram

	Describing an IT network
	Creating an IT network
	Creating an IT network

	Describing a Facility
	Creating a facility
	To create a resource configuration diagram from a facility

	Describing the Computing Devices
	Describing a Computing Device
	Accessing the list of computing devices
	Creating an Computer Device
	Creating a Computing Device Assembly Diagram

	Describing a Computer Network Device
	Accessing the list of computer network devices
	Creating a Computer Network Device

	Describing communications in an IT Infrastructure
	Describing the services communications
	Service interactions
	Service points
	Request points

	Describing technical communications
	Communication ports
	Network channels
	Network communication protocols

	Connecting a Service Interaction to a Network Channel

	Accessing the Software Design
	UML modeling of data
	UML package
	Data models
	Data areas

	Describing Batch Processing
	Defining a Batch Process
	Building a Batch Planning Structure Diagram
	Creating a batch planning structure diagram
	Adding a call for batch processing in the diagram
	Defining batch sequencing

	Creating a Batch Program Structure Diagram
	Creating a batch program structure diagram
	Adding a programming call to the diagram

	Using system process batch realizations

	Defining User Interfaces
	Creating a user interface
	Building a User Interface Diagram
	Drawing the Interface Diagram
	User interface element
	User interface event

	Describing information exchanges
	Managing Service Interactions
	Creating a Service interaction
	Describing Service and Request Points
	Service points
	Request points
	Creating a Service Point or a Request Point

	Describing a service interface
	Examples of Service Interface Diagrams (BPMN)
	Example of Service Interface Diagram (BPMN)
	Example of an advanced service interface communication

	Accessing the list of service interfaces
	Creating a service interface
	Creating a service interface in standard mode from a diagram

	Building a Service Interface Diagram (BPMN)
	Creating a Service Interface Diagram (BPMN)
	Defining a Service operation or a Service interface

	Describing a Service Operation
	Accessing the list of service operations
	Creating a service operation
	Describing a Service Operation
	Creating a Service Operation Diagram (BPMN)
	Creating a message flow with content
	Managing events, gateways and sequence flows

	Using a Service Interface Template
	Presentation of standard service interface Templates
	The service interface template “One way communication”
	The service interface template “Request-Response”
	The service interface template “Publish-Subscribe”

	Accessing the list of service interface templates
	Creating a service interface from a service interface template
	Creating a Service Interface Template
	Creating a Service Operation Template

	Hopex IT Architecture Reports
	Application Architecture Reports
	Technical Architecture Matrix
	Application Exchange Density
	Exchange Consistency Structure Scenario
	Content Consistency (Structure)
	Content Consistency (Scenario)
	External Contents Matrix (Structure)
	External Contents Matrix (Scenario)
	External Service Interface Matrix
	Graph of Flows between Agents
	Graph Flows of an Agent
	Flow Process Rationalization
	Graph of Service Interactions between Agents
	Graph of Service Interactions of an Agent

	Reports on the Architecture Functional Coverage
	Building Block Breakdown report
	Overlapping Applications
	Business Capability Breakdown Report

	Infrastructures Reports
	Infrastructure Description Report
	Application Technology Requirements x IT Infrastructure Provided Technologies Matrix
	Network Channel x Service Interactions
	Network Channel x Package Connection Matrix

	Deployment Architecture Reports
	Deployment Architecture Report
	Deployment architecture matrix
	Package Connection x Service Interactions Matrix
	Package Connection x Resource Flow Matrix

	UML modeling
	About UML implementation
	Overview
	Analyzing use cases
	Identifying objects
	Describing behaviors
	Representing interactions between objects
	Dividing classes between packages
	Defining interfaces
	Specifying deployment

	Organization of UML Diagrams
	General organization
	Detailed specification
	Technical specification and deployment
	UML diagram entry points

	Use Case Diagram
	Creating a Use Case Diagram
	Creating a Package
	Creating the Use Case Diagram of a Package

	Use Case Diagram Elements
	Actors
	Use Cases
	Zooming in on a use case

	Packages
	Participations
	Examples of participation
	Creating participations
	Multiplicities of a participation

	Use Case Associations: Extensions and Uses
	Inclusion relationship
	Extend Relation

	Generalizations
	Interfaces
	Creating an Interface
	Connecting an interface to a use case

	The Class Diagram
	Presentation of the Class Diagram
	The Class Diagram: summary
	Creating a Class Diagram

	Classes
	Definition: Class
	Creating a Class
	Finding an existing class

	Class Properties
	characteristics page
	Other properties pages

	Class Stereotype
	Stereotype display option

	Attributes
	Definition: Attribute
	Specifying Class Attributes
	Creating a standard attribute
	Creating a computed attribute
	Inherited attributes

	Attribute Properties
	Attribute type

	Operations
	Definition of an Operation
	Specifying Class Operations
	Inherited operations

	Operation Properties
	Operation or Signal Signatures
	Signature syntax

	Operation Parameters
	Operation Methods (opaque behavior)
	Operation Conditions
	Operation Exceptions

	Displaying Class Attributes and Operations

	Signals
	Defining a Signal
	Specifying Class Signals
	Creating a sent or received signal
	Signal Properties
	Signal parameters

	Associations
	Creating an Association
	Roles (or Association Ends)
	Multiplicity of a Role
	Specifying role multiplicity

	Association End Navigability
	Specifying navigability for a role

	Association End Aggregation
	Specifying role aggregation

	Association End Composition
	Role Changeability
	Role Order
	Role Static Property
	Role Qualifier
	Overloading a Role
	Association Classes
	Displaying an N-ary Association
	Reflexive Associations
	Creating a reflexive association

	The Parts
	Creating a Part between two Classes
	Defining the Identifier of a Class via a Part
	Multiplicities of the Associated Classes
	Multiplicity of the class referenced by the part
	Multiplicity of the owner class of the part

	Aggregation and Composition Relationships
	Associated multiplicities

	Generalizations
	What is a Generalization?
	Example

	Multiple Subclasses
	Advantages of Subclasses
	Multiple Inheritance
	Creating a generalization
	Discriminator

	Specifying Interfaces
	Creating an Interface
	Connecting an interface to a class

	Specifying Dependencies
	Specifying Parameterized Classes
	Constraints
	Object Diagram
	Objects
	Creating an object (instance)
	Instance properties
	Value of an attribute

	Links
	Creating a link
	Link properties
	Role properties

	Structure and Deployment Diagrams
	The Package Diagram
	Creating a Package Diagram
	Defining Packages
	Defining Classes
	Specifying Dependencies in a Package Diagram

	The Component Diagram
	Creating a Component Diagram
	Components
	Interfaces
	Creating component interfaces
	Linking interfaces to other objects
	Connecting interfaces

	Ports
	Connectors
	Delegate connector
	Assembly connector

	Composite Structure Diagram
	Creating a Composite Structure Diagram
	Parts
	Collaborations
	Collaboration use
	Collaboration use example

	Dependency links

	State Machine Diagram
	Presentation of the State Machine Diagram
	Creating a State Machine Diagram

	States
	Creating a State
	State types
	Pseudo-states

	Detailing Behavior of a State
	State Properties

	State Transitions
	Creating a Transition
	Transition Types
	External transition
	Internal transition
	Local transition

	Transition Effects
	Transition Effect Display

	Transition Triggering Event

	Activity Diagram
	Activity Diagram
	Creating an Activity Diagram

	Partitions
	Creating a Partition
	Partition Properties

	Nodes
	Object nodes
	Creating an Action
	Modifying the Action Type

	Parameter nodes
	Control nodes
	Control node types

	Object nodes: Input, Output and Exchange Pins
	Input pin
	Output pin
	Exchange pin

	Flows
	Control flow
	Object flows

	Interaction Diagrams
	Interactions
	Creating an Interaction
	Creating an Interaction Diagram

	Sequence Diagram
	Creating a Sequence Diagram
	Lifelines
	Creating a lifeline
	Lifeline properties

	Messages
	Examples of exchanged messages
	Creating a message
	Message types

	Execution Specification
	Creating an execution specification

	Occurrence specification
	Calculating sequence numbers

	Combined Fragment
	Creating a combined fragment
	Interaction operator type
	Interaction operands

	Interaction Use
	Gate
	Continuation

	Communication Diagram
	Example
	Diagram objects

	Interaction Overview Diagram

	The deployment diagram
	Presentation of the Deployment Diagram
	Creating a Deployment Diagram
	Deployment Diagram Objects
	Node
	Communication path
	Component
	Artifact
	Manifestation
	Deployment specification
	Configuration

	Appendix: Attribute type
	Primitive Types
	Prerequisite: Importing the Primitive Types
	Defining a Primitive Type

	Packages and Primitive Types
	Packages

	Defining New Primitive Types
	Compound Primitive Type

	HOPEX XMI 2.1 Import for UML2
	XMI Import Overview
	Prerequisites
	Scope of XMI Import

	Importing XMI and UML Files
	HOPEX/XMI Object Mapping
	Class Diagram
	Use Case Diagram
	Composite Structure and Communication Diagram
	State Machine
	Sequence, Communication and Interaction Overview Diagram
	Activity and Interaction Overview Diagram
	Package Diagram
	Component Diagram
	Deployment Diagram
	Object Diagram

	HOPEX XMI 2.1 Export for UML2
	XMI Export Overview
	Prerequisites
	 Scope of XMI Export

	Exporting XMI Files
	Export for Eclipse with UML2 plugin
	Export for other tools

	HOPEX/XMI Object Mapping

